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José P. Gallardo∗, George K. El Khoury∗, Bjørnar Pettersen∗ and Helge I.
Andersson†

∗Norwegian University of Science and Technology, Department of Marine Technology
NO-7491 Trondheim, Norway

e-mail: bjornar.pettersen@ntnu.no

†Norwegian University of Science and Technology, Department of Energy and Process
Engineering

NO-7491 Trondheim, Norway
e-mail: helge.i.andersson@ntnu.no

Key words: Curved circular cylinder, Shear flow, DNS, Immersed Boundary Method

Abstract. The effect of uniform shear on the flow past a curved cylinder at a Reynolds
number of 100 has been studied by means of Direct Numerical Simulations on a staggered
Cartesian grid. The non-slip condition at the solid walls was taken into account by a
direct forcing Immersed Boundary Method. The geometrical configuration consisted of
a quarter-of-ring segment of non-dimensional radius of curvature 12.5, and a horizontal
extension between the end of the curved segment and the outflow plane. The flow was
directed towards the convex face of the quarter-ring, and the non-dimensional shear-rate
at the input was set to K = 0 and 0.1. One single shedding frequency prevailed along the
entire span of the cylinder for uniform flow (K = 0) whereas at a non-dimensional shear-
rate of K = 0.1, the shear flow gave rise to an oblique and cellular vortex shedding pattern
with two dominant shedding frequencies decreasing toward the horizontal extension. The
dislocations occurred periodically each five shedding cycles and at a local Reynolds number
of 167. The mean local base pressure for uniform shear gave evidence of a region dominated
by a fairly low favourable pressure gradient close to the top of the cylinder which resulted
in a longer recirculation bubble in this region than for K = 0.
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1 INTRODUCTION

Flows around circular cylinders comprise a variety of complex flow phenomena which
depend on the shape and orientation of the cylinder with respect to the flow direction
as well as on the incoming flow conditions. The flow past a straight circular cylinder is
perhaps the simplest of these configurations, and it is hardly surprising that this flow
problem has been extensively investigated during the past decades by means of labora-
tory experiments and computer simulations. Zdravkovich,1 for instance, has provided a
comprehensive review on this topic.

In many industrial applications, however, the flow past non-uniform circular cylinders is
frequently encountered. Such types of configurations give rise to different wake dynamics
compared to straight cylinder flows. A ring or torus with a circular cross-section, which is
obtained by bending a straight circular cylinder, represents an example of a non-uniform
cylinder geometry. Although the flow around a ring has been studied previously,2–4 most
of the studies have been focused on flows with the free stream aligned normal to the plane
of curvature of the ring. A variant of the ring-like geometry may be found in offshore
structures and marine operations, where hanging risers, anchor lines and pipelines form
catenaries whose geometries resemble that of a quarter turn of a ring with a high radius
of curvature. Miliou et al.5 used this geometry to investigate the flow past a riser at
Re = 100 by means of Direct Numerical Simulations (DNS) with the free-stream coming
from different directions. In a subsequent work, Miliou et al.6 studied the same geometry
with the free stream aligned parallel to the plane of curvature of the cylinder at Reynolds
numbers of 100 and 500. In this case, the authors observed different features in the vortex
shedding depending on the orientation of the cylinder with respect to the flow direction.

The other parameter affecting the wake in the flow past a circular cylinder, namely the
incoming flow condition, is of particular importance to the marine industry since ocean
currents interacting with waves, wind and the sea bottom have non-uniform vertical ve-
locity profiles. The experimental7–10 and numerical11,12 studies of the flow past a circular
cylinder in uniform shear flow have revealed the presence of secondary flows as well as
oblique and cellular vortex shedding as a direct consequence of the inflow condition. Due
to the shear effect, pressure gradients are generated along the front and rear stagnation
lines, causing secondary flows to appear at these locations. The experimental work done
by Woo et al.8 estimated magnitudes for the mean velocities induced by these pressure
gradients. In addition, the presence of horseshoe vortices may enhance these secondary
flows on the rear stagnation line. The numerical simulations of Miliou et al.6 on curved
circular cylinder flows predicted the existence of pressure gradients dictated by the ge-
ometry along the front and rear stagnation lines. This induced secondary flows along
the stagnation lines. It seems therefore interesting to investigate the effects of combining
incoming shear flow with a non-uniform geometry like a curved cylinder.

