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Abstract. This paper deals with the numerical solution of laminar viscous incompressible
flows for Newtonian and some non-Newtonian fluids in the branching channel. The math-
ematical model is the generalized system of Navier-Stokes equations. The finite volume
method combined with an artificial compressibility method is used for spatial discretization.
For time discretization the explicit multistage Runge-Kutta numerical scheme is consid-
ered. Numerical results for steady and unsteady flows for Newtonian and non-Newtonian
fluids in two dimensional and three dimensional branching channel are presented.
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1 Introduction

This work deals with the numerical modelling of Newtonian and some non-Newtonian
fluids. For the testing the following fluids are used, Newtonian, pseudoplastic (shear
thinning) and dilatant (shear thickening). In the Figure 1, the dependence of shear stress
and viscosity on the shear rate is shown7,8.

Figure 1: Viscosity and stress of generalized Newtonian fluid as a function of shear rate for power-law
fluid

2 Mathematical model

2.1 Generalized Navier-Stokes equations

The fundamental system of equations is the system of Navier-Stokes equations for
incompressible fluids. This system of Navier-Stokes equations and the continuity equation
for generalized Newtonian fluids can be written in the conservative form4,1:

R̃Wt + F c
x +Gc

y = F v
x +Gv

y, R̃ = diag(0, 1, 1), (1)

W =

 p
u
v

 , F c =

 u
u2 + p
uv

 , Gc =

 v
uv

v2 + p

 , (2)

F v =

 0
τxx
τxy

 , Gv =

 0
τyx
τyy

 . (3)

where p = P
ρ

, P is the pressure, u, v are the components of the velocity vector, ρ is the
constant density. The vector W is the vector of unknowns. The vectors F c, Gc are inviscid
physical fluxes and F v, Gv are viscous physical fluxes. The viscous stress τ is defined as
follows:

τ = 2η(γ̇)D, τ =

(
τxx τxy
τyx τyy

)
, γ̇ =

√
trD2, (4)

2
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where tensor D is the symmetric part of the velocity gradient and is defined by the relation

D = (D)ij =

(
Dxx Dxy

Dyx Dyy

)
, Dij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(5)

where i and j can take on the values x, y or 1, 2. The quantities x1 and x2 in the
derivatives denote Cartesian coordinates x, y. Similarly v1 and v2 denote the velocity
vector components u, v.

Newtonian and non-Newtonian fluids differ through the choice of the viscosity function.
One of the simplest viscosity function is the power-law model9.

η(γ̇) = ν
(√

trD2
)r
, (6)

where ν is a constant, e.g. the kinematic viscosity for Newtonian fluids. The symbol tr D2

denotes the trace of the tensor D2. The power r is the power-law index. The power-law
model includes Newtonian fluids as a special case (r = 0). For r > 0 the power-law fluid is
shear thickening (increasing viscosity with shear rate), while for r < 0 it is shear thinning
(decreasing viscosity with shear rate), see Figure 13.

3 Numerical solution

3.1 Steady computation

In this first part the steady state solution is considered. In such a case an artificial
compressibility method can be applied, i.e. the continuity equation is completed by a
term 1

β2pt
2,6,10. In the non-dimensional form this yields

R̃βWt + F c
x +Gc

y =
1

Re
ε(F v

x +Gv
y), R̃β = diag(

1

β2
, 1, 1), β ∈ R+ (7)

where in non-dimensional form

W =

 p
u
v

 , F c =

 u
u2 + p
uv

 , Gc =

 v
uv

v2 + p

 , (8)

F v =

 0
ux
vx

 , Gv =

 0
uy
vy

 (9)

F c, Gc are inviscid physical fluxes and F v, Gv are viscous physical fluxes. The symbol Re
denotes Reynolds number and it’s defined by the expression

Re =
U∗L∗

ν
, (10)
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where U∗, L∗ are the reference velocity and length, ν is the kinematic Newtonian viscosity.
The parameter β has dimension of a speed. In the case of non-dimensional equations, β is
then divided by a reference velocity U∗. This is usually an upstream velocity, which does
not significantly differ from the maximum velocity in the flow field. Hence, in the case
of non-dimensional equations, β = 1 is used in presented steady numerical simulations.

