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Abstract. Discontinuous Galerkin (DG) methods are a prominent candidate for high
order accurate schemes for advection dominated problems in three-dimensional complex
geometries, since they sustain high order spatial accuracy even on general unstructured
grids. To maintain the high order accuracy at curved wall boundaries, a high order repre-
sentation of the elements near the wall surface is required, i.e. high order grids. Regarding
three-dimensional curved geometries, the construction of such unstructured curved grids
is a subtle task.
In the first part of the paper, the implementation of the DG scheme is discussed, focusing
on curved elements. Since integration can only be done on a linear reference element,
mappings of curved element sides as well as the curved element volume are required.
In the second part, our approach for the resolution of curved boundary surfaces is pre-
sented. The concept of the approach is to rely on established unstructured grid generators
for a basic grid, and to develop an independent tool to provide high quality information
for the curved boundaries directly from the CAD model. The grid consists of hexahedra,
prisms, pyramids and tetrahedra with straight edges. Via a CAD tool, we access the CAD
definitions of the computational domain to detect all element corner points on the bound-
ary surfaces, and assign for each of these points a set of ’exact’ normal vectors. The
normal vectors lead to curved element edges and further to a local surface mapping of the
element sides. Finally, the volume mapping of the curved element is found, based on the
curved element sides. We demonstrate the applicability of this approach with an unstruc-
tured grid of a complex wing-body-nacelle configuration, having multiple edges, corners
and intersecting sub-surfaces.
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1 INTRODUCTION

In industrial applications, geometries are three-dimensional and typically comprise curved
surfaces, curved borders and sharp edges. Here meshing itself becomes an issue and
therefore, unstructured grids are needed. Most of the unstructured grid generators provide
high quality grids consisting of hexahedra, prisms, tetrahedra and pyramids, whereas the
element edges are in general straight lines, at most having an additional mid-point.
When using high order methods, wall boundary conditions need a high order representa-
tion of the wall normal. Bassi and Rebay1 showed, that in the case of curved boundaries
a high order DG discretization with straight-sided 2D elements yields low order accurate
and even physically wrong results. To overcome this issue, they propose to use at least
elements with parabolic shaped sides on the boundary.
Approaches for high order grids should use CAD definitions to guarantee a correct ap-
proximation of the geometry. Existing high order grid generators6 are very promising,
however meshing of complex geometries with unstructured hybrid grids has not reached
the level of commercial grid generators. Since curved elements are only needed near curved
boundaries, a completely local approach, independent of the grid generator, is presented.

2 THE DG SCHEME ON CURVED ELEMENTS

In this part, we derive the DG scheme on an arbitrarily shaped element Q for the Euler
equations in conservation form

Ut + ~∇ · ~F (U) = 0. (1)

U is the vector of conserved variables , and ~F (U) the advection fluxes. For the DG formu-
lation, we approximate the solution in element Q by a modal discontinuous polynomial
approximation

U(~x, t)
∣∣
Q
≈ Uh,Q(~x, t) =

N∑
j=1

ÛQ
j (t)ϕQj (~x), (2)

where ϕQj are orthonormal basis functions, which are constructed via Gram-Schmidt or-
thogonalization. The approximation (2) is inserted in (1), the equations are multiplied
by a test function φ ∈ {ϕQj }j=1,...,N and integrated over the element Q〈

Uh,Q
t + ~∇ · ~F (Uh,Q), φ

〉
Q

= 0. (3)

Integration by parts leads to the DG formulation〈
Uh,Q
t − ~∇ · ~F (Uh,Q), φ

〉
Q

+
(
H(Uh

±, ~n), φ−
)
∂Q

= 0, (4)

with the numerical flux function resolving the discontinuous solutions on the element sides
Uh
± by an approximate Riemann flux

~F (Uh) · ~n
∣∣
∂Q
≈ H(Uh

±, ~n). (5)
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The inner products are defined as volume integral and the surface integral, which is divided
into a sum over all element sides

〈a, b〉Q =

∫
Q

ab d~x , (a, b)∂Q =

∫
∂Q

ab dS =
∑
s

∫
∂Qs

ab dS . (6)

The volume fluxes are approximated using the same polynomial representation

~F (U)
∣∣
Q
≈ ~F h,Q(U) =

N∑
j=1

~̂FQ
j ϕ

Q
j (~x) , (7)

as well as the surface normal flux of each element side

H(Uh
±, ~n)