In the present study we perform DNS of the flow past a curved circular cylinder in
uniform shear flow. This will enable us to study the effect of a uniform shear-rate on the
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Figure 1: Computational domain size, geometry and flow configuration shown at the middle (x, z)-plane.
The size of the computational domain is 28D, 11D and 18D in the x-,y- and z-directions, respectively.
The inflow velocity varies linearly in the z-direction, with an average value Uc at the mid height of the
computational domain. The spanwise coordinate s is measured along the cross-sectional axis following
the curvature of the cylinder from the top plane, varying between 0 and 19.6D at the end of the bend.

instantaneous vortex topology, recirculation region as well as on the shedding mechanisms.
The previous DNSs with this geometry5,6 were performed using a spectral/hp element
Navier-Stokes solver and a boundary-fitted grid. In the present study the solution of
the Navier-Stokes equations is obtained with a Cartesian grid solver, and a direct forcing
Immersed Boundary Method (IBM) is used to implement the non-slip boundary condition
at the solid surfaces. It is thus intended to check the overall performance of these methods
for the complex geometry involved. In order to achieve this comparison, we intentionally
considered a convex-shape geometry identical to that studied by Miliou et al.6 with
uniform inflow.

2 FORMULATION

2.1 Flow configuration

Figure 1 shows a schematic view of flow past a curved cylinder which is composed
of a quarter segment of a ring and a horizontal extension. Of particular importance
in curved cylinder flows is the non-dimensional radius of curvature. This dimensionless
parameter is defined as the ratio of the radius of curvature of the quarter-ring R to its
cross-sectional diameter D. In the present study we consider a flow configuration identical
to that of Miliou et al.6 This consists of a quarter-ring with curvature ratio R/D = 12.5
and a horizontal extension of length 10D between the end of the bend and the outflow
plane. Throughout the present paper, the span s is defined as the arc-length of the curved
cylinder measured from the top plane; i.e. s = Rθ with θ the angle measured in radians
from the top plane.
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Figure 2: Control volumes for the u-velocity (dashed lines) and the pressure (gray) in the staggered grid.

2.2 Governing equations of fluid motion

The dynamics of the flow are described by the time-dependent Navier-Stokes equations
for an incompressible Newtonian fluid expressed in non-dimensional form:

∂ui

∂xi

= 0, (1)

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂x2
j

, (2)

Here, the Reynolds number is based on the cylinder diameter and the inflow velocity at
the mid height of the computational domain, Re = UcD/ν, with ν the kinematic viscosity.
For the simulations presented in this work we set Re = 100.

2.3 Numerical method

The governing equations (1) and (2) have been directly solved with the code MGLET.
In this finite-volume code, the Navier-Stokes equations for an incompressible fluid are
discretised on a staggered Cartesian mesh with non-equidistant grid-spacing.13,14 The
mid-point rule14 is employed to approximate the fluxes with the variables defined on the
control cell shown in figure 2. The velocities u(i + 1/2, j) and u(i, j + 1/2) at the faces
of the momentum cell for the u-velocity are obtained by linear interpolation. A central
difference scheme is used to approximate the derivatives in the x- and y-directions at the
positions (i + 1/2, j) and (i, j + 1/2) respectively, ensuring second order accuracy in the
spatial discretization of the convective and diffusive terms.15

For the time advancement of the momentum equations an explicit third-order Runge-
Kutta scheme is used. The pressure at the new time level n + 1 is found by solving
the Poisson equation for the pressure correction ∆pn+1 = pn+1 − pn based on the the
intermediate velocity fields u∗ computed from the momentum equation (2). The Poisson
equation is solved iteratively by the Stones strongly implicit procedure (SIP), producing
intermediate pressure p∗ and velocity u∗ fields at each iteration. The divergence of the
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intermediate velocity fields div(u∗) is checked against a defined tolerance ϵ for each iter-
ation. When div(u∗) ≤ ϵ the intermediate pressure and velocity fields are updated at the
next time step tn+1.