The symbol ε denotes
(√

trD2
)r

with used power r equal to 0 (Newtonian fluids) or > 0

(shear thickening fluids) or < 0 (shear thinning fluids).
Eq. (7) is space discretized by the finite volume method11 and the arising system of

ODEs is time discretized by the explicit multistage Runge-Kutta scheme of the second
order of accuracy in the time5:

W n
i = W

(0)
i

W
(r)
i = W

(0)
i − αr−1∆tRes(W )

(r−1)
i (11)

W n+1
i = W

(m)
i r = 1, . . . ,m,

where m = 3, α0 = α1 = 0.5, α2 = 1.0, the steady residual Res(W )i is defined by finite
volume method as

Res(W )i =
1

µi

4∑
k=1

[(
F
c
k −

1

Re
ε F

v
k

)
∆yk −

(
G
c
k −

1

Re
ε G

v
k

)
∆xk

]
, (12)

where µi is the volume of the finite volume cell, µi =
∫ ∫

Ci
dx dy. The symbols F

c
k, G

c
k and

F
v
k, G

v
k denote the numerical approximation of the inviscid and viscous physical fluxes.

The symbol Re is Reynolds number defined by (10). The symbol ε represents
(√

trD2
)r

The mesh in the considered domain is assumed structured, the finite volume cells are
quadrilateral see Figure 2.

Figure 2: The structure of the finite volume cell and dual volume cell and the neighbouring finite volume
cells

The multistage Runge-Kutta scheme (11) is conditionally stable. The time step is
chosen to satisfy the CFL coditions

∆t ≤ min
i,l

CFL µi

ρA∆yl + ρB∆xl + 2

Reε
(

(∆xl)2+(∆yl)2

µi

) (13)
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index l describes the index of edges coresponds to the finite volume cell Ci. The volume
of this cell is µi. ∆xl and ∆yl are the lengths of the lth-edge of the cell Ci in the x and
y direction. The symbol CFL is so called Courant-Friedrichs-Lewy number for threestage
Runge-Kutta method is eual to 2. The Re is Reynolds number defined by 10 and ε is(√

trD2
)r

, where for power r three values are choosed: r = 0 for Newtonian fluids, r = 0.5
for shear thickening fluids and r = −0.5 for shear thinning fluids.

The global behaviour of the solution during the computational process is followed by
the L2 norm of the steady residuum. It is given by

‖Res(W )n‖L2 =

√√√√∑
i

(
W n+1
i −W n

i

∆t

)2

(14)

where Res(W )n stands for a vector formed by the collection of Res(W )ni ,∀i. The decadic
logarithm of ‖Res(W )n‖L2 is plotted in graphs presenting convergence history of simula-
tion.

3.1.1 Steady boundary conditions

The flow is modelled in a bounded computational domain where the boundary is di-
vided into three mutually disjoint parts: the solid wall, the outlet and the inlet. For
two dimensional branching channel the following boundary conditions are considered, see
Figure 3

Inlet: At the inlet Dirichlet boundary condition for the velocity vector (u, v)T is used,
pressure inlet value is computed by the extrapolation from the domain’s pressure
values.

Outlet: At the outlet the pressure value is given and the velocity components u, v are
computed by the extrapolation from the domain.

Wall: The homogenous Dirichlet boundary condition for the velocity vector is used on
the wall. For the pressure Neumann boundary condition is used.

3.2 Unsteady computation

Two approaches are used for numerical solution of unsteady flows. First, the artificial
compressibility method is applied. In this case the artificial compressibility parameter β
is set to be a big positive number, ideally β →∞. β = 10 is used in presented unsteady
numerical simulations. In the second aproach dual-time stepping method is used.

The artificial compressibility approach used for unsteady incompressible flows is mod-
ifying the system of equations by adding an unsteady term to the continuity equation in
the same way as for steady case.

The principle of dual-time stepping method is following. The artificial time τ is in-
troduced and the artificial compressibility method in the artificial time is applied. The
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system of Navier-Stokes equations is extended to unsteady flows by adding artificial time
derivatives ∂W/∂τ to all equations12,6,10

R̃βWτ + R̃Wt + F c
x +Gc

y = F v
x +Gv

y (15)

with matrices R̃, R̃β given by Eq. (1), (7). The vector of the variables W , the inviscid
fluxes F c, Gc and the viscous fluxes F v, Gv are given by Eq. (2).

