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Abstract. We present a CFD zonal solver which efficiently simulates compressible vis-
cous flows by reducing the computational cost through the use of a lower fidelity model,
the Euler equations of inviscid flow, in regions where the flow is not dominated by viscous
effects. This strategy also guarantees an acceptable level of accuracy. The design pro-
cess can be accelerated if adequate solvers are used within each subdomain and a suitable
method for passing information is used at the interface of these subdomains. In partic-
ular, the interface conditions play an extremely important role in ensuring continuity of
the variables across the interface and they strongly affect the stability of the solver.

Two implementations of the interface conditions are analysed: a strong approach where
the variables are directly imposed on the interface and a weak approach based on a penalty
method.

The two methods are tested for the solution of the turbulent flow over a flat plate and a
subsonic airfoil. Both approaches are able to perform a turbulent simulation saving 43%
of the computational time respect to a complete turbulent simulation with an error of 10%
in the wall friction coefficient.
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1 INTRODUCTION

Despite the large number of studies and the ongoing improvements in computer effi-
ciency over the years, CFD simulations of turbulent flows about complex geometries are
still challenging in terms of memory allocation and computational time.

Domain decomposition methods (DDMs) have been proposed in the literature to reduce
the cost of simulations. The idea underlying DDMs is to split the domain of the problem
into several independent partitions (subdomains) so that the convergence of the numerical
method is speeded up. Several strategies can be used: such as, defining different meshes,
modifying the mesh according to the flow features, using parallel computing1 and applying
the concept of the zonal solver, which involves the use of different equations in different
subdomains. This last choice is the subject of this paper.

Since a high level of accuracy is frequently required only for some parts of the com-
putational domain, such as near bodies and on wakes, the zonal solver is able to reduce
the computational cost by using a high fidelity solver in these regions and a low fidelity
solver elsewhere. The success of such approach relies on an appropriate treatment of the
interfaces.

In particular, the interface conditions play an extremely important role because they
are responsible for the continuity of the variables across the interface and they strongly
affect the stability of the solver.

The literature contains a wealth of references to DDMs that partition the domain
into subdomains in which an appropriate set of equations is solved and ensure a suitable
matching strategy at the interface1,2.

Several approaches for coupling subdomains using distinct solvers are available in the
literature (for instance, potential flow/RANS3, potential flow/Euler4, vortex panel/Navier–
Stokes5, potential flow/Navier–Stokes6 and LES/RANS7), however we focus exclusively
on methods that divide the domain into viscous RANS and inviscid Euler subdomains,
which are coupled together at the interface.

Within these methods, two types of zonal strategy have been proposed, depending on
the turbulent model used by the RANS solver, which can be either algebraic or partial
differential equation based (PDE).

Zonal algorithms for algebraic turbulence models, such as Baldwin–Lomax or Cecebi–
Smith8 have been proposed in the literature9–11. These models are based on a definition of
turbulent viscosity as a function of Prandtl’s mixing length, which is taken to be a function
of the distance from the object. As the interface is easily determined from the negligible
values of the turbulent viscosity, zonal strategies that are based on these algorithms are
relatively straightforward to implement. Other authors have described methods based on
one and two-equation turbulent models12–14.

The present work deals with two approaches to the zonal solution by coupling Euler
and RANS solvers for non-overlapping meshes. The first approach is inspired by a multi-
domain method15–17 and the second is an extension of a characteristic based method13.
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We will refer to these approaches as weak and strong approaches, respectively.
The weak approach is a modification of the method proposed by Hesthaven and co-

workers. It couples equations on distinct subdomains using a penalty term to satisfy
the interface matching conditions. In the strong method proposed by Quarteroni and
Stolcis13, the matching at the interface is achieved by imposing continuity of fluxes and
incoming characteristic variables. A reduced turbulence model is used in the Euler region
and therefore the method do not require interface conditions for the turbulent equations.

