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Abstract. The objective of this paper is to make a comparison and evaluation on cell-
centered and cell-vertex discretization in the DLR TAU-code for turbulent flows. In the 
following, TAU with cell-vertex and cell-centered centered discretization will be called 
TAU-CV and TAU-CC, respectively. Starting with the analysis of differences between 
cell-centered and cell-vertex discretization, the merits and drawbacks of these two 
approaches are summarized, and then serious of typical benchmark cases covering 
different grid types and turbulent models are selected for the computation of TAU-CC 
and TAU-CV. In these test cases, the accuracy and efficiency of above two versions of 
TAU code are compared. Some cases show that TAU-CC and TAU-CV reveal different 
behaviors in prediction the location of shock wave and flow separation pattern; 
however, TAU-CC demonstrates comparable accuracy and efficiency as compared with 
TAU-CV. It is observed that the accuracy and rate of convergence of the above solvers 
are strongly influenced by the quality of the mesh, and it will be shown that the TAU-CC 
has improved convergence behavior compared with TAU-CV on meshes with sharp 
boundary corners. The general conclusion is that TAU-CC has strong capability for the 
simulation of turbulent flows and this additional option provides the TAU code with 
extended powerful functionalities for the simulation of complex flow problems. 
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1 INTRODUCTION 
In computational fluid dynamics, both cell-centered and cell-vertex discretization are 

successfully used in finite volume codes. Although the merits and drawbacks of these 
two types of discretization methods have been intensively studied in the past several 
decades [1-4], it is still very difficult or impossible to draw a universal conclusion that 
which one is a better choice for a finite volume unstructured CFD code. Actually the 
performance on CPU running time of above two discretization approaches highly 
depend on the computational environments, such as programming languages, data 
structures, operating systems, and so on. Thus, it is necessary and important to assess 
cell-centered and cell-vertex discretizations for industry flows in identical working 
environments. Mavriplis [1] suggest that ‘a solver which can be operated in either mode’ 
should be used in order to ‘provide a more solid basis for comparing cell versus vertex-
type discretizations’.  

This leads to the main work of this paper: performances of cell-centered and cell-
vertex discretization for simulating turbulent viscous flows were compared and 
evaluated by using the DLR TAU-code [5, 6]. The TAU-Code is developed for 
aerodynamic applications in the field of aircraft and widely use at DLR, universities and 
industries. In this code, the governing equations are discretized with finite volume 
method on unstructured hybrid meshes. The default discretization technique of the 
TAU-Code is based on a cell-vertex grid metric and edge-based data structures, in the 
following called TAU-CV. In recent years a new option of the TAU-Code using the 
cell-centered metric has been developed as an alternative, in the following called TAU-
CC. Since TAU-CC and TAU-CV are run in exactly the same working environments, it 
makes the comparison and evaluation credible on the algorithm aspects, i.e., different 
grid types, different boundary treatments, different flux calculation schemes and 
different turbulence models.  

In the first section of this paper, the main differences between cell-centered and cell-
vertex in spatial discretization of the Reynolds averaged Navier-Stokes equations are 
summarized. Next a series of typical test cases covering different grid types and 
different turbulence models is selected for the computation with TAU-CC and TAU-
CV. These test cases include the turbulent flat plate with structured mesh, the multi-
element-airfoil TC11 with a hybrid unstructured mesh, the LANN wing with two 
different structured meshes, the DPW3-W1[7] wing with a set of hybrid mesh for grid 
convergence study and the DLR-F6 wing-body-fairing configuration with a hybrid 
mesh. The range of turbulence models used in above tests cases covers one-equation 
model (Spallart-Allmaras [8] type), two-equation turbulence model (k-ω type) and 
differential Reynolds stress turbulence model. In each test case, the accuracy and 
efficiency of the above two options of the TAU code are compared. Finally, several 
concluding remarks obtained from above evaluation works are presented. 

