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Abstract. While the accuracy of deterministic cfd computations is increasing, physical
and geometrical inherent variations cannot be neglected. In the context of the nodesim-
cfd European projecta, the influence of numerical options (e.g. numerical dissipation
coefficients, degree of convergence towards steady state) and modelisation (e.g. choice
of rans turbulence model) on the outputs of cfd computations were first investigated.
Uncertainty quantification (uq) using non-intrusive methods coupled with the elsA soft-
wareb were then carried out. Examples are presented for external and internal flows, using
Monte-Carlo (mc), complemented with a surrogate model, and non-intrusive polynomial
chaos method (nipcm).

ahttp://www.nodesim.eu/
bhttp://elsa.onera.fr/
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1 INTRODUCTION

The nodesim-cfd European project has been an important incentive for onera/dsna
to develop nipcm tools as a complement for its elsA cfd software, and also an efficient
platform for comparison with other approaches. Here we are trying to build on this
experience, trying to provide better confidence on standard results as well as an indication
on perturbation propagation for industrial cases.

Stochastic studies involving polynomial chaos (an instance of homogenous chaos1) in
cfd may be broken down into two main approaches : the intrusive and non-intrusive
approaches2,3,4. The former (intrusive) requires extensive modifications to be performed
on the cfd software, so as to introduce the chaos polynomials inside the algebra, but once
these costly modifications (in terms of software development) are completed it is compu-
tationally efficient2 ; as it depends on a polynomial representation of fluid phenomena, it
is more suited to flow solutions not involving shocks or other quasi-discontinuities. The
latter (non-intrusive) involves no modifications of the software (only additions to it), but
is cpu-intensive ; it provides the same capabilities as the original software regarding the
flow-field regularity.

Here, being mainly interested in flows with shocks, we chose the Non-Intrusive Poly-
nomial Chaos Method (nipcm), so that stochastic processing is reduced to pre- and
post-processing stages, with in-between deterministic cfd computations performed here
by the (un-modified) elsA software5.

2 STOCHASTIC PROCESSING

The pre-processing stage involves the choice of the location of quadrature (Gauss-
Jacobi, Gauss-Hermite . . . ) or collocation points, and the post-processing stage the com-
putation of the elements of the stochastic output. In the case of Gauss quadrature, this
requires the knowledge of the input stochastic distribution, which determines the associ-
ated orthogonal polynomials ; the processed data is then possibly very sensitive to the
exactness of the assumption on the input distribution type ; the identification process
may also be delicate, see 3.4.1.

Depending on the choice of observable quantities and on the regularity of the cfd
process (linking the input and output distributions), it may be necessary to iterate on
the global (pre- and post-processing) process, using several sizes of stochastic sets. The
use of response surfaces, see 2.1, to interpolate between the cfd points allows to re-use
all the existing sets.

All the processing has been performed using purposely developed Python modules,
with use of mathematical libraries and of external software.

We have tried to evaluate both the adequacy of each chosen stochastic set for the
representation of existing data and the individual quality of each cfd computation, see
3.4.2, so as to reduce the dependence of the conclusions on the cfd procedure.

A first impression on the set of computed results is generally obtained through the
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computation of a response surface (yielding smoothed results). As this technique is also
used for generating interpolated sets in stochastic pre-processing, it will be introduced
first.

2.1 TPS response surface technique

The Thin Plate Splines (tps) technique6 has been selected for the definition of response
surfaces, owing to its good mathematical properties and also to its lack of dependence on
specific hypothesesc. We are using the regularised tps implementation provided by the
fields packaged of the gnu r softwaree. This package provides 2d response surfaces ;
for applications requiring 1d interpolation, we have used extrusion to simulate 2d data,
so that a common interpolation technique is used throughout this work.

Thanks to its internal evaluation of the regularity of the input data (smoothing is de-
termined using generalized cross-validation), the tps technique may be applied without
specifying any parameters. On the other hand, when respecting the data is more impor-
tant than regularity, it is possible to obtain the internal parameters determined by the
tps algorithm and to re-apply the interpolation with different values. For example, the
global scalar smoothing coefficient may be reduced by a factor of 10 from the computed
value if precise representation is essential, while still yielding stable interpolation.