The choice of the interface conditions for the turbulence model is essential in both
approaches, especially when the use of a turbulent model is completely avoided in the
inviscid region. An efficient zonal solver has to treat the interface problem carefully,
in order to obtain the best compromise between speed, stability and accuracy of the
calculation.

In this paper we report different approaches that have been used to perform a zonal
turbulent simulation, with the aim of reducing computational time. The inviscid region is
assumed to be turbulence-free and thus the turbulent equations need to be solved only in
the viscous region. As a result, the same boundary conditions which are usually employed
at the far-field boundary have been applied at the interface between the two zones.

2 NUMERICAL FORMULATION

The solver used here was originally developed to solve steady/unsteady Euler, laminar
Navier-Stokes and RANS equations, including a k-ε two-equation turbulence model using
multi-stage Runge–Kutta time integration. The equations are discretized via the finite
volume method on polyhedral unstructured grids.

2.1 Governing equations

The integral form of the Navier-Stokes equations are

∂

∂t

∫

Ω

Q dΩ +

∫

∂Ω

(F · n) d(∂Ω) +

∫

Ω

S dΩ = 0 (1)

where Q = [ρ, ρu, ρv, ρe, ρk, ρε]> denotes the vector of conservative variables, e the in-
ternal energy, F = [Fx,Fy]

> denotes the matrix of fluxes with reference to a Cartesian
frame (x, y), the vector n = [nx, ny]

> represents the outer normal to the boundary ∂Ω,
the velocity vector is u = [u, v]> and S = [0, 0, 0, 0, Sk, Sε]

> is the source term of the
turbulence model18. This is a two-equation k-ε turbulence model where k denotes the
turbulent kinetic energy and ε is the dissipation. The flux vectors are given by
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F = Fi + Fv =




ρu ρv
ρu2 + p ρvu

ρuv ρv2 + p
(ρe + p)u (ρe + p)v

ρuk ρvk
ρuε ρvε



−




0 0
τxx τxy

τyx τyy

uτxx + vτyx + qx uτxy + vτyy + qy

(µl + µt

σk
)
∂k

∂x
(µl + µt

σk
)
∂k

∂y

(µl + µt

σε
)

∂ε

∂x
(µl + µt

σε
)

∂ε

∂y




(2)

where Fi are the inviscid fluxes, Fv are the viscous fluxes and p is the pressure. For a
perfect gas we also have

p = (γ − 1)ρ

(
e− u2 + v2

2

)
; (3)

with γ = 1.4. The stress tensor and thermal fluxes are expressed as

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
δij

(
µ

∂uk

∂xk

+ ρk

)
qi =

γ

γ − 1

µ

pr

∂T

∂xi

(4)

where µ = µl +µt is the effective viscosity with µl and µt denoting the laminar and turbu-
lent viscosity respectively, pr is the reference constant pressure and T is the temperature.

The turbulence model is a low–Reynolds number k-ε turbulence model19,20. The tur-
bulent viscosity and the source terms are given by

µt = Cµfµρ
k2

ε
Sk = Pk − ρε Sε = (Cε1f1Pk − Cε2f2ρε)

ε

k
(5)

where Pk = τ ⊗∇u is the rate of term production of turbulent energy. The constant are
Cµ = 0.09, Cε1 = 1.42, Cε2 = 1.83, σk = 1.367 and σε = 1.367, and fµ, f1 and f2 are
damping functions21.

2.2 Finite volume scheme

The code is an explicit cell-centred solver. All dependent flow properties are stored
within a cell and interface properties are found via interpolation, which will be described
later. The standard divergence theorem is applied to integrate the governing equations
and using a cell as the control volume of the discretization, the finite volume formulation
reads

VI
dQI

dt
+

∑
J

SIJ F̂IJ + VI SI = 0 (6)

where F̂ = F · n represents the (outer) normal flux through the face shared by the cells
I and J . Here VI denotes the volume of the control volume and SIJ represents the area
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of the face shared by cells I and J . The index J in the summation runs over all the cells
that share a face with the cell I.