∣∣
Q
≈ Hh,(s)(U) =

Ns∑
j=1

Ĥ
(s)
j ϕ∂Qs

j (~x) . (8)

where ϕ∂Qs denotes an orthonormal modal basis on the side s. The semi-discrete formu-
lation of the DG scheme for the vector of DOFs Û in element Q reads as

MQÛ t −
dim∑
d=1

SQ
d
F̂
Q

d +
∑
s

M∂QsĤ
(s)

= 0. (9)

with the mass matrix MQ, the stiffness matrix SQ
d

and the element side mass matrix

M∂Qs . These operators are defined as

Mij

∣∣Q =
〈
ϕQj , φ

Q
i

〉
Q

= δij , Sij
∣∣Q
d

=

〈
ϕQi ,

∂φQj
∂xd

〉
Q

, Mij

∣∣∂Qs

d
=
(
ϕ∂Qs

j , φQi

)
∂Qs

. (10)

Now we need to implement the volume and the surface integration (6) for each element
type, e.g. tetrahedra, pyramids, prisms and hexahedra. An analytical integration is in
general unfeasible, because the integration domain is supposed to be curved. A numerical
Gauss-type integration is used instead. For all straight sided reference elements depicted in
Figure 1, tensor-product Gauss-type integrations are found in Karniadakis and Sherwin,7

which consist of different tensor-product Gauss-Jacobi integration points on the reference
square / cube, including an exact integration of the linear transformations to triangles,
prisms, pyramids and tetrahedra.
To perform the integration, a volume mapping ~x = ~x(~ξ) from the curved element to the
reference element is needed. Regarding exemplarily the stiffness matrix entries, inserting
the mapping yields to∫

Q

ϕj(~x)
∂φj(~x)

∂xd
d~x =

∫
Qgauss

ϕj(~x(~ξ))
∂φj(~x(~ξ))

∂xd
J(~ξ) d~ξ =

∫
Qgauss

P (~ξ) d~ξ,
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Figure 1: straight sided reference elements

with the Jacobian of the mapping J(~ξ) =
∣∣∣∂xj(~ξ)

∂ξi

∣∣∣. We confine the mapping ~x(~ξ) to

be a polynomial in ~ξ, so P (~ξ) remains a polynomial. Polynomials can be integrated
exactly by an adequate Gauss quadrature. The same approach is applied to the surface
integral, requiring a surface mapping for each triangular or quadrangular element side.
The construction of these polynomial mappings is described in the following sections.
We note that for efficiency, the operators in (10) are pre-computed via Gauss-type inte-

gration, and then combined with a nodal projection of the fluxes F̂
Q

d , Ĥ
(s)

in (9), leading
to a quadrature free mixed nodal and modal approach, see Gassner et al.5

3 HIGH ORDER GRID CONSTRUCTION

3.1 Volume Mapping

The volume mapping is defined, following Figure 2, by the surface mapping of all element
sides, and the surface mapping in turn is defined by curved element edges.

Figure 2: Construction of mappings: from curved element edges to surface and volume mappings

1. All element edges lying on the curved boundary are uniquely defined by a polynomial
curve. The uniqueness of the edges guarantees C0 continuity of the high order
grid. The polynomial curve is represented by Bernstein-Bézier basis functions.4

The inner edges remain straight lines. The construction of these curved element
edges is described in section 3.2.

2. Triangle and quadrangle mappings are also defined by Bernstein-Bézier basis func-
tions.4 They have the convenient property, that the edge control points remain the
same, and inner control points can be expressed in terms of the edge control points,
see section 3.3. This is done for all element sides having at least one curved edge.
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3. The volume mapping is a blending of all element sides. It is again a polynomial,
represented with Bernstein-Bézier basis functions for tetrahedra, prisms and hex-
ahedra,8 as well as nodal tensor-product basis functions for pyramids. We impose
the volume mapping to match exactly all element side mappings. This yields to an
under-determined equation system, which is solved using a pseudo-inverse, resulting
in the full volume mapping.

Elements are curved only when elements are linked – e.g. sharing at least one edge – with
the wall boundary (’local curving’). If the elements are highly stretched or skewed, addi-
tional curving of inner elements would be required6,9 (’global curving’) to avoid negative
or very small Jacobians. We found that using near-wall tetrahedra or pyramids generally
leads to much smaller Jacobians than using prismatic extrusions of the surface grid, i.e.
prisms and hexahedra. Smaller angles on the element corners are the reason. In most
cases, when using prismatic elements, local curving is sufficient.

3.2 Curved Edge Construction

First let us introduce the Bernstein-Bézier basis functions and the Bézier curve, shown in
Figure 3.