2.4 Immersed boundary method

At the walls, the non-slip and non-impermeability conditions are taken into account by
using a direct forcing Immersed Boundary Method (IBM). Basically, the cells at the fluid-
solid interface are transformed into internal boundary conditions on the corresponding
computational domain by using higher order interpolation from the fluid cells in the
vicinity of the body. This method represents a simple way to deal with complex geometries
avoiding the need to generate a body fitted grid. A detailed review of the IBM method
is found in the work by Mittal and Iaccarino.16

The general stencil configuration for the IBM method is depicted in figure 3 for the
one-dimensional case. Here ϕ represents one of the velocity components, ϕ0 is the internal
Dirichlet boundary condition, ϕr the value at the wall; and ϕ1, ϕ2 and ϕ3 the values in the
fluid used for the interpolation. The internal boundary condition based on interpolation
from N neighboring cells is determined by the following expression

ϕ0 =

(
N∑
i=1

αiϕi

)
+ αrϕr (3)

where αi and αr are the interpolation coefficients for the variable ϕ at the fluid cells and
the body, respectively.

As mentioned above, MGLET uses a Cartesian staggered grid, which means that the
boundaries between velocity and pressure cells do not coincide, as shown in figure 2. The
blocking strategy for the IBM method is pressure oriented, then the blocked cells are
pressure cells that lie within the surfaces that demarcate the solid walls. According to
this criterion, the blocked velocity cells are those touched by the blocked pressure cells.

The interpolation can be either carried out by Lagrange polynomials or using least
squares interpolation. It was shown by Peller et al.17 that the interpolation coefficients
αi and αr depend only on the geometry, thus they can be determined in a preprocessing
step. In order to account for three-dimensionality, weighting factors are estimated in the
different directions to compute ϕ0. Finally, the computational representation of the body
can be done analytically or using a non-structured mesh consisting of triangles.

2.5 Simulation parameters and implementation

In the present work the dimensions of the grid in each direction are Nx = 400, Ny = 150
and Nz = 258, resulting in a total of 15.48 × 106 grid points. The data for a straight
uniform circular cylinder presented by Zdravkovich1 was used to interpolate the boundary
layer thickness δ, obtaining δ ≈ 0.5D at Re = 100. In order to adequately resolve
the details of the boundary layer and the wake, non-uniform grid spacing is used in
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Figure 3: One-dimensional stencil for the interpolation in the x-direction using the IBM method; the
body boundary corresponds to the thick blue line. Adapted from the work by Peller et al.17
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Figure 4: Detail of the 400 × 150 × 258 Cartesian mesh around the curved cylinder . (a) View of the
(x, y)- and (y, z)-planes; (b) (x, y)- and (x, z)-planes.

the three spatial directions. The minimum grid spacing for the uniform and shear flow
cases are ∆x/D = 0.05, ∆y/D = 0.02 and ∆z/D = 0.057 in the x-, y- and z-directions
respectively. Different planes of the mesh close to the body are shown in figure 4, depicting
the clustering of points in the vicinity of the body.

Figure 5 shows the blocking of the Cartesian grid by the IBM method in the (x, y)-
and (y, z)-planes. The least squares method was chosen as interpolation scheme since it
possesses better stability properties than the Lagrange interpolation method.17 The body
composed of a quarter-ring and a horizontal extension were represented by a structured
mesh consisting of triangles. The resolution of this mesh was rather high in order to avoid
errors in the representation of the curved surfaces. In addition, the following boundary
conditions were imposed:

1. A free-slip condition on the horizontal top (z = 18D) and bottom (z = 0) planes as
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José P. Gallardo, George K. El Khoury, Bjørnar Pettersen and Helge I. Andersson

5 6 7 8 9
4.5

5

5.5

6

6.5

(a)

y
/D

x/D
4.5 5 5.5 6 6.5

13

14

15

16

17

(b)

z
/
D

y/D

Figure 5: View of the blocking of cells in the Cartesian mesh by the IBM method. (a) View of the
(x, y)-plane at z/D = 14; (b) (y, z)-plane at x/D = 12.

well as on the vertical sides (y = 0 and 11D) of the computational domain.

2. A uniform shear velocity profile at the inlet,

U∞(z)

Uc

=
Kz

D
+

U0

Uc

, (4)

where the non-dimensional inlet shear rate K was set to 0 and 0.1 for the two cases
studied. Here, K = (dU∞/dz)D/Uc, with dU∞/dz defined as the inflow shear rate;
and U0 is the inflow velocity at the bottom plane (z = 0). In this context, we also
define the local Reynolds number as Rel(z) = U∞(z)D/ν.