The inviscid fluxes are calculated using a second-order upwind scheme and the viscous
stress terms are calculated using standard central difference representations based on
the gradient calculations. The details of the upwind formulation are given by the Roe
scheme22. The flux at the interface is written as

F̂IJ =
1

2

(
F̂I + F̂J

)
− 1

2
|A(QIJ ,n)| (QJ −QI) (7)

where A is the decomposed average state Jacobian which allows the method to identify the
direction of the wave propagation. This term weights the interface in terms of the direction
of the wave propagation and the resulting method is in essence an upwind scheme23,24.
Note the viscous fluxes are evaluated independently of the inviscid fluxes and calculated
explicitly from the previous time level.

Gradient terms which are required for second-order calculations and flow problems that
require stress terms are calculated using the divergence theorem around each cell. Face
gradients are then taken as the average of the cell centre values with a correction being
made in the face normal direction

GI =
1

VI

∑
J

1

2
SIJ(QI + QJ)n + G̃I (8)

When a second-order procedure is applied the methodology is strictly speaking exactly
the same as in (7), but the values Q either side of the interface are now determined using
a second-order extrapolation. In addition a limiter is employed to prevent non-physical
spatial oscillations in the solution. The second order state value is expressed by

Q̃I = QI + climGI · s (9)

where clim is found by a modified van Albada limiter25 and s is the cell centre to cell
centre vector.

2.3 Boundary Conditions

Boundary conditions are stored in fictitious cells so that the interface value is set cor-
rectly through the interface fluxes. Solid walls are treated using the no-slip boundary
condition. The pressure, density and temperature values at the solid surfaces are ex-
trapolated from the interior using appropriate relationships usually devise to conserve
enthalpy. The turbulence energy is simply set to enforce a zero value at the wall and the
turbulent dissipation at the wall is

εwall = 2
µk

ρy2
p

(10)

The normal distance from the surface to the centroid of the first adjacent cell attached
to a wall is denoted by yp

26. Inflow and outflow boundary conditions are based on the
Navier–Stokes characteristic boundary conditions for viscous flows27.
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3 TREATMENT OF THE INTERFACE

We refer to the computational domain as Ω, which is divided into two regions, ΩI

and ΩV , where the subindices I and V refer to the “inviscid” and “viscous” regions,
respectively. The boundaries of ΩI and ΩV are denoted by ∂ΩI and ∂ΩV respectively.
The interface between the regions is denoted by Γ = ΩI ∩ ΩV = ∂ΩI ∩ ∂ΩV . We adopt
the convention that its normal n = (nx, ny) points to the viscous region and t = (tx, ty)
is the tangential vector (t · n = 0).

Figure 1: Zonal solver notation: inviscid region, ΩI , with boundary ∂ΩV ; viscous region, ΩV , with
boundary ∂ΩV ; zonal interface, Γ = ΩI ∩ ΩV = ∂ΩI ∩ ∂ΩV .

For convenience of notation, we split the flow equations from the two turbulent equa-
tions, as

Q =




ρ
ρu
ρe−−
ρk
ρε




=

[
Q̃−−̄
Q

]
F =

[
F̃−−̄
F

]
(11)

This permits us to write the coupled inviscid–viscous problem as




∂Q̃I

∂t
+∇ · F̃i

(Q̃I) = 0 in ΩI

∂QV

∂t
+∇ · Fi(QV ) = ∇ · Fv(QV ) + S in ΩV

(12)

with appropriate boundary and interface conditions.

3.1 Strong approach

In the strong approach the interface is treated as a boundary where continuity of
normal fluxes and of the Riemann invariants associated with the characteristic curves is
imposed13. The continuity of the normal fluxes is expressed by

F̃i
(Q̃I) · n = F̃i

(Q̃V ) · n− F̃v
(Q̃V ) · n on Γ (13)
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From a numerical point of view, the continuity of the fluxes is automatically guaranteed
by the single evaluation of the fluxes on the edges of the control volumes since the interface
is always placed on a mesh edge.