2.2 Stochastic pre-processing

We have used both Gauss and Monte-Carlo sets, the former being mainly useful for
regular responses and the latter – especially when using over-sampling through tps in-
terpolation, see 2.4.2 – for the more complex behaviour newly observed on the rae2822
profile, see 3.3.2.

It must be kept in mind in this respect that the discretisation in parameter space
must be adequate not only for the representation of the input stochastic distribution,
but also for the output distribution, when the response of the system includes steep
regions, or plateau regions leading to peaks in the output pdf. Also, for distributions
with non-limited support space like the normal distributions, it may occur that “events”
on the low-probability parts of the distribution (ex. beyond 2σ) may have a noticeable
contribution to the output pdf ; thus, it may be important to check that the computed
domain is sufficiently wide to include all the significant parts of the pdf.

2.3 Parametric variations with optimised chaining

On the software side, once the stochastic set is determined (as a list of parameter
values), it is prepared for processing by the elsA software through the variator class of
the Python-elsA interface. This class provides a generic parametric variations capability,

cSuch as for example the Gaussian distribution hypothesis for the Kriging technique.
dBy R. Furrer, D. Nychka and S. Sain.
ehttp://www.r-project.org/
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based on the definition of a list of perturbations to a base cfd case, itself defined for
example by the Python-elsA script object corresponding to the “central” conditions. Each
perturbation is defined (in the Python language) by a dictionary of (parameter, value)

pairs ; the variate() method of the variator class is then invoked to build “perturbed”
copies of the base script object, which are all stored in a database keyed by the variation
parameters. A single invocation of the elsA software with the --span command-line option
then starts the actual cfd runs on the stochastic set ; parallel computations sharing a
common perturbations database are made possible, while avoiding duplicate runs, by the
simple inclusion of a “run status” field in the database.

This object-oriented interface to parametric variations also provides improved opera-
tional efficiency through a programmable restart capability. A user-defined (or provided
default) distance function defined in the parameter space may be used to automatically
choose the next computation as the one involving the smallest “jump” in parameter space
according to the specified distance. This allows to easily add collocation points to refine
the DoE, while reducing the computational cost for added points thanks to improved
initial conditions on restart. The mesh refinement level is treated the same as other pa-
rameters, which allows the “Full MultiGrid” (fmg) technique to be integrated into this
optimised chaining scheme, providing it with a degree of tolerance to non-convergence
because it allows neighbours on the same mesh level to be automatically used in lieu of
the coarse-grid solution – for the same other parameters – if needed. This DoE strategy
is also fully programmable, allowing for example to impose intermediate computations
(linearisation) for long jumps involving float-type parameters such as the Mach number
or angle-of-attack. Also, we may introduce metric skewing in parameter space to take
account of already detected (or known) “steep” regions, see 3.4.2.

2.4 Stochastic post-processing

Stochastic post-processing has been performed using both direct summation (over
Monte-Carlo sets) and Gauss quadrature (or Gauss collocation) over Gauss-Jacobi sets.

The direct summation technique does not need any explanation, as the expressions are
quite straightforward. The quadrature/collocation methods are briefly described below.

2.4.1 Stochastic moments computation by Gauss quadrature/collocation

The Gauss quadrature method involves the representation of the output stochastic data
on an orthogonal basis, selected to yield simplified integration expressions for the specific
input distribution. It is thus a fast method, the more so if the polynomial coefficients
and associated integration weights have been previously tabulated, but it may be strongly
dependent on the exactness of the identification of this input distribution, whereas the
cruder “direct summation” method is only independent of it to first order.