3. At the outlet (x = 28D), a Neumann boundary condition was prescribed for the
velocities, i.e. ∂u/∂x = 0, ∂v/∂x = 0, and ∂w/∂x = 0; in addition the pressure was
set to zero (p = 0). This gives a fully developed zero stress condition in order to
avoid reflections from the outlet.

The constant time step used for the simulations was ∆t = 0.005D/Uc which ensured
low values of the maximum Courant number. The flow field evolved to a quasi-periodic
state at tUc/D ≈ 100, after which statistics were gathered for a period of 300D/Uc.

The code was run in parallel on an IBM p575+ machine. A discussion on the efficiency
of the parallelization in the code MGLET is found in the work by Manhart et al.13 All
the simulations were run on 48 processors, the domain decomposition consisted of 16
processors in the x-direction and 3-processors in the y-direction. In average, the time
required to compute one time-step was 2 seconds, resulting in approximately 33 hours to
run the 60000 time steps required to gather statistics.
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3 RESULTS

3.1 Near wake flow

An interesting feature of the flow field is the variation of the mean pressure along the
front and rear stagnation lines. This is depicted in figure 6(a) where the non-dimensional
mean stagnation pressure Ps/ρU

2
0 is plotted as a function of the span s. Along the front

stagnation line, both the uniform (K = 0) and shear flow (K = 0.1) cases are characterized
by a negative pressure gradient (∂p/∂s < 0) which leads to the development of an axial
flow along the convex face of the quarter ring towards the horizontal cylindrical extension.
Along the rear stagnation line the uniform flow case (K = 0) indicates the presence of
a positive gradient along the entire span length (∂p/∂s > 0). For the shear flow case
(K = 0.1), however, the mean pressure exhibits a weak negative pressure gradient up to
s/D ≈ 4, where a positive pressure gradient builds-up afterwards.

It is well known that the base pressure distribution (i.e. pressure along the rear stag-
nation line) influences, among other quantities, the size of the recirculation region which
develops in the near-wake due to the separation of boundary layers from the surface of
the solid body. This is reflected in figure 6(b) where the non-dimensional local separation
length Ls/D is plotted along the span of the quarter-ring segment. Here, Ls is defined
as the streamwise distance from the rear stagnation line to where the mean streamwise
velocity changes sign from negative to positive. At the top plane, the local separation
length for the uniform flow case is approximately 1.5D; this value remains constant up
to s/D ≈ 8, then it starts decreasing monotonically, reaching zero close to the horizontal
part of the cylinder, at s/D ≈ 15. The variation of Ls for the shear flow case is fairly sim-
ilar to that of the uniform flow case, but instead of being constant between the spanwise
locations 0 and 8 it exhibits a local minimum at s/D ≈ 5. Such a behaviour, along the
first part of the span, has its origin in the pressure coefficient distribution shown in figure
6(a). It is noteworthy that the recirculation length for the shear flow case (K = 0.1) is
larger than that for the uniform flow case (K = 0) at all the spanwise locations.

Further differences between the uniform and shear flow cases are noticeable by looking
at the isocontours of mean u- and w-velocities, shown in figures 7(a) to 7(d). When the
inflow is uniform (K = 0), the lowest mean streamwise velocities in the recirculation
region occur close to the top of the cylinder, as seen in figure 7(a), while at a shear rate of
0.1 the region of lowest mean u-velocities is located downwards between z/D = 12 and 14
(figure 7c). The contour plot of mean w-velocity for the shear flow case displays a large
region with positive vertical velocities on the upper part of the recirculation region (figure
7d); in this case the contours of negative w-velocities are located close to the horizontal
extension, with the region of positive velocities above. The uniform flow case, on the
other hand, exhibits only a thin region of positive mean w-velocities attached to the rear
stagnation line, and negative mean w-velocities prevailing in the rest of the recirculation
zone (figure 7b).
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Figure 6: Near wake behaviour for the uniform and shear flow cases. (a) Pressure Ps on the front and
rear stagnation lines along the span of the curved cylinder. Uniform flow at the inlet (K = 0): —�—,
stagnation pressure coefficient; —•—, base pressure coefficient. Shear flow at the inlet (K = 0.1): · · ·∗· · · ,
stagnation pressure coefficient; · · ·N · · · , base pressure coefficient. (b) Recirculation length Ls along the
span of the curved cylinder: —•— uniform inflow (K = 0); —N— shear inflow (K = 0.1).