The complexity of matching the characteristic variables at the interface is reduced by
projecting of relevant variables in the direction normal to the face and restricting the
matching to the normal direction only.

To accomplish this, we define L as the left eigenvectors matrix of the projection of the
matrix A along the normal vector n, where

{
Al

}
r,s

=
∂F̃i

(Q̃I)r,l

∂Q̃s

(14)

so that continuity of the invariants on the interface is described by

L−1Q̃I = L−1Q̃V (15)

for all the negative eigenvalues of A.
This approach intends to satisfy simultaneously the continuity of fluxes and of char-

acteristic variables on the interface. The choice of the conditions to be applied to the
variables has a strong impact on the solution of the zonal problem. Here we use non-
reflecting boundary conditions24 in order not to generate spurious numerical reflections
at the interface.

The vanishing of the local perturbation carried along the characteristics can be written
in discretized form as 



∆ρ− ∆p

c2

∆(u · t)
∆(u · n) +

∆p

ρc

∆(u · n)− ∆p

ρc




= 0 (16)

where c is the speed of sound and symbol ∆β is interpreted as the jump of the generic
quantity β between the values at both side of the interface. The condition applied on
the interface depends on the direction of the velocity vector normal to the interface that
identify the direction of propagation. The variables for a subsonic “viscous to inviscid”
interface are given by

(u · n)Γ =
1

1 +
ρV cV

ρIcI

(
uI · n +

ρV cV

ρIcI

uV · n +
∆pV I

ρIcI

)

(u · t)Γ = (u · t)

ρΓ =
(u · n)ΓρV

cV

+ ρV

pΓ = pV − (u · n)ΓρV cV

(17)
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where the subindex Γ refers to the value of the interface variables. Once the variables are
fixed, it is possible to compute the fluxes through the interface. The computation of the
inviscid fluxes is straightforward

F̃i
(Q̃Γ) =





ρΓ(u · n)Γ

ρΓ(u · n)ΓuΓ + pΓnx

ρΓ(u · n)ΓvΓ + pΓny

(u · n)Γ(ρe + p)Γ

(18)

On the other hand, the calculation of the viscous fluxes is more complex because it involves
the computation of the derivatives of the velocity. However, it is important to notice that
the viscous fluxes are needed only in the case of flow coming from the viscous region.
In the case of fluid flowing from inviscid to viscous region, the viscous fluxes are zero.
Different methods are tested to compute derivatives of the viscous flux, either using only
the variables in the viscous region or using variables in both regions. However, the best
result is obtained supposing that there is no gradient on the interface and therefore the
viscous interface fluxes are always zero.

3.2 Weak approach

The starting point of this method is a penalty procedure for the treatment of an
interface in a domain decomposition method for viscous flows where the same solver is
used in all the subdomains15. The method can be adapted to deal with viscous-inviscid
coupling by a modification of the interface treatment. The method is proven to be well-
posed and numerically stable16,17.

The interface conditions are implemented using a penalty term, which is added to
equations (12), of the form

∂Q̃

∂t
+∇ · F̃i

= ∇ · F̃v − βS [R±(R−RBC) + G±(G−GBC)] (19)

where β is a penalty parameter that is different from zero only at the interface, S is
the matrix of eigenvectors in the direction normal to the interface, R represents the
corresponding (diagonal) matrix of eigenvalues and G is a diagonal matrix that arises from
an energy integral introduced to achieve maximal dissipation for the interface conditions.