2 NUMERICAL CONSIDERATIONS  

2.1 General analysis 
The basic difference between cell-centered and cell-vertex lies in the construction of 

control volumes. In the cell-centered grid metric, the control volumes are identical with 
primary grid cells, as shown in Figure 1(a), for two dimensional cases. And hence, the 
unknowns are defined at the cell centroids. While in the cell-vertex grid metric, the 
solution variables are located at the primal grid vertices, and the control volumes are 
reformed around each primal grid node by a median dual mesh construction, which 
connect the centroids of primal cells with surrounding midpoints of faces and edges, as 
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shown in Figure 1(b). In the TAU-Code, because the TAU-CC and TAU-CV share the 
same edge based data structure to store the connectivity of control volumes, this leads to 
the differences between them only origin from the construction features of cell-centered 
and cell-vertex grid metrics.  

 

                      
   (a)                                                                     (b)                                   

Figure 1: Illustration of cell-centered (a) and cell-vertex (b) type control volume constructions.  

Another principle difference between the cell-centered and cell-vertex grid metrics 
relates to the number of control volumes (the degrees of freedom), which is determined 
by the numbers of primary grid cells and vertices, respectively. It is worth noting that 
the ratio between numbers of primary grid cells and vertices varies with grid topology. 
In pure structured meshes this ratio closes to one; in pure 3D tetrahedral meshes it is in 
the range of 5 to 6; in typical 3D hybrid meshes, this ratio is roughly 3. This leads to the 
argument that the cell-centered scheme should be more accurate than the cell-vertex one 
on the same unstructured grid. However, a control volume in cell-centered grid metric 
has smaller number of neighbor cells compare to a control volume in the cell-vertex grid 
metric.  

It has to be point out here that the construction of median dual mesh may produce 
control volumes with bad quality, especially for some grids with large distortions. For 
example, if an O-type mesh is generated at the sharp boundary corner (e.g. trailing edge 
of an airfoil, see Figure 2), then a series of arrow-shaped control volumes will be 
formed with the median dual mesh construction, which can strongly decrease the 
performances of the flow solvers. 

 
Figure 2: Illustration of dual mesh construction at sharp edge corner   

In the following subsection, modifications from TAU-CV to TAU-CC on aspects of 
solution reconstruction, gradient evaluation and boundaries treatments will be presented 
in details. 

2.2 Flux integration 
One obvious characteristic of the cell-vertex grid metric is that the edges of the dual 

mesh always cross the midpoints of the face connected with two corresponding vertices, 
as shown in Figure 3, while in the cell-centered grid metric this property can not be 
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achieved in general. This advantage of the cell-vertex grid metric brings a lot of benefits 
in surface flux computing, especially for central discretization.  

 
(a)  Cell-vertex                                                  (b) Cell-centered   

Figure 3: Solution reconstruction for TAU-CV and TAU-CC in 2D unstructured mesh 

In other words, the upwind discretization seems to be a better choice for TAU-CC. 
For example, with the flux difference splitting scheme of Roe, the convective flux over 
the control volume face associate with edge ij, see Figure 3, can be written as: 

       [ ])()()(
2
1),( LRRoeRLRLij UUAUUUU −−+== FFFF  

To achieve second order accuracy, solution reconstruction should be used to specify 
the flow states on the left and the right side of each control volume surface. Several 
reconstruction methods have been implemented in the TAU-Code, the most commonly 
used method is the piecewise linear reconstruction, presented by Barth and Jespersen [9]. 
In this approach, the solution is assumed to have a piecewise linear distribution over the 
control volume, then the left and right states for TAU-CV can be reconstructed as 

         )(
2
1

iijiiL UUU ∇⋅+= rφ  
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where iU∇  is the gradient of U and iφ  is the value of limiter function at vertex i, ijr  
represents the vector from vertex i to vertex j, as shown in Figure 3(a). The factor ½ 
results from the midpoint property of median dual mesh.   

For TAU-CC, this approach should be modified as 

         iiiiL UUU ∇⋅Δ+= rφ  

        jjjjR UUU ∇⋅Δ+= rφ  

here, irΔ  and jrΔ represent vectors pointing from cell centers to the barycentre of the 
control volume face, see Figure 3(b). In above procedure, TAU-CC always uses the flux 
at face barycentre to represent the average value over this face. In the case where the 
flux is a linear distribution, then the numerical flux integration is exact; however, TAU-
CV has no such property because the barycentre is not defined on cell-vertex type 
control volume faces. Hence the above approach leads to more accurate flux integration 
compared to TAU-CV. Unfortunately, in boundary layer and shock wave area, this 
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advantage of TAU-CC is undermined because the flux in these regions usually has 
typical nonlinear distribution.  