A Python module has been developed for general manipulations of stochastic data in-
volving orthogonal polynomials, with recurrence relations providing theoretical arbitrary
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order. Adequate precision for computations of integer-based rational fractions is preserved
(when going through the recurrence iterationsf by using the clnum Python package, inter-
face to the cln (“Class Library for Numbers”g) software. This precision may be checked
by comparison between the quadrature and collocation methods, the former being more
dependent on the precision of the polynomial coefficients obtained through recurrence,
while the latter could (at large orders) become dependent on the precision of the solution
of the involved linear system.

This post-processing module allows a number of options, including : use of quadrature
or collocation ; use of maximum polynomial order (set count minus one), or lower ; using
sets created through tps interpolation, from existing cfd data.

All the available data may be inspected using queries to a database-like structure
(a Python dictionary) ; possible queries also include convenient comparison of results
obtained using different options.

2.4.2 Set oversampling using a response surface

To provide additional precision in the evaluation of the propagated perturbations,
which may involve steep variations of the cfd observables, we use the interpolation pro-
vided by a tps response surface, see 2.1, to refine the discretisation of the parameter space.
This interpolator is used as a surrogate function for the cfd solver, allowing to obtain
large (105 to 106) Monte-Carlo sets respecting the specified input stochastic distribution.

2.4.3 Computation of output probability density functions

The direct (pdf) and cumulated (cdf) probability density functions are computed here
using set oversampling, see 2.4.2 ; these (large) interpolated sets provide enough samples
to apply the “bins” method, which does not depend on any hypothesis on the output
probability distribution. This output pdf, which is the composite of the input pdf and
of the cfd response, may contain sharp peaks corresponding to extrema of the (real or
approximated) response surface. These peaks, if any, prohibit (as they are significant
and must be kept) the use of a smoothing function. When no peaks are found, a high-
order polynomial smoothing is applied to aid in the comparison between variants of the
computation.

3 EXTERNAL FLOWS : RAE2822 TRANSONIC PROFILE

A perturbation propagation analysis was performed on the rae2822 transonic profile,
near Mach-induced stall conditions arising from shock-boundary layer interaction (M =
0.734, α = 2.79 degree, Re = 6.5106).

fFor example for the Jacobi polynomials
ghttp://www.ginac.de/CLN/
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3.1 Solution procedure for one point in parameter space

As the flow solution is noticeably dependent on turbulence modeling, we have selected
the k − ω model with the Menter sst correction, as previous studies have shown7,8 that
without the sst correction the stall tendency is widely under-estimated. Computations
are performed using only the finest (737 × 177) available mesh of the fmg suite, as this
correction has been found to require a fine mesh for efficiency ; use of the restart technique
provides reduced cpu costs for a neighborhood of points in the parameter space, so that
the global cost of using this fine mesh is reduced.

Convergence is accelerated by the v-cycle variant of the multi-grid technique. Also,
after some initial tests, a non-monotonic (simulated annealing) cfl law has been used
here, which has removed some convergence difficulties previously encountered on the finest
used mesh. Specifically, some “high α, medium M” combinations would lead to large-
amplitude limit cycles, where the final value would depend essentially on the precise
iteration count, which defines the phase in the cycle. These high-amplitude limit cycles,
illustrated by above-surface points in Figure 3 (and also some hidden under-surface ones),
have been eliminated here by this “cfl annealing” technique.

3.2 Specification of the stochastic perturbations

A normal distribution was chosen with the following parameters (taken from the
nodesim-cfd project specifications) for the mean value µ and the standard deviation
σ for α and M :

• µ = 2.79 and σ = 0.1 (in degree) for the angle-of-attack α ;

• µ = 0.734 and σ = 0.005µ for the Mach number M .

The resultant parameter domain is defined by the [0.704, 0.764]× [2.09, 3.49] rectangle
in (M,α) space.

3.3 Design of Experiment and results

The Design of Experiment (DoE) for the rae2822 case has eventually been performed
with user-driven increments, because of the steep variations which have found. Thus, the
perturbation propagation analysis is here dependent on visual analysis of the cfd results.