The subindices − and + indicate that their evaluation involves only the values that
are compatible with upwind and downwind locations, respectively, with respect to the
normal velocity at the interface. The symbols R and G denote the vector of characteristic
variables in the inviscid and viscous regions, respectively. The subindex “BC” refers to
the matching conditions at the interface. Detailed expressions of the matrices are given in
(20). Here q is the velocity magnitude, H the total enthalpy, λ the eigenvalues associated
with S, θ = µ

PrCv
, Pr is the Prandtl number and Rn = R · n. The derivative ∂

∂n
in the

term G is calculated in the direction normal to the interface.
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S =




1

2c
nx ny

1

2c
1

2c
(u + cnx) unx uny

1

2c
(u− cnx)

1

2c
(v + cny) vnx vny

1

2c
(v − cny)

1

2c
(H + cu · n)

q2

2
nx

q2

2
ny

1

2c
(H − cu · n)




R =




ρ(u− uΓ) · n +
γ − 1

cΓ

(
ρe +

1

2
ρq2

Γ − ρuΓ · u
)

nx

[
ρ− γ − 1

c2
Γ

(
ρe +

1

2
ρq2

Γ − ρuΓ · u
)]

+ ρ [(u− uΓ)× n] · nx

ny

[
ρ− γ − 1

c2
Γ

(
ρe +

1

2
ρq2

Γ − ρuΓ · u
)]

+ ρ [(u− uΓ)× n] · ny

−ρ(u− uΓ) · n +
γ − 1

cΓ

(
ρe +

1

2
ρq2

Γ − ρuΓ · u
)




G =




1

2ρ

{[
4

3
µ + θ

]
∂Rn

1

∂n
− 2cθ

γ − 1

∂Rn
2

∂n
+

[
−4

3
µ + θ

]
∂Rn

4

∂n

}

− θ

2ρc

(
∂Rn

1

∂n
+

∂Rn
4

∂n
− 2c

γ − 1

∂Rn
2

∂n

)

µ

ρ

∂Rn
3

∂n

1

2ρ

{[
−4

3
µ + θ

]
∂Rn

1

∂n
− 2cθ

γ − 1

∂Rn
2

∂n
+

[
4

3
µ + θ

]
∂Rn

4

∂n

}




(20)

R− =




|λ1| 0 0 0
0 |λ2| 0 0
0 0 |λ3| 0
0 0 0 (1− α)|λ4|


 , G− =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




R+ =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 α|λ4|


 , G+ =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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We have adapted the formulation for the treatment of a viscous-inviscid interface as




∂Q̃I

∂t
+∇ · F̃i

(Q̃I) = −βS [R±(RI −RV )− G±GV ] in ΩI

∂Q̃V

∂t
+∇ · Fi(Q̃V ) = ∇ · Fv(Q̃V ) + βS [R±(RI −RV )− G±GV ] in ΩV

(21)

In this formulation there are no viscous fluxes in ΩI , but we need to impose interface
conditions deriving from the viscous terms in ΩV . Otherwise, in the inviscid region there
will not be boundary conditions associated with the viscous terms in the viscous region.

3.3 Turbulence interface conditions

In the turbulent equations, two different approaches are proposed when treating the
interface. In the first one the complete set of turbulent equations are used in the viscous
domain, while in the Euler region a reduced turbulent model is used where only the
advection is considered while the viscous and source terms are neglected. In this case
there is no need for interface conditions between the viscous and inviscid zone. This can
be written as





∂QI

∂t
+∇ · Fi(QI) = 0, in ΩI ,

∂QV

∂t
+∇ · Fi(QV ) = ∇ · Fv(QV ) + S, in ΩV .

(22)

In the second case the Euler region is turbulence free and on the interface far-field turbu-
lent boundary condition are applied as described in 2.3. The new system of equation is
written





∂Q̃I

∂t
+∇ · F̃i

(Q̃I) = 0, in ΩI ,

∂QV

∂t
+∇ · Fi(QV ) = ∇ · Fv(QV ) + S, in ΩV .

(23)

4 RESULTS

We analyse the performance of strong and weak formulation of the interface condition
and the effect of the position of the interface in the accuracy of the solution for two
turbulent flows test cases, a flatplate and an airfoil.