The derivatives with respect to the real time t are discretized using a three-point
backward formula, it defines the form of unsteady residual

R̃β
W l+1 −W l

∆τ
= −R̃3W l+1 − 4W n +W n−1

2∆t
− Res(W )l = −Res(W )l+1, (16)

where ∆t = tn+1−tn and Res(W ) is the steady residual defined as for steady computation,
see Eq. (12). The symbol Res(W ) denotes unsteady residual. The superscript n denotes
the real time index and the index l is associated with the pseudo-time. The integration in
pseudo-time can be carried out by explicit multistage Runge-Kutta scheme. The dual-time
step ∆τ is estimated using Eq. (13). The dual-time step is limited so that ∆τ ≤ 2∆t/3.

The solution procedure is based on the assumption that the numerical solution at real
time tn is known. Setting W l

i = W n
i ,∀i, the iteration in l using explicit Runge-Kutta

method are performed until the condition

‖Res(W )l‖L2 =

√√√√∑
i

(
W l+1
i −W l

i

∆τ

)2

≤ ε (17)

is satisfied for a chosen small positive number ε. The symbol Res(W )l stands for the
vector formed by the collection of Res(W )li,∀i. Once the condition (17) is satisfied for a
particular l, one sets W n+1

i = W l+1
i ,∀i. Then the index representing real-time level can

be shifted one up. History of the convergence of unsteady residual in dual time from tn

to tn+1 is plotted in decadic logarithm.

3.2.1 Unsteady boundary condition

The unsteady boundary conditions are defined as follows. In the inlet, in the solid
wall and in one of the outlet part the steady boundary conditions are prescribed. In the
second outlet part new boundary conditions are defined. The velocity is computed by the
extrapolation from the domain. The pressure value is prescribed by the function

p21 =
1

4

(
1 +

1

2
sin(ωt)

)
, (18)

where ω is the angular velocity defined as ω = 2πf , where f is the frequency.
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4 Numerical results

In this section the numerical results are presented. The steady numerical results for
two dimensional generalized Newtonian fluids are shown in the section 4.1. In the section
4.2 the numerical results for three dimensional branching channel are presented. Last
section 4.3 is mentioned to the numerical results of unsteady two dimensional Newtonian
fluids.

4.1 Two dimensional steady solution

In this section the steady numerical results of two dimensional incompressible laminar
viscous flows for generalized Newtonian fluids are presented. The following choices of the

Figure 3: Initial conditions for considered domain

power-law index were used. For Newtonian fluid r = 0 is used. For shear thickening
and shear thinning non-Newtonian fluid values r = 0.5 (shear thickening) and r = − 0.5
(shear thinning) are used. The flow is computed through the branching channel where
the steady boundary condition shown in the Figure 3 are used. In the Figure 3 the initial
conditions are sketched. In the inlet the velocity is prescribed by the parabolic function.
Reynolds number is equal to 400 for tested cases of the fluids.

In the Figures 4, 5 the velocity isolines and the histories of the convergence for 2D tested
fluids are presented. One of the main differencies between Newtonian and non-Newtonian
fluids is given by the size of the separation region. From the Figure 4 the separation region
is the smallest for shear thickening non-Newtonian fluids and the biggest separation region
is for the shear thinning non-Newtonian fluids. Also from the history of the convergence
the difference between all considered fluids are clear.

In the Figure 5 the nondimensional axial velocity profile for steady fully developed
flow of Newtonian, shear thickening and shear thinning fluids in 2D branching channel is
shown.
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Figure 4: Velocity isolines of steady flows and history of the convergence for generalized Newtonian fluids
- a) Newtonian (r = 0) - b) shear thickening non-Newtonian (r = 0.5) - c) shear thinning non-Newtonian
(r = −0.5)

Figure 5: Nondimensional velocity profile for steady fully developed flow of generalized Newtonian fluids
in the branching channel

4.2 Three dimensional steady solution

In this section three dimensional steady numerical results for generalized Newtonian
fluids are presented. The power-law indices are set as follows: for Newtonian fluid r = 0
and for shear thickening r = 0.5. The used steady boundary conditions are similar as
for two dimensional steady case. The initial data for pressure are the same as for 2D
channel. For the velocity vector the constant values at the inlet ((u, v, w) = (1, 0, 0)) are
used. Reynolds number for tested fluids is 400.

In the Figures 7, 6 velocity isolines for both considered fluids are presented. As for 2D
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R. Keslerová and K. Kozel

case the differencies between Newtonian and non-Newtonian are given by the area of the
separation region and by the history of the convergence. The separation region is bigger
for shear thickening than for Newtonian fluids. In the Figure 8 the cuts through the main
channel and through the small branch are shown. The histories of the convergence are
presented in the Figure 9. The convergence of the vector of unknowns is slower with
increasing power r.