3.2 Analysis of vortex shedding pattern

In the previous subsection it was discussed how the curved shape and the inflow con-
dition affect the near wake flow. As the flow evolves downstream, the different types of
instabilities created close to the body will be amplified, leading to a regular shedding of
vortices commonly referred to as a Kármán vortex street. In a similar way as for the near
wake flow, the frequency of the shedding and the shape of these vortices will vary accord-
ing to the geometry and the incoming flow conditions. Figure 8 shows the time evolution
of the cross-stream velocity v along a vertical line taken at x/D = 18 and the vortical
structures depicted by instantaneous λ2-isosurfaces.

18 The scalar quantity λ2 defines a
region of minimum pressure due to swirling motion in an incompressible fluid based on
the second largest eigenvalue of the symmetric tensor ΩijΩij + SijSij, where Sij is the
symmetric component of the velocity gradient tensor and Ωij the antisymmetric part.

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (5)

Ωij =
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
. (6)

The v-velocity signal taken for the uniform flow case (K = 0) shown in figure 8(a) is
periodic along the vertical line, the pattern clearly corresponds to regular laminar flow,
with no distortions occurring; the vortex cores represented as isosurfaces of λ2 = −0.1
are vertical close to the body, presenting slight distortions as they move downstream. As
previously reported by Miliou et al.,6 the vortex shedding pattern for K = 0 corresponds
to that of laminar flow, no dislocations occur despite the non-uniform geometry of the
cylinder. A question that remains open here is whether cellular vortex shedding will occur
or not if the radius of curvature R is increased; this topic is currently under investiga-
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José P. Gallardo, George K. El Khoury, Bjørnar Pettersen and Helge I. Andersson

4 8 12 16 20 24 28

4

6

8

10

12

14

16

18

0.82

0.82
0.62

0.42

0.22

0.02

1.02

−0.17

−0.12

−0.07

−0.02

(a)

z
/D

6 10 14 18 22 26 28

4

6

8

10

12

14

16

18

0.06

0.01

0.01

0.01
−0.01

−0.06

−0.11

−0.16

−0.01

−0.06

−0.11

−0.16

−0.21

(b)

4 8 12 16 20 24 28

4

6

8

10

12

14

16

18

1.22

1.02
0.82

0.62

0.42
0.22

0.02

1.62

1.42

1.22

1.02

0.82

0.62

−0.22

−0.12

−0.12

−0.22

−0.32

−0.52

−0.42

(c)

z
/D

x/D

6 10 14 18 22 26 28

4

6

8

10

12

14

16

18

0.31

0.31
0.41 0.21

0.21
0.11

0.01

0.11

0.01

−0.01

−0.08

−0.15

−0.22

−0.29

−0.36
−0.29

−0.22
−0.15

−0.08

−0.08
−0.01

−0.01

(d)

x/D

Figure 7: Isocountours of mean streamwise and vertical velocities in the (x, z)-plane. (a) Mean u-velocities
for the uniform flow case; (b) mean w-velocities for the uniform flow case; (c) mean u-velocities for the
shear flow case; and (d) mean w-velocities for the shear flow case.

tion. For the shear flow case (K = 0.1), on the other hand, periodic dislocations can be
identified in the upper part of the domain in the time evolution of v, as seen in figure
8(b). These dislocations arise at a local Reynolds number of 167 (z/D = 15.7), close to
the Reynolds number range at which the mode A instabilities described by Williamson19

appear. Furthermore, the vortex cores represented as isosurfaces of λ2 = −0.1 display a
high degree of obliqueness relative to the vertical, also a consequence of the shear rate
imposed.