4.1 Turbulent flat plate

We consider first the compressible turbulent flow past a flat plate. The geometry of
the problem is very simple and this permits the generation of meshes where the definition
of an interface is straightforward. The flow conditions are those of a flow parallel to the
plate corresponding to free-stream conditions given by M∞ = 0.1 and Re = 107. The
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Figure 2: Velocity profile obtained by the zonal solver imposing the strong matching at the interface with
y/δ = 1 (left) and y/δ = 0.5 (right). Reference solution (squares), zonal solution (bold line) and interface
(dotted line).

boundary corresponding to the flat plate is treated as a viscous wall and inflow and outflow
boundary conditions are imposed on the left and right boundaries. The top boundary is
treated as a symmetry boundary.

We undertake a preliminary study to assess the accuracy and performance of the zonal
approaches and their sensitivity to the location of the interface. The accuracy of the
computed zonal solution will be determined by comparison with that obtained with the
standard viscous solver, which is our target.

The zonal interface is defined through a line that is placed at a certain distance from
the wall. The reference line has been found from the complete turbulent solution so that
its distance from the wall is always at the position where u = 0.999 U∞. The position of
the zonal interface is then defined the ratio between the normal distance from the wall
y and the height of the boundary layer δ (i.e. for y/δ = 1 the interface is placed at the
edge of the boundary layer).

We want to access the performance of the zonal approaches in terms of computational
time and accuracy of the solution and how it is affected by the position of the zonal
interface. The computational time of the simulation depends upon the ratio between
the number of viscous and inviscid faces, as well as from the convergence rate of the
solution. The accuracy of the zonal solution is accessed calculating the error on the
friction coefficient Cf on the flat plate as

εCf
=

∑ |CfV
− CfZ

|
max(|CfV

|) (24)

The velocity profiles calculated using different approaches for various locations of the
interface are shown in figures 2 and 3. The results obtained when the interface is located
on the edge or out of the boundary layer are fairly accurate, but the accuracy deteriorates
if the interface is taken inside the boundary layer. When the interface is placed at a
position y/δ < 0.5, the strong approach does not converge. However, a stable result
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Figure 3: Velocity profile obtained by the zonal solver imposing the weak matching at the interface
with y/δ = 1 (top left), y/δ = 0.5 (top right), y/δ = 0.2 (bottom left) and y/δ = 0.01 (bottom right).
Reference solution (squares), zonal solution without source terms in the Euler region (bold line), zonal
solution without turbulence model in the Euler region (dashed line) and interface (dotted line).

is obtained with the weak approach, even though the convergence rate is significantly
reduced. If the interface is located within the logarithmic region the difference between
the two treatment of the turbulent term can be noticed. The velocity profile remains
close to the reference simulation when the far-field boundary are imposed directly at the
interface and the error is present only in the Euler region. When only the turbulent source
terms are avoided in the outer region, the solution presents a larger error that propagates
also inside the viscous region.

The computational cost of the simulations has been obtained timing each part of the
code and extracting the time cost for the solution of each different edge (i.e. Euler,
turbulent or interface). Since the modifications that we are introducing affect only the
interface edges, the time cost for internal and boundary faces does not change with the
zonal approach if the same method to treat the turbulent interface is used. A considerable
difference is instead found in the solution of the interface edges. The solution of the
interface edge using the strong approach takes 19% more than the time to solve a turbulent
face, and the weak approach takes a substantial 206%. However, the number of interface
edges is usually very small compared to the total number of edges and therefore the
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Figure 4: Saving time versus accuracy for different zonal approaches.

influence of this penalty is negligible for large meshes.
The performance of the various method is shown in figure 4. As expected, the two

different treatments of the turbulent interface return the same accuracy in terms of Cf

error but the time saving is clearly increased in the case of an Euler region free from
turbulent equations (zonal k-ε). Although the strong approach does not converge for
value of y/δ < 0.5, in the case of low y/δ the time saving of the weak approach is affected
by the reduced rate of convergence of the solution. Therefore, if we accept an error of
about 1% on Cf , the curves present an optimal performance value of the method when
y/δ ≈ 0.5 with a maximum time saving of 35% respect to a complete turbulent solution.