Figure 3: The Bézier curve and its construction via the De Casteljau algorithm, ~xb(t = 0.5)

Bézier curves (b) are expressed by

~xb(t) =
n∑
i=0

~biB
n
i (t) , ~xb,~bi ∈ R3 , (11)

where ~bi are the coordinates of the control points and form the control polygon. The i-th
Bernstein polynomial of degree n reads as

Bn
i (t) =

(
n
i

)
ti(1− t)n−i (12)

with the binomial coefficient (
n
i

)
=

n!

i!(n− i)!
. (13)
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In Figure 3, one can easily see that the first and the last control point coincide with
the end points and that here, the control polygon is tangential. The derivative of the
Bézier curve is defined as4

∂~xb
∂t

= ~̇xb(t) = n
n−1∑
i=0

∆~biB
n−1
i (t) , (14)

where ∆~bi = ~bi+1 −~bi are the vectors from one control point to the other.
Given an element edge with two end points ~p1, ~p2 and two tangential vectors ~t1,~t2, a
Bézier curve of degree n = 3 is well-defined. The four control points are found from
equation (11)

~xb(t = 0) = ~p1 = ~b0 , ~xb(t = 1) = ~p2 = ~b3 (15)

and from equation (14)

~̇xb(t = 0) = ~t1 = 3(~b1 −~b0)→ ~b1 = ~p1 +
1

3
~t1 (16)

~̇xb(t = 1) = ~t2 = 3(~b3 −~b2)→ ~b2 = ~p2 −
1

3
~t2 . (17)

For the simple case of a straight line segment, control points lie on the line and are equally
spaced,

~blinei =
i

n
(~bn −~b0). (18)

p1

p2

n1

t 1

e p1

p2

n1

t 1

e
n2

(a) (b)

Figure 4: Tangential vector by projection and by cross product

The CAD tool, described in section 4, will supply a set of normals on each boundary
surface grid point. For the calculation of the tangential vectors, two principal cases,
depicted in Figure 4, have to be considered,

(a) one normal at the end point:
This occurs when a grid point lies inside the CAD surface or on the edge between
adjacent tangential CAD surfaces. The tangential vector of the element edge is
found by projection of the straight edge ~e onto the normal ~n1, see Figure 4a

~t1 = ~e− (~n1 · ~e)~n1 , ~e = ~p2 − ~p1 . (19)
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(b) two normals at the end point:
This occurs when the a grid point lies on the sharp edge between adjacent CAD
surfaces. The tangential direction is found by their cross product, and its length by
projection of the straight edge see Figure 4b

~t1 = (~e · ~τ)~τ , ~τ =
~n1 × ~n2

|~n1 × ~n2|
. (20)

This approach guarantees that arbitrary sharp edges are automatically detected
and represented as piecewise Bézier curves, in particular with G1 continuity at the
common grid points.

3.3 Blending Edges to Surfaces

Bernstein-Bézier basis functions are also available for triangles and quadrangles. We
restrict ourselves to cubic polynomials, since the edges are of degree n = 3.

v=0

u=0

w=0

b 003

b 102

b 201

b 300

b 210

b 120
b 030

b 021

b 012

b 111

Figure 5: cubic Bézier triangle

The representation of a Bézier triangle (bt) is written as

~xbt(u, v, w) =
n∑
ijk

~bijkB
n
ijk(u, v, w) , 0 ≤ i+ j + k ≤ n , ~xbt,~bijk ∈ R3 , (21)

where n is again the polynomial degree, and u, v, w are tri-variate parameter directions.
The surface remains bivariate, since u + v + w = 1 must hold. Bn

ijk are the triangular
Bernstein-Bézierbasis functions defined as

Bn
ijk(u, v, w) =

(
n

ijk

)
uivjwk , (22)
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with the trinomial coefficients (
n

ijk

)
=

n!

i!j!k!
. (23)

~bijk are control points of the surface in physical space, shown in Figure 5. Now, all control
points of the edges are known from the section 3.2, the only unknown control point is
~b111. Symmetry suggests a formula of the type

~b111 = (1− α)E + αV , (24)

with

E =
1

6
(~b012 +~b021 +~b102 +~b201 +~b120 +~b210) , V =

1

3
(~b003 +~b030 +~b300) . (25)

The specific choice α = 1
2

reproduces quadratic polynomials exactly as shown by Farin3

and is used in this work.