The plot of the time traces of the cross-stream velocities at x/D = 18 and at six
different positions along the z-axis shown in figure 9(a) gives a clear picture of the periodic
behaviour of the uniform flow case. With the exception of the time trace at z/D = 8,
where the vortex shedding is less energetic, all the traces plotted have almost the same
amplitude. In this case the suppression of the vortex shedding occurs at z/D ≈ 7. At
an inflow shear rate of 0.1, the trace signals of the v-velocities clearly differ from those
corresponding to uniform inflow. The behaviour in this case is quasi-periodic, with the
suppression of vortex shedding occurring around z/D ≈ 10. The periodic dislocations
shown in figure 8(b) are due to the splitting of the Kármán vortices as they are shed from
the upper segment of the curved cylinder. This splitting, for instance, can be identified
in the v-velocity trace at z/D = 16; here the signal exhibits a low frequency modulation
and the dislocations occur each five shedding cycles.
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Figure 8: Time evolution of cross-stream velocity v along a sampling line taken at x/D = 18 in the
middle (x, z)-plane (y/D = 5.5) to the left, and vortex cores represented as isosurfaces of λ2 = −0.1 to
the right. (a) Uniform inflow; (b) shear inflow.

In order to identify the dominant shedding frequencies, a spectral analysis with basis on
the time-domain signals of the v-velocity has been carried out. The sampling rate of the
signals is 100Uc/D, which is lower than the maximum value 1/∆t = 200Uc/D required
to avoid aliasing effects (see Persillon & Braza20). The dominant shedding frequency
obtained by Fourier analysis for the uniform flow case is fD/Uc = 0.176, prevailing
along the whole sampling line, with no cellular arrangement of the vortices. This is in
good agreement with the frequency 0.1761 reported by Miliou et al.6 for their convex
configuration. It has been shown in previous studies of circular cylinders that when
uniform shear flow is imposed as an inflow boundary condition, the vortex shedding will
arrange in a cellular pattern; see for instance the work by Mukhopadhyay et al.11 This
is the case in figure 10(a), where the dominant frequencies are plotted versus the local
Reynolds numbers. The St-Re curve exhibits two frequency cells at fD/Uc = 0.240
and 0.283, with lengths 5.63D and 2.37D respectively; here the dislocation occurs at
Rel = 167 (z/D = 15.7). Shown in figure 10(b) are the isocountours of streamwise
vorticity ωx in the middle (x, z)-plane, displaying the highest intensities close to the top
of the computational domain. Close to the upper part of the body, regions of streamwise
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Figure 9: Time traces of cross-stream velocity v along a sampling line taken at x/D = 18 in the middle
(x, z)-plane (y/D = 5.5). (a) Uniform inflow; (b) shear inflow.

vorticity with opposite sign can be identified, triggering the splitting of the main oblique
vortices (Kármán vortices). This fragmentation was observed by Persillon & Braza20

in their numerical simulations for a straight cylinder when they increased the Reynolds
number beyond 190.

Further insight in the vortex shedding behaviour can be gained from the isosurfaces
of instantaneous streamwise and vertical vorticity, which have been plotted in figure 11.
The white isosurfaces correspond to the primary vortex cores represented by ωz, while
the black isosurfaces depict the streamwise vorticity ωx. The shape of the primary vortex
cores shown in figure 11(a) is similar to those expected for a straight circular cylinder
(i.e. vertical). Furthermore, this particular geometry triggers streamwise vorticity in the
lower part of the domain, affecting the vortex shedding pattern with respect to that of a
straight circular cylinder. The streamwise vorticity for the shear flow case exhibits two
distinct behaviours related to the presence of uniform shear at the inlet. Close to the top
of the computational domain, where the highest local velocities of the free-stream occur,
the presence of streamwise vorticity reveals the instabilities that lead to the splitting of
the primary vortices discussed previously. Below this region, the isosurfaces of streamwise
vorticity are strongly slanted and are clearly related to the oblique shedding of vortices.
The cellular pattern of the vortex shedding and the obliqueness of the vortices behind a
bluff body has been previously reported.7–12 Most of these studies, however, consider a
straight cylindrical geometry. Hence, further studies with different shear rates are relevant
to better understand the interaction of the shear flow with this geometry. From figure
11(a), for instance, it was shown that streamwise vorticity arises as an effect of the curved
geometry for the uniform flow case; the tilting of the vorticity induced by different shear
rates may have either an adverse or favourable effect when interacting with the vorticity
induced by geometry effects.

Finally, in order to study the evolution of the wake for the shear flow case, the instan-
taneous streamwise vorticities ωx and ωz were plotted in three consecutive planes in figure
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Figure 10: (a) Strouhal frequencies along a sampling line taken at x/D = 18 in the middle (x, z)-plane
(y/D = 5.5). Shear flow case, •, St based in the local inflow velocity U∞(z); ◦, St based in Uc. (b)
Isocontours of instantaneous streamwise vorticity ωx in the middle (x, z)-plane (y/D = 5.5).