4.2 Turbulent Flow past a RAE2882 aerofoil

A test case with turbulent compressible flow over a RAE2822 aerofoil was employed to
test the zonal solvers. The original data is M∞ = 0.8, α = 1◦ and Re = 6.5× 106.

The aerofoil test introduces a more difficult geometry with respect to the flatplate and
it creates a complex viscous wake. The interface is defined at a distance from the aerofoil
that increases in the downstream direction. The wake is not completely included in the
viscous region.

In figure 5 the mesh is displayed, together with the pressure distribution for complete
viscous and zonal solutions. The pressure distribution do not visibly differ from the
complete viscous solution and it presents a smooth transition through the interface even
on the wake.

To better appreciate the dramatic discontinuity introduced in the flowfield, the kinetic
energy k is shown in figure 6. In case the turbulent equations are removed from the
inviscid region, the turbulence is neglected at a certain distance from the airfoil. As
a result, large values of turbulent variables are present where the flow passes from the
viscous to the Euler region. Although these zone may affect strongly the stability of the
numerical method, both approaches are able to provide a stable and smooth solution.
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Figure 5: Enlargement of the mesh around the aerofoil and zones definition (top left). Pressure distribu-
tion: complete turbulent (top right), strong approach (bottom left), weak approach (bottom right).

Figure 6: Turbulent kinetic energy: complete turbulent solution (top left), strong approach with zonal
source term (top right), strong approach with zonal k-ε (bottom left), weak approach with zonal k-ε
(bottom right)

The differences among various approaches are more evident when we analyse two rele-
vant quantities on the surface of the aerofoil. Errors of the pressure and friction coefficients
over the aerofoil and time savings are compared in table 1. Here we fix the accuracy re-
quirement of Cfx at about 10% respect to the complete viscous solution. The weak and
the strong approaches present similar performance and the difference between time sav-
ings is reduced compared with the timings on the flatplate. Since the mesh is larger, the
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number of interface faces is always below 0.005% the total number of faces and therefore
the time penalty introduced by the weak approach is strongly reduced.

To guarantee the required accuracy, the zonal method that uses a reduced turbulent
model in the inviscid region needs less cells than the other approach but the time to
complete the simulation is larger. Although the method that considers the inviscid region
turbulence free requires a viscous region that is larger, the time of the simulation is
diminished.

Tests show that in the zonal k-ε approach, the accuracy is more influenced by a reduc-
tion of the viscous zone at the beginning of the aerofoil rather than in the wake. This effect
may be explained by the observation that the turbulence model requires some physical
space to develop and therefore a certain length of viscous region has to be guaranteed.

NfacesI
/NfacesV

εCp εCfx
Time Savings

Strong - Zonal Source Term 5.8 0.58% 10.97% 24.58%
Weak - Zonal Source Term 5.8 0.44% 9.58% 24.07%

Strong - Zonal k-ε 3.4 0.33% 10.54% 44.77%
Weak - Zonal k-ε 3.4 0.40% 10.56% 43.85%

Table 1: Performance and accuracy of various zonal methods.

5 CONCLUSIONS

A zonal method that uses two different approaches for the treatment of the interface
between inviscid/viscous regions has been presented. The treatment of the interface for
both approaches has been described and two different method for the implementation of
the turbulent model have been tested.

Here we have been focused on the implementation of a strong approach where the
variables are directly imposed on the interface and a weak approach where the interface
is treated within the Navier–Stokes equations.

The two methods have been successfully used for the solution of the turbulent flow
over a flat plate and a subsonic airfoil. Accuracy and performance analysis are carried
out in the tests. A zonal solution is 43% more cheaper than a complete viscous solution
with a loss of accuracy on the friction coefficient of 10%.

Even though it is not possible to identify the best zonal method in terms of accuracy
and time savings since both present similar results, the flatplate test shows that the weak
approach is more stable in case the interface is placed within the boundary layer. The
results are encouraging and the zonal solver appears to be a suitable tool to speed up the
computations.
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