In viscous flux computation, both the flow variables and their gradients are required 
at the face associate with neighboring control volume i and j. Since gradients have been 
computed inside each control volume in the reconstruction process of second order 
upwind scheme, the gradients at the control volume face can be estimated by the 
following hybrid interpolation approach   

            [ ] 2)(
ij

ij
ijijijijij UUUUU

r

r
r −−⋅∇−∇=∇  

where )(
2
1

jiij UUU ∇+∇=∇  for TAU-CV. In TAU-CC, this term is slightly changed 

by using linear interpolation according to the distances from cell-centroids to face 
barycenter.   
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2.3 Gradient evaluation 
Gradients of the flow variables are particularly needed inside each control volume to 

formulate the linear reconstruction for second-order spatial accuracy of upwind 
schemes. Gradients of the velocity components and the temperature are also required for 
the evaluation of the viscous fluxes. TAU provides two approaches to evaluate gradients 
of flow variables. The first one is based on the Green-Gauss theorem and the second 
utilizes the least square method. 

Using the Green-Gauss approach the gradient of a flow variable is approximated at 
each control volume center under taking into account the neighboring control volumes. 
Barth and Jespersen[9] formulated the approach such that it becomes compatible with the 
edge-based data structure requiring direct neighbor information only. Two control 
volumes are direct neighbors if they share a face of the computational mesh. For the 
cell-vertex discretization the Green-Gauss construction is exact only for linear functions 
only on triangular meshes. For the cell-centered discretization the construction is 
generally not exact for linear functions on quadrilaterals or triangles. Only if an edge of 
neighboring triangle cell centers is bisected in the computational grid, the construction 
becomes exact for linear functions on triangles [10]. 

The least-square approach seeks to find the gradient vector of a flow variable at each 
control volume center which minimizes the least square error with respect to the 
differences between neighboring variables and the variable itself [11]. The construction 
may include geometrical weights on the error terms. Hence one differentiates between 
unweighted and weighted least-square approaches. Weighted least-square gradients are 
normally used for meshes with highly stretched cells [10]. TAU uses an inverse distance 
weighting least-square approach in both the cell-vertex and the cell-centered grid 
metric. 

The least-square construction represents a linear function exactly for the cell-vertex 
and cell-centered discretization on arbitrary mesh types. It is based on a stencil which 
identifies relevant neighboring points for use in the gradient evaluation. The stencil can 
be chosen arbitrarily. The choice of the stencil has strong influence on the robustness 
and accuracy of the numerical result. In TAU-CV and TAU-CC (Figure 4(a)) the stencil 
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of the considered control volume variable is formed by direct neighbors. This stencil is 
a satisfying choice for the cell-vertex grid metric. For the cell-centered grid metric a 
direct neighbor stencil can enforce decreasing robustness and decreasing accuracy. An 
example of such a stencil topology is shown in Figure 4(c) for a triangular mesh part. A 
stencil with only three neighbors is obtained. The least-square construction exhibits 
poor accuracy in this case, since there are no close points to provide accurate normal 
derivative information [10]. An alternate stencil includes all of the cells that share a 
vertex with the cell whose gradient is desired (Figure 4(b)), resulting in a robust but 
expensive method for computing the least-square gradient. 

            
              (a)  Direct neighbors                  (b) Vertex neighbors                          (c) Non robust stencil 

Figure 4: Stencil for least-square gradient calculation on cell-centered grid metric 

A satisfying least-square stencil concerning efficiency, robustness and accuracy for 
TAU-CC is still under investigation. It should extend the direct neighbor stencil by 
vertex neighbors which increase accuracy and robustness. Diskin[2] suggested a 
promising approach. He uses smart augmentation that relates the stencil members to the 
discretization scheme of the convective terms. 

2.4 Boundary treatment 
When using the cell-vertex grid metric, the flow variables are stored directly on the 

boundary vertices, so the Dirichlet boundary conditions can be implemented on 
corresponding boundary points explicitly. On the contrary, the application of Newman 
boundary conditions can be realized more simply and reasonably in the cell-centered 
grid metric. Taking the numerical treatments of the no-slip wall boundary condition as 
an example, in TAU-CV, the residuals of the momentum equations should be set to zero 
in order to keep the non-slip condition. Further more, if we assume that the pressure 
gradient normal to the wall is zero and the wall temperature is known, the density and 
energy on the non-slip wall can also be specified directly. Thus the residuals at wall 
boundary points need not to be calculated any more. In TAU-CC, the fluxes over solid 
wall boundary faces have an important influence on the residuals of corresponding 
control volumes. To calculate these fluxes, the pressure and velocity gradients on the 
wall boundary should be evaluated with caution, which results in a complex boundary 
treatment.  