12. The instantaneous streamwise vorticities in the (y, z)-planes shown in figure 12(a) give
a clear picture of the evolution of ωx in the x-direction. The plane at x/D = 7 is located
within the recirculation region in the upper portion of the cylinder, here we observe two
parallel layers of ωx with opposite sign corresponding to the bended vortex filaments of ωy

induced by the shear rate.8 The plane at x/D = 12 exhibits a similar pattern at the lower
part of the curved cylinder, but the layers of ωx here have different sign than those at
x/D = 7; on the upper half of this plane negative values of ωx prevail. At x/D = 18 the
streamwise vorticity is split into several regions of counter rotating vorticity. In a similar
way, figure 12(b) depicts the pattern for the vertical vorticity ωz on three consecutive
(x, y)-planes. Since the vortex shedding starts above z/D = 10, only two regions of ωz

appear at z/D = 8, here the flow could be regarded as locally stationary. At z/D = 12.5,
where the local Reynolds number is 135, a clear pattern of vortex shedding is represented
by the isocontours of ωz. Close to the top of the domain at z/D = 17.5 the pattern of
ωz is more irregular than that at z/D = 12.5, the ωz-cores are spread, covering a larger
area at this vertical location; here Rel = 185, i.e. within the range at which the mode A
instability occurs,19 thus the wake instabilities will be amplified as they are transported
downstream.

4 CONCLUSIONS

In this work, DNS of the flow past a curved circular cylinder atRe = 100 is performed to
study the influence of the curvature and different inflow conditions on the wake dynamics.
In order to compare our results with the study by Miliou et al.,6 a uniform inflow profile
was considered as inflow boundary condition in an initial stage. Subsequently, the inflow

13



José P. Gallardo, George K. El Khoury, Bjørnar Pettersen and Helge I. Andersson

(a)

x/Dy/D

z
/D

(b)

x/Dy/D

Figure 11: Detail of isosurfaces of instantaneous vorticity ωx (black) and ωz (white). (a) Uniform flow,
isosurfaces of ωx = ±0.3 and ωz = ±1.2; (b) shear flow, isosurfaces of ωx = ±0.7 and ωz = ±1.6.

condition was changed to uniform shear with a shear rate of K = 0.1.
In general terms, good agreement was obtained between the present work and the

results reported by Miliou et al.6 for the uniform flow case. As a qualitative comparison,
the vortical structures depicted in figure 8 exhibited the same shape as those reported in
the mentioned study. Initially the vortex cores are vertical, then, as they travel further
downstream, small distortions appear in the λ2-isosurfaces. Additionally, the Strouhal
frequency obtained for the uniform case (fD/Uc = 0.176) was the same as that reported
by Miliou et al.6

Concerning the recirculation region, the base pressure gradient for the uniform flow
case was adverse along the whole span, while the shear flow case exhibited a region of
weak favourable pressure gradient. This clearly affected the distribution of velocities in
the recirculation zone and the size of the recirculation bubble, which was larger than the
recirculation bubble for the uniform flow case along the whole span, despite the local
minimum observed in figure 6(b). Further downstream in the wake, the time analysis for
the shear flow case revealed two distinct cells of different shedding frequency with values
fD/Uc = 0.240 and 0.283. The computed length of these cells was 5.63D and 2.37D, with
a dislocation occurring at z = 15.7D. Furthermore, it was estimated that the dislocations
occurred periodically each five shedding cycles. The analysis of vortical flow structures
based on the instantaneous λ2- and vorticity-isosurfaces revealed streamwise vorticity
induced by the geometry for the uniform flow case, and streamwise wake instabilities for
the shear flow case. Additionally, the shear flow case was characterized by oblique vortex
shedding as the wake evolved downstream.

The performance of the IBM method was very promising when performing the simula-
tions using this curved cylinder geometry embedded in a Cartesian mesh. It is therefore
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Figure 12: Instantaneous isocontours of vorticity for the shear flow case. (a) ωx in the (y, z)-planes at
x/D = 7, 12 and 18; (b) ωz in the (x, y)-planes at z/D = 8, 12.5 and 17.5.

intended to extend this study to other shear rates and radii of curvature, contributing
thus to the knowledge of the flow physics of the wake past such geometries.
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