3.3.1 1D analysis with stochastic moments computation

Two approaches have been combined to represent the normal distribution : a 9-point
Gauss-Hermite set (reaching to ±2.65σ) and a specific Monte-Carlo set with 25 realisations
(reaching to [−2.1σ,+2.4σ]) ; the latter has been selected (by filtering out inadequate
candidates) to nearly match the specified mean and standard deviation, and also the
skewness (0.) and kurtosis (3.) of a normal distribution.
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Results for this 1d study are presented below in 3.4.1, together with a tentative in-
spection of possible problems in identifying the input distribution type.

Figure 1: rae2822 profile pdf and cdf responses : left : M perturbations, right : α perturbations — for
each sub-figure : left : pdf, right : cdf – top to bottom : input, inviscid lift, drag, moment outputs

For the Mach number variations, these approaches have been for initial evaluation only,
as the resultant discretisation of the parameter space has been found to be insufficient ;
thus, additional points were added “manually” to improve the set’s resolution, and the
Gauss set was not used as such but only to complement the Monte-Carlo set, see below.

Stochastic moments were evaluated (both for the M and α variations) by defining
Monte-Carlo sets (using the original normal distributions) with respectively 105 and 106

points. For these high-density distributions, the cfd solution has been approximated by
using tps interpolation, see 2.4.2, on the existing cfd set (comprising both the Gauss
and Monte-Carlo sets). This large number of points is not necessary for the computation
of the first stochastic moments, but allows the output pdf (and cdf), see Figure 1, to be
approximated (using “bins”) without requiring any additional hypothesis on the output
probability distribution.

Please notice that the unusual aspect of the output pdf and cdf of the lift for Mach
perturbations is due to the existence of a plateau for the high-CL part of the CL(M)
response ; this plateau leads both to the existence of a peak in the pdf and (through
graphical scaling) of a reduced size of apparent size of the main part of the curve. The
notable dissymetry of this main part (peak excluded) is due to the near-stall conditions
which gives smaller weights to the low-CL segments where CL is rapidly decreasing with
increasing M .
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3.3.2 2D analysis with response surface computation

Figure 2: rae2822 profile : commonly used DoE for near-regular surfaces (left) ; incremental DoE
refinement for the characterisation of a “canyon” in the CL(M,α) response surface (right)

The above 1d explorations for M = 0.734 and α = 2.79 degree have been extended with
“off-axis” computations, to build a 2d response surface for combined M and α variations.

For previous studies of the CL(M,α) response surface on the rae2822, where the
stall behaviour was clearly present but the surface appeared rather regular, we have used
a simple 9-point stencil, or a more elaborate one including two levels of 9-point stencils
complemented by boundary points, see the left part of Figure 2. As an unusually complex
structure was detected in the response surface, we used a different strategy to account for
this new behaviour, as explained below.

The incremental definition of the DoE starts with the 1d distribution at α = 2.79, see
Figure 2, including a 9-point Hermite-Gauss set and a 25-point Monte-Carlo set. As a
steep feature was detected in the resultant CL(M) aerodynamic lift profile, the Gauss-
Jacobi set forM used at α = 2.79 degree has been repeated for α = 2.49, 2.59, 2.69, 2.89, 2.99
degree, yielding a total of 6 profiles. An unusual “canyon”-like feature then appeared di-
agonally, coherently across all 6 profiles, and additional cfd points were computed along
the diagonal feature to characterise its structure. This rather large number of collocation
points was needed to ascertain the existence of the “canyon”, which we had never observed
before. The analysis is limited here to the appearance of the response surface. This aspect
is nonetheless sufficiently complex, see Figure 3, to warrant a noticeable deviation from
a Gaussian response in the output pdf for almost any direction of analysis in the (M ,α)
plane. Also, a detailed discretisation has been performed only along the α = 2.79 degree
profile ; more structures could be revealed by a more detailed exploration.
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Figure 3: rae2822 profile : previous studies without cfl annealing, leading to a regular surface but with
convergence difficulties (left) ; current result, “canyon” in the CL(M,α) response surface for aerodynamic
lift : collocation points (white spheres) with coloration by CL (right)

3.4 Additional (non-standard) analysis of results

3.4.1 Influence of the input distribution type identification

In order to obtain some information on the influence of the specified type of input
distribution on the output characteristics, we have re-processed the 1d data for the CL(M)
profile – discussed in 3.3.1 – by assuming a symmetrical β-distribution instead of a normal
one. The cfd computations used for this analysis have been obtained with the “classical”
solution procedure, leading to a regular response surface (see Figure 3, left part).