At the intersection points or lines of faces with different boundary conditions (e.g. 
the diamond point in Figure 5), the above inherent advantage of the cell vertex method 
may cause conflict-defined boundary conditions. To avoid this problem, an approximate 
treatment should be used at intersection area of faces with boundary conditions. On the 
other hand, conflict-defined boundary conditions never occur in the cell-centered grid 
metric. 
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Figure 5: Illustration of the conflict-defined boundary condition in the cell-vertex grid metric 

3 TEST CASES AND RESULTS 
The TAU-Code covers a wide range of applications and offers various features and 

alternative approaches with respect to mesh handling, physical modeling and numerical 
schemes. The assessment of TAU-CC and TAU-CV has been restricted so far to some 
basic features. In this paper, the results obtained for selected representative test cases 
are shown.  

3.1 Turbulent flat plate  
Turbulent flow over a flat plate is an ideal case to test the basic performance of the 

flow solver. The computational region in this test case is a rectangle (see Figure 6), 
where the inlet is located two plate lengths L upstream of the leading edge and outlet is 
defined at the plate trailing edge. The height of the domain is 0.8L. Structured grid 
consisting 224×160 cells is used. The computations have been carried out for a Mach 
number of M∞=0.30, and Re=5.0×106 based on the length of plate.   

                         
Figure 6: Mesh over turbulent flat plate    

     
Figure 7: Convergence histories of turbulent         Figure 8: Comparison of velocity distribution at x/L=0.5 
flat plate test case           
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Figure 7 shows convergence histories for TAU-CC and TAU-CV with Spalart-
Allmaras turbulence model (SAO) [8] and Reynolds stress turbulence model (RSM) of 
Wilcox [12]. As one can see, TAU-CV has faster convergence rate in this test case. 
Figure 8 shows the computed axial velocity distribution in the middle of the plate (at 
x/L=0.5) in comparison with experimental data [13]. These results are plotted as u+ vs. y+, 
where  

         
∞∞

+ ==
U
U

cu
Uu

f

~2~

,τ

 ,   and ⎟
⎠
⎞

⎜
⎝
⎛= ∞

∞+

L
yc

y f Re
2

,  

For a given turbulence model TAU-CC and TAU-CV show nearly the same velocity 
profile. There are slightly differences between the different turbulence models. Clearly, 
the influence of grid metric on convergence solution could be ignored compare to the 
stronger impact of turbulence model. The conclusion drawing from this test case is that 
on a structured mesh with high quality, the discretization accuracies of TAU-CC and 
TAU-CV are almost identical, because the numbers of degrees of freedom involved in 
discretization are the same.                                                                                     

3.2 TC11 airfoil  
The three element airfoil TC11 consists of a main airfoil with deflected slat and flap. 

For this test case, simulations were carried out at Mach number of M∞=0.22, Reynolds 
number of Re=5.0×106 and attack angle of α=24.4°. The flow field around this airfoil is 
known to have very steep velocity gradients and strong interactions between different 
turbulent shear layers. The Wilcox k-w two-equation turbulence model [12] is used. A 
hybrid unstructured grid (see Figure 9), which consists of 18140 quadrangles in semi 
structured layers near the solid wall boundary and 32466 triangles in remaining 
computational domain, is used. Computations have been performed with both TAU-CC 
and TAU-CV. For the calculation of the convective flux, the central scheme [14] and the 
second order Roe upwind scheme [15] are used. The LU-SGS implicit scheme together 
with 3 levels V-cycle multigrid has been selected as time integration method and least-
square method has been used for gradients evaluation in all computations. 