v=0u=0

u=1

v=1

b 00

b 01

b 02

b 03

b 12

b
11

b 10

b 20

b 30

b 31

b 32

b 33

b 23
b 13

b 22

b 21

Figure 6: cubic Bézier quadrangle

The representation of a Bézier quadrangle (bq) is written as a tensor product

~xbq(u, v) =
n∑
i=0

n∑
j=0

~bijB
n
i (u)Bn

j (v) , (26)

where Bn
i , B

n
j are the Bezier-Bernstein basis functions from (12) and ~bij are control points

of the surface in physical space, shown in Figure 6.
Again, the control points of the edges are known, and the inner points are found by a
bi-linear blending of the edges,4

~bij = ~buij +~bvij −~buvij , (27)
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with

~buij = (1− i

n
)~b0,j +

i

n
~bn,j (28)

~bvij = (1− j

n
)~bi,0 +

j

n
~bi,n (29)

~buvij = (1− i

n
)(1− j

n
)~b0,0 +

i

n
(1− j

n
)~bn,0 (30)

+ (1− i

n
)
j

n
)~b0,n +

i

n

j

n
~bn,n . (31)

The surface mapping is done for all elements touching curved surfaces with at least one
edge. At inner element sides, only one unique surface mapping is constructed, which
guarantees C0 continuity at the element interface and equal normal vectors for both
element sides.

4 CAD Tool for Normal Vectors

The CAD tool is written in Visual Basic 8 and uses the Microsoft .Net 2.0 framework.
It is connected to CATIA via a scripting interface (CAA-API), thus commands to load a
model, do geometric operations and extract CAD definitions are made directly accessible
for the CAD tool.

STEP
CAD definitions

of comput. domain

Mesh Generator
3D unstructured mesh

+ boundary conditions (BC)
straight edges

CAD tool
C

A
D

 in
te

rf
ac

e 
to

 C
AT

IA
load model

extract BReps

extract surface grid from BC

High Order Grid Create polynomial 
curves/surfaces/volumes

for each grid point in the set

locate on
CAD surface or CAD edge

extract CAD normal(s)

point sets by Bounding Boxes

Figure 7: Flowchart of the high order grid construction
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The workflow to construct a high order grid is shown in Figure 7. The geometry is
normally defined in CAD and can be exported to a STEP file (’.stp’), a widely used
standard exchange format. The grid generator imports the STEP file and provides, in
general, straight-edged elements and boundary conditions (BCs).
In a preliminary step, the CAD tool reads the 3D grid, and extracts all grid points lying
on boundaries, as well as the connectivity of the surface grid. Then the STEP file is loaded
and the topology is analyzed, and for each CAD surface, a bounding box is created. For
each CAD surface, the distance to the CAD surface and its edges is measured to decide
whether or not the grid point lies on the surface or edge. To minimize the computational
effort, only grid points inside the bounding box are considered. If the grid point lies inside
the surface, one exact normal vector is evaluated at the grid point. Multiple exact normal
vectors are found for CAD edges or corners. A unique Face ID is attached to every CAD
surface, providing additional information to the normal vector. This facilitates curved
edge construction afterwards, especially at sharp edges and corners. Once all grid points
are checked, we construct the curved element edges, surface and volume mappings, as
described in the previous sections.

5 APPLICATION TO CURVED GEOMETRIES

5.1 Free-Stream Preserving

CFD codes have to guarantee the so-called free-stream preserving property. It says that
for a constant initial condition and a constant flux, the solution has to remain constant
for all times. Choosing

~~F (U) = ~c = const. (32)

and following the integration by parts〈
~∇ · ~F (U), φi

〉
Q

=
〈
~F (U), ~∇φi

〉
Q
−
(
~F (Uh

−) · ~n, φi
)
∂Q

(33)

the condition reduces to
0 =

〈
~c, ~∇φi

〉
Q
− (~c · ~n, φi)∂Q , (34)

which must hold discretely, i.e. both terms have to be integrated exactly, in particular
for curved elements.
Inserting the volume mapping ~x(~ξ) of degree Pc into the volume integral, we get〈

~c, ~∇φi
〉
Q

=

∫∫∫
ξ1ξ2ξ3

~c · ~∇φi(~x(~ξ))︸ ︷︷ ︸
≤(P−1)Pc

· J(~ξ)︸︷︷︸
≤3Pc−1

d~ξ , (35)

where P is the polynomial degree of the basis functions. The number of 1D Gauss points
needed for integration is given by maximum polynomial degree in one coordinate direction.