On each sub-figure of Figures 5 and 4, we represent each computation by a point in
the (µ, σ) plane, so that mean values are represented horizontally and standard deviations
vertically. We first compare the clouds of points for 30 realisations of respectively 50-point
(blue circles) and 10000-point (red circle) normal distribution sets, which clearly indicate
that the 10000-point sets are much less scattered than the 50-point ones.

We then consider the points (brown diamonds) labeled “G-J 3” to “G-J 6”, corresponding
to the (improper) post-processing of the data using a β-distribution (instead of a normal-
distribution) hypothesis, with 3 to 6 (interpolated) Gauss-Jacobi points. It is observed
on this case that, excepth for the moment coefficient (at bottom left on each figure), the
“G-J 4” point is quite close to the 10000-point set “cluster” (red circles).

Thus, a representation of the data by third-order Jacobi polynomials would appear
quite plausible as regards µ and σ, and might falsely lead to the identification of the

hThe moment coefficient combines lift and application point, which leads to a more complex profile,
and may explain the different behaviour ; also, convergence is not so good between “G-J 5” and “G-J 6”
for this observable for Mach variations (Figure 5).
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Figure 4: rae2822 profile : M perturbations — from top left : lift, drag, moment and application point –
blue/red circles: 50/10000-point Monte-Carlo normal sets – “G-J 3” to “G-J 6”: alternate post-processing
assuming a β-distribution, 3- to 6-point Gauss-Jacobi sets — all sets interpolated from original data

input distribution as a β-distribution and not a normal one. This conclusion must be
tempered by the fact that this study was performed only on the first two moments (rep-
resented by the mean value µ and the standard deviation σ) ; using more moments would
certainly provide greater discrimination between the two distribution types, and to dif-
ferent conclusions.

3.4.2 “Spiral” convergence study

A non-standard convergence analysis was performed by plotting the convergence history
in the plane of the (Fx, Fy) integrated convective fluxes, respectively equivalent (to a
rotation and a normalisation) to the (CD, CL) aerodynamic drag and lift pair. It was
found that, for the tested cases of external 2d or 3d flows, using either the Euler, laminar
or turbulent flow model, good convergence on the residuals was accompanied by a spiral
aspect of the convergence figure in the (Fx, Fy) plane. Other observed figures in this plane,
which respectively seem to denote a lack of convergence and slow convergence, include
the limit cycle (the curve representing the current flux values adheres to a closed curve,
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Figure 5: rae2822 profile : α perturbations — from top left : lift, drag, moment and application point –
blue/red circles: 50/10000-point Monte-Carlo normal sets – “G-J 3” to “G-J 6”: alternate post-processing
assuming a β-distribution, 3- to 6-point Gauss-Jacobi sets — all sets interpolated from original data

as in an attractor) and the “pig-tail” (a helix-like figure with a decreasing radius).
The cfd computations used for this analysis have been obtained with the “cfl an-

nealing” solution procedure, leading to an irregular response surface with a “canyon” (see
3.3.2).

Various quasi-spiral shapes are apparent in the left side of Figure 6, with the two cases
of the limit cycle and of a “pig-tail” ending as a spiral on the right side. It may be that
more convergence would have transformed the limit cycle into a converging spiral, so that
further analysis is required (possibly using Poincaré sections to characterise limit cycles).

The link from the (Fx, Fy) values, Figure 6 to the response surface, Figure 3, is not
easy, but it has been noticed that the “limit cycle” case is prevalent in the “low M , low
α” region of the current parameter space.