  
Figure 9:  Hybrid unstructured mesh for TC11 airfoil 

The comparison of the convergence histories is shown in Figure 10. The convergence 
behavior of TAU-CC and TAU-CV are comparable if they are measured by number of 
iterations. While considering the CPU time, TAU-CV is more efficient because less 
unknowns are involved in the computations. The comparison of the results of above 
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calculations and experimental data [16] is shown in Figure 11. As one can see, the 
pressure distributions show good agreements between numerical results and 
experimental data on slat and main element. However, less satisfactory agreement has 
been obtained on the upper side of the flap which maybe caused by the relatively coarse 
mesh on that area. Comparison of the computed aerodynamic coefficients and 
experimental data is shown in Table 1. As one can see, the results of TAU-CC with 2nd 
order upwind scheme shows better agreement with experiment.      

 
Figure 10: Convergence histories of TC11 airfoil computations  

 
(a) On the slat                           (b) On the main element                       (c) On the flap 

Figure 11: Comparison of computed surface pressure distributions between different computations on 
TC11 airfoil. 

 

 TAU-CV 
central 

TAU-CC 
central 

TAU-CV  
2nd upwind 

TAU-CC  
2nd upwind Experiment 

Cl 3.7020  3.6833  3.7744 3.6727  3.4944 
Cd 0.1239 0.1337 0.1205 0.1112 0.1060 

Table 1: Comparison of computed aerodynamic coefficients on TC11 airfoil     

3.3 LANN wing  
The LANN wing [17] has been used mostly as an unsteady flow test case. In this 

paper, a steady case of LANN wing at Mach number M∞=0.82, Reynolds number 
Re=7.3×106 and attack angle of α=2.6° is selected to evaluate the performance of TAU-
CC and TAU-CV. Two structure-type grids are used. The main difference between 
these two grids is the treatment of wing tip and trailing edge. Grid A, as shown in 
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Figure 12, simply sew up the wing upper and lower surface at tip and trailing edge, 
while grid B,  keep the exact configuration at the wing tip and trailing edge by using 
multi-block grid. All simulations in this test case use Spalart-Allmaras one equation 
turbulence model, central scheme for convective flux calculation, LU-SGS as time 
stepping scheme and multigrid method to accelerate convergence. On grid A, bad 
convergence behavior was observed for TAU-CV, full multigrid must be used for it, and 
relatively smaller CFL number (approximately 5) should be used in order to achieve 
stability, while TAU-CC has no such limitation. The reason for this limitation has been 
pointed out in section 2.1. Therefore, the convergence speed of TAU-CV on grid A is 
slower than TAU-CC, as one can see in Figure 13(a). On grid B, both TAU-CC and 
TAU-CV have no convergence problems. As shown in Figure 13(b), the convergence of 
TAU-CV on grid B is a little faster than TAU-CC.  

 
 Grid A                                                                                  Grid B 

Figure 12: Surface mesh at the tip of LANN wing 

  
(a) On grid A                                                             (b) On grid B 

Figure 13: Convergence histories for LANN wing test case. 

Figure 14 shows the comparison of pressure distributions at 65% span obtained with 
TAU-CC and TAU-CV on the above two grids. In general, all computed results agree 
well with experiment data. Considering the details, TAU-CC predicts nearly the same 
shock position on both grids, whereas TAU-CV does not. In contrast, the pressure 
distributions predicted by TAU-CC have better agreement with experiment at lower 
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surface of LANN wing, while at the blunt trailing edge of grid B, result of TAU-CV 
seems to be more accurate.       

  
(a) On grid A                                                             (b) On grid B                        

Figure 14: Comparison of computed surface pressure distributions at 65% span-wise station. 

3.4 DWP3-W1 wing  
The DWP3-W1 wing, which was defined by the 3rd AIAA drag prediction workshop 

committee, is selected as a test case for investigating the grid convergence performance 
of TAU-CC and TAU-CV. A set of self-similar hybrid unstructured grids consists of 
three grid levels (coarse, medium and fine), has been generated by DLR in the drag 
workshop, directly used here. Basic information of these grids in cell-centered and cell-
vertex grid metrics has been listed in Table 2, the surface mesh of medium grid is 
depicted in Figure 15. 