PGauss1D ≤ PPc + 2Pc − 1→ NGP1D ≥
PGauss − 1

2
. (36)

10



F. Hindenlang, G. Gassner, T. Bolemann and C.-D. Munz

(a) (b)

Figure 8: Test case geometry and curved elements, Pc = 3, P = 3

An element with P = Pc = 3 would require NGP1D = 7→ 73 Gauss points for integration.
For the surface integral, we introduce the surface element ~dS and the non-normalized
normal N

~N(u, v) =
∂~xs(u, v)

∂u
× ∂~xs(u, v)

∂v
~n =

~N

| ~N |
~dS = | ~N(~ξ)| dξ1 dξ2

with ~xs = ~xbt or ~xs = ~xbq for a Béziertriangle (21) or quadrangle (26). Inserting the
surface mapping ~xs(u, v) of degree Pc into the surface integral, we get

(~c · ~n, φi)∂Q =

∫∫
u v

~c · ~nφi ~dS =

∫∫
u v

~c · ~N(u, v)︸ ︷︷ ︸
≤2Pc−1

·φi(~xs(u, v))︸ ︷︷ ︸
≤PPc

dξ1 dξ2 . (37)

Again, the number of 1D Gauss points is given as

PGauss1D ≤ PPc + 2Pc − 1 . (38)

Our implementation guarantees free-stream preserving to machine precision, when curved
tetrahedra, pyramids, prisms or hexahedra are used, see Table 1. For the tests, a cube
with a double frustum inside was meshed, and periodic boundary conditions were applied.
The geometry is depicted in Figure 8a. In Figure 8b, only the curved elements are shown,
furthermore a zoom of two adjacent elements.

hexahedra prisms pyramids tetrahedra
nElems 246 200 988 2575
L2(ρ) 1.07E-012 2.58E-012 1.73E-012 4.23E-014

Table 1: Error in density, Pc = 3, P = 3
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5.2 DLR-F6 wing-body-nacelle configuration

The DLR F6 is an idealized wing-body-nacelle configuration of a passenger jetliner, that
was tested in multiple wind tunnels for comparison with numerical simulations. The
CAD geometry as well as the experimental data can be found in Brodersen and Stürmer.2

All mappings are represented by forth order polynomials. The volume grid (∼ 340600
elements), is shown in Figure 10. The majority of the elements are linear tetrahedra
(∼ 280000). The fuselage is meshed with one layer of curved prisms (∼ 3600), on the
wing and nacelle, curved tetrahedra are used (∼ 56000). Curved elements are more
expensive to compute, thus the percentage of curved elements has to be minimized. In
the grid, they are limited to the near surface region, a selection is depicted in Figure 11.
The pictures in Figure 12 show the forth order surface mesh. It can be clearly seen that
the CAD edges are detected overall and a smooth surface curving is achieved.
A useful measure for the quality of a curved element is the variation of the Jacobian J(~ξ),
referred to as the scaled Jacobian9

Jscaled =
min~ξ∈Q J(~ξ)

max~ξ∈Q J(~ξ)
. (39)

For linear elements (e.g. tetrahedron with straight edges) the Jacobian is constant, thus
the scaled Jacobian equals 1. The scaled Jacobians range from −1 to 1, but only elements
with Jscaled > 0 are valid, quality increases with Jscaled → 1. The statistics for the
mixed prism/tetrahedra grid are shown in Figure 9. All elements have positive Jacobians,
whereas a scaled Jacobian smaller than 0.5 is found for 235 curved tetrahedra (0.45%)
and 70 curved prisms (1.93%).
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Figure 9: DLR-F6 configuration: scaled Jacobian statistics for curved tetrahedra and prisms
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Figure 10: volume grid of the DLR-F6 configuration (tetrahedra and prisms)

Figure 11: curved elements at the body surface
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Figure 12: volume mapping of curved elements evaluated at the boundary surface

6 CONCLUSIONS

High order grid construction in complex three-dimensional geometries is required when
high order methods are used. In this paper, a new approach is presented, relying on a
CAD tool, which uses CAD definitions of the computational domain boundaries to find
exact normals for the boundary grid points. The underlying grid can be generated by
nearly every mesh generator, since only grids consisting of elements with straight edges
are needed. We showed how the normals are used to define curved element edges. In
particular, sharp edges at the borders of CAD surfaces are automatically found. Sub-
sequently is was shown how the curved edges are extended to curved surface mappings
and a furthermore to a curved volume mapping of the element. Until now, the volume
mappings are restricted to forth order polynomials.
The DG scheme was derived for an arbitrarily shaped element. The approximation of the
volume and surface integration are addressed by using polynomial mappings. Integration
rules were found to guarantee the free-stream preserving property. A high order grid for a
complex wing-body-nacelle reference configuration was presented and element Jacobians,
a quality measure for curved elements, were analyzed.
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