This geometrical study has been furthered in a tentative computation of a numerical
value characterising the geometrical rate of shrinking of the spiral radius, Figure 7 ; this
preliminary analysis shows a noticeable correlation between the “canyon” feature (left
part of the Figure) and the values of this “spiral” criterion (right part), with the left half
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Figure 6: rae2822 profile : convergence figures in the plane of the (Fx, Fy) integrated convective fluxes,
including limit cycles (left) ; detail : examples of a (non-converging) limit cycle and a marginally con-
verging spiral (right)

of the canyon represented by negative values and the right half by positive values
This is not yet fully investigated, but seems to show promise in this “spiral” criterion

as in indication for DoE refinement.

4 INTERNAL FLOWS : NASA ROTOR 37 COMPRESSOR

4.1 Perturbations of the outlet static pressure

Computations have been performed using symmetric β-distributions around six speci-
fied values (p = 110000, 114074, 119035, 121033, 123008, 124027 Pa) of the outlet pressure
p along the characteristic, using 6-point Gauss-Jacobi distributions in each case.

Results for the mass flow rate, stagnation pressure, stagnation temperature and isen-
tropic efficiency have been computed by the elsA software. Statistical moments to or-
der 2 (mean, standard deviation) are computed here using the Gauss-Jacobi quadrature
method.

There is a clear evolution in the ratio of the output perturbations, shifting from the
mass flow at high pressure ratios to the pressure ratio at high mass flow, see Figure 4.1,
left.

4.2 Perturbations of the tip clearance

Stochastic propagation computations have been performed for variations of the tip
clearance at 4 points (p = 105000, 110000, 114000, 119035 Pa) along the characteristic,
using 5-point Gauss-Jacobi distributions in each case.

The same post-processing as for the outlet static pressure has been performed here
(albeit on a different number of Gauss points).
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Figure 7: rae2822 profile : left : limits(red) and bottom (blue) of the “canyon” feature traced over the
iso-CL lines ; right : the same lines traced over the iso-surfaces of the “spiral” criterion

Figure 8: NASA Rotor 37 compressor : influence of a 2% outlet static pressure variation (left) and of a
50% tip clearance variation (right) on the compressor characteristic

It can be observed – Figure 4.1, right – that the output perturbations are here of almost
constant amplitude on both the mass flow and the pressure ratio, contrary to the case of
outlet static pressure perturbations.

It can be observed, Figure 4.2, that order-3 polynomials are more than adequate to
represent the mean value and standard deviation for the chosen observables (mass flow,
total pressure ratio, total temperature ratio and adiabatic efficiency), so that 4-point
distributions would have been sufficient here.
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Figure 9: NASA Rotor 37 compressor : 50% tip clearance variation : effect of the polynomial order on
the Gauss-Jacobi quadrature - left sub-figure : mean value, right sub-figure : standard deviation – (left
to right for each sub-figure) mass flow, total pressure ratio, total temperature ratio, adiabatic efficiency

5 CONCLUSION

A Python tool-chain including the elsA cfd software has been developed for non-
intrusive (Monte-Carlo and nipcm) stochastic studies. It has been applied to both exter-
nal (rae2822 case) and internal (nasa Rotor 37 case) flows. A new “spiral” convergence
criterion is being developed, based on the geometrical analysis of the convergence his-
tory in the plane of the (Fx, Fy) integrated convective fluxes, which provides an alternate
quality indicator for cfd results. A methodology for semi-automatic DoE refinement,
based on this “spiral” convergence criterion, is being developed. It is hoped that, coupled
with the optimised chaining technique of the variator class, it may become efficient even
for non-regular response surfaces such as the “canyon” feature newly observed for the
RAE2822 profile.
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[2] O.M. Knio and O.P. Le Mâıtre. Propagation in CFD using polynomial chaos decom-

14



M. Lazareff, J. Peter, A. Fourmaux

position. Fluid Dynamics Research, 38:616–640, 2005.

[3] C. Dinescu, S. Smirnov, C. Hirsch, and C. Lacor. Assessment of intrusive and non-
intrusive non-deterministic CFD methodologies based on polynomial chaos expansions.
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