 
 Coarse  Medium  Fine 
 TAU-CC TAU-CV TAU-CC TAU-CV TAU-CC TAU-CV 

Prisms 1976700 6784770 15052013 
Tetrahedrons 6710084 10672069 14931077 
Degrees of 

freedom  8686784 2174364 17456839 5288507 29983205 10150588 

Number of 
faces 18279351 11932064 38154061 26289732 67199144 47832250 

Number of 
wall faces 98835 49489 226159 113182 373291 186787 

Table 2: Description of three levels of DWP3-W1 wing grid 

The computations are conducted at Mach number M∞=0.76, Reynolds number 
Re=5.0×106 and attack angle of α=0.5°. All simulations for this test case use the Menter 
SST two-equation turbulence model [18], 2nd order Roe scheme together with least-
square gradient evaluation, LU-SGS time stepping and 3V-type multigrid method. In 
Figure 16, the pressure coefficients at 70% span computed by TAU-CC and TAU-CV 
on the coarse mesh are compared. The main differences can be found at the shock 
position and the trailing edge. The idealized parasite drag predicted by TAU-CC and 
TAU-CV versus grid index factor, defined as N-2/3, have been shown in Figure 17. This 
figure suggests that more accurate parasite drag coefficients could be obtained on same 
grid using TAU-CC, mainly due to a larger number of unknowns involved in the 
computation.    



G. Wang, A. Schwöppe and R. Heinrich 
 

 12

 

 
(a) Surface grid                                                              (b) Field slice at 70% span 

Figure 15: Medium grid for DPW3-W1 wing. 

  

  Figure 16: Comparison of computed pressure                Figure 17: Comparison of grid convergence of  
  distribution at 70% span on coarse mesh.                     parasite drag for TAU-CC and TAU-CV.   

3.5 DLR-F6 wing-body with fairing  
In this paper, the performance of the cell-centered and cell-vertex discretization on 

complex 3D configuration is evaluated by predicting the drag polar of the DLR-F6 
FX2B wing-body configuration at Mach number M∞=0.75, Reynolds number 
Re=5.0×106. The computational grid used here (as shown in Figure 18), is the coarse 
mesh generated by the Boeing Company in the 3rd AIAA drag prediction workshop [7]. 
It is worth noting that this mesh has a large number of highly stretched cells at the 
leading edge region, which is very suitable to demonstrate the robustness of the TAU-
Code. All calculations in this test case were conducted with the upwind scheme together 
with least-square gradients, and the Spalart-Allmaras turbulence model. Figure 19 
shows the predicted drag polar of TAU-CC and TAU-CV compared to the wind tunnel 
measurements [19]. Since the coarse mesh was used here, there are slight differences 
between the numerical results and experimental data, while the result of TAU-CC 
shows a somewhat better agreement with experiment.   

 

N-2/3 (N is number of unknowns)

C
d

-C
l2

/(
P

I*
A

R
)

2E-05 4E-05 6E-05
0.0104

0.0106

0.0108

0.0110

0.0112

0.0114

0.0116

0.0118
TAU-CV 2009 upwind least-square
TAU-CC 2009 upwind least-square

   C

  C 

   M M

   F

N-2/3 (N is degrees of freedom) 



G. Wang, A. Schwöppe and R. Heinrich 
 

 13

 
 

Figure 18: Surface mesh of DLR-F6 with FX2B fairing generated by Boeing Company 

 
Figure 19: Comparison of idealized parasite drag coefficient versus lift coefficient between computations 

and experiment for DLR-F6 with FX2B fairing.  

4 CONCLUSIONS  
Based on the DLR TAU-Code, a comparison and evaluation of the cell-centered and 

cell-vertex discretization were conducted by using a series of test cases. The results 
indicate that the cell-centered scheme (TAU-CC) and the cell-vertex scheme (TAU-CV) 
have nearly the same accuracy and efficiency for most of the structured grid test cases. 
This is expected since the number of degrees of freedom are the same. For the test cases 
with unstructured grid, second-order upwind scheme with least square gradient 
reconstruction is strongly suggested to be used in TAU-CC, in order to achieve accurate 
results. With this premise, in general TAU-CC is less efficient but more acurate 
compared to TAU-CV on the same mesh. It is also observed that TAU-CC has better 
performance for configuration with sharp tailing edge or wing tip, while TAU-CV is 
more suitable for dealing with blunt tailing edge configuration.  

The general conclusion is that TAU-CC has strong capability for the simulation of 
turbulent flows and this additional option provides the TAU-Code extended powerful 
functionalities for the simulation of complex flow problems. 
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