Figure 6: Velocity isolines of steady flows in the branching channel - a) Newtonian (r = 0) - b) shear
thickening non-Newtonian (r = 0.5)

Figure 7: Velocity isolines of steady flows in the branching channel - a) Newtonian (r = 0) - b) shear
thickening non-Newtonian (r = 0.5)
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Figure 8: Computed numerical results. Cuts through the main channel (upper) and through the branch
(lower) - a) Newtonian (r = 0) - b) shear thickening non-Newtonian (r = 0.5)

Figure 9: History of the convergence - a) Newtonian - b) shear thickening non-Newtonian (r = 0.5)

4.3 Two dimensional unsteady numerical solution

In this section two dimensional unsteady numerical results for Newtonian fluid through
the branching channel are presented. The artificial compressibility method and the dual-
time stepping method are used. The unsteady boundary conditions defined in the section
3.2 were considered.

4.3.1 Artificial compressibility method

In this subsection the numerical results for Newtonian and considered non-Newtonian
fluids are presented. The used unsteady method is the artificial compressibility method.
As initial data the numerical solution of steady fully developed flow of generalized New-
tonian fluids in the branching channel were used. Reynolds number is 400. The frequency
in the pressure function (18) is 2.

In Figures 10 and 11 the graphs of the pressure p21(t) and the velocity in the point
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A (see Figure 3) for three tested values of power-law index are shown. By the square
symbols the positions of the results shown in the Figures 12, 13 and 14 are sketched.

Figure 10: The graphs of the pressure computed by the artificial compressibility method, β = 10

Figure 11: The graphs of the velocity computed by the artificial compressibility method, β = 10

Figure 12: Velocity isolines of unsteady flows of Newtonian fluids

In the Figure 12, 13 and 14 unsteady numerical results during one period for artificial
compressibility method and for three tested values of power-law coefficient are presented.
Figure 12 shows the unsteady numerical results for Newtonian fluid. In the Figure 13
the unsteady numerical results for shear thickening non-Newtonian fluid with power-law
index r = 0.5 are presented. Numerical results for shear thinning non-Newtonian fluid are
shown in the Figure 14. One can see some differencies during period for all tested fluids
as well as differencies between these fluids. From Figure 10 and 11 that the needed time
for stabilization is the lowest for shear thickening and with decreasing power-law index
the time is increasing.
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Figure 13: Velocity isolines of unsteady flows of shear thickening non-Newtonian fluids (r = 0.5)

Figure 14: Velocity isolines of unsteady flows of shear thinning non-Newtonian fluids (r = −0.5)

4.3.2 Dual-time stepping method

In this subsection the unsteady numerical results for Newtonian are presented. The
used unsteady method is the dual-time stepping method. As initial data the numerical
solution of steady fully developed flow of Newtonian fluids in the branching channel were
used. Reynolds number is 400. The frequency in the pressure function (18) is 2.

In Figure 15 the graphs of the pressure p21(t) and the velocity in the point A (see Figure
3) for Newtonian fluid are shown. By the square symbols the positions of the unsteady
numerical results for dual-time stepping method shown in the Figure 16 are sketched.

The decadic logarithm of the L2 norm of the steady residual in real time is shown in
the Figure 16. In the Figure 17 the decadic logarithm of the L2 norm of unsteady residual
by the dual-time stepping method is shown.
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Figure 15: The graphs of the pressure and the velocity computed by the dual-time stepping method

Figure 16: Velocity isolines of unsteady flows of Newtonian fluids - dual-time stepping method

Figure 17: Decadic logarithm of the L2 norm of the unsteady residual

5 Conclusions

In this paper a finite volume solver for two and three dimensional incompressible lami-
nar viscous flows in the branching channel was described. The numerical results obtained
by this method for Newtonian and non-Newtonian (shear thickening and shear thinning)
fluid flows were presented. For the generalized Newtonian fluids the power-law model was
used. The explicit Runge-Kutta method was considered for numerical modelling. The
convergence history confirms the robustness of the applied method.
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[6] R. Keslerová, Numerical Solution of Newtonian and Non-Newtonian Flows. Doctoral
dissertation, Czech Technical University, Prague, Czech Republic, 2008.

[7] R.P. Chhabra and J.F. Richardson: Non-Newtonian Flow in the Process Industries.
Biddles Ltd, Guildford and King’s Lynn, Great Britain, 1999.

[8] A.M. Robertson and A. Sequeira and M.V. Kameneva: Hemorheology. Birkhäuser
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