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Abstract. The transport simulation of small oil droplets in blow-by gases of diesel 
engines requires the accurate prediction of turbulent flow structures, as well as of their 
influence upon the droplets' motion, within complex geometries. The present study 
addresses the simulation of such a complex flow by means of a Large Eddy Simulation 
(LES) for the continuous phase, together with a Lagrangian type formulation, used for 
the tracking of each individual droplet of the particle phase. As a first step, we limit our 
analysis to a specific, well known and relatively simple configuration that is described 
in detail in Tekam1. This configuration represents a decanter incorporating two baffles, 
which is used for the oil droplets filtering of the blow-by gas generated by a diesel 
engine. LES is performed by applying a mixed scales model (Mansour-Bardina) to the 
filtered Navier-Stokes equations, in order to account for subgrid scale effects. The 
resulting set of equations is solved with a prediction-projection2. The Lagrangian 
tracking of each individual particle is performed taking into account the forces 
influencing the dynamics of the oil droplets in both the unbounded flow and the near 
wall regions. Our numerical predictions are compared with published results that were 
obtained using a RANS method for the same physical configuration. These comparisons 
are seen as an encouraging preliminary evaluation of the present code performance. 
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1 INTRODUCTION 

Computational Fluid Dynamics (CFD) for two-phase flows is being increasingly 
applied in practice as an efficient, accessible and affordable way of supporting the 
design and optimization of industrial processes. Relevant applications include interior 
dust and particle pollutant control systems, separation processes, pneumatic transport, 
particle combustion in industrial furnaces or energy converters, sediment transport, 
erosion, safety and fire suppression systems, among many others. 

In numerical simulations of fluid-particle flows, the continuous (fluid) phase is 
typically modeled via an Eulerian approach, while the dispersed (solid particle) phase is 
predicted using either an Eulerian or a Lagrangian approach3, 4. The Lagrangian 
approach is well suited for the description of the dispersed phase in the so-called dilute 
fluid-particle flows, in which the particle dynamics is controlled primarily by surface 
and body forces acting on the particle, rather than by particle-particle collisions or 
interactions. The turbulent flow of the continuous (fluid) phase may be represented by 
two-equation, Reynolds stress, algebraic stress, large eddy simulation (LES), direct 
numerical simulation, or discrete vortex models, as is discussed in a review by Crowe et 
al.3. 

One important practical example of such two-phase flows is the evaluation of the 
efficiency of an oil straining system, which is used to filter the - typically micronic - oil 
particles contained in the blow-by gases generated by a motorcar engine. The pollution 
source materialized by this type of gases has motivated several studies, both 
experimental5 and numerical6. However, the inherent complexity of the phenomena 
involved in this problem, namely the particle/wall interaction, or the influence that 
turbulence exerts upon both the continuous and particulate phases, still requires 
additional physical insight. The present work aims at being one more step in that 
direction. 

For this dilute fluid-particle flow, a Lagrangian procedure is used in the particle 
tracking within both the unbounded flow and the near wall regions. In order to capture 
the turbulent structure with sufficient accuracy, a LES is adopted to model the behavior 
of the carrier fluid flow. Both approaches are described in the following sections, 
together with the first tests that were performed in order to verify and validate the 
present model. This is an ongoing work, of which the preliminary results, here reported, 
are rather encouraging. 

 

2 NUMERICAL MODELING OF THE CONTINUOUS PHASE 

2.1 Governing equations 

Considering the low speed regime and neglecting heat transfer for convenience, we 
assume incompressible fluid flow conditions to hold for the continuous phase. The 
Navier-Stokes equation set describing the flow dynamics is defined as follows: 

 
• Mass equation 

 
0∇ ⋅ =v . (1)

 
• Momentum equations 
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( ) ( )
0

1 P
t ρ

∂
+ ∇ ⋅ ⊗ = ∇ ⋅ −∇

∂
v v v τ , (2)

 
where t  is the time, 0ρ  the uniform and constant density, v  the velocity vector, P  the 
pressure and τ  the Reynolds stress tensor defined as: 
 

2μ= − Sτ , (3)
 
with the strain rate tensor: 
 

( )t1
2

= ∇ +∇S v v  (4)

 
where μ is the molecular viscosity. 
 

2.2 Numerical formulation  

 
The numerical method used to solve the previous governing equations is based on the 

usual prediction-correction method which is very similar to the one used by Gadouin et 
al7 in the natural convection flow instability studies for instance. The prediction step 
consists in estimating the velocity field at time ( ) tn δ1+  from previous time step values 
of the velocity and the pressure. Let us note that this predicted velocity does not satisfy 
the divergence-free constraint. Then, the divergence-free velocity field and the pressure 
field are both updated in the projection step. We first consider the prediction step. The 
momentum equation set is discretized following a finite volume approach on a 
staggered structured grid with a second order approximation in time and space. Scalar 
variables are defined at cell centers whereas vectorial variables are located on cell faces. 
Convection fluxes and viscous terms are calculated with a second order centered 
scheme. The time discretization is approximated by a second order backward Euler 
scheme. An implicit discretization is carried out on the viscous terms to increase the 
stability limit. The convection fluxes are estimated at time ( ) tn δ1+  using an Adams-
Bashforth extrapolation from results already calculated at times tnδ  and ( ) tn δ1− . The 
pressure gradient is written explicitly. 

The momentum equation for each velocity component is written as a Helmholtz 
equation. We obtain: 
 

* n n,n 12 tI P
3
δ υ −⎛ ⎞− ∇ ⋅ ∇ = −∇ +⎜ ⎟

⎝ ⎠
v S . (5)

 
*v  is the predicted velocity field satisfying equation (5). nP  is the pressure field at 

time tnδ . ,n n 1−S  is a source term containing terms defined at time tnδ  and ( ) tn δ1−  
which derived from the time discretization, the explicit part of the viscous terms, and 
convection fluxes. υ  is the fluid kinematic viscosity. 

Equations are integrated using an ADI (Alternating Direction Implicit) method8. 
We then use a projection method2 to ensure the zero divergence of the velocity field 

and to update the corresponding pressure field. From both mass and momentum 
equations, we write a Poisson's equation as: 
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*0

t
ρ

ΔΦ
Δ

= ∇v , (6)

 
equipped with Neumann's conditions at boundaries. n 1 nP PΦ += −  and *v  is the non-
zero divergence velocity field calculated from the Helmholtz equation integration. For 
each time-step, this equation is solved with an S.O.R iterative method coupled with a 
multigrid method in order to increase the converge rate. As far as Φ  is known, the 
pressure field 1+nP  is updated and the velocity vector is corrected following: 

 
* *

0

tΔ
ρ

= − ∇v v v . (7)

 

2.3 The large eddy simulation modeling  

2.3.1. General presentation  

The main benefit of the Large Eddy Simulation (LES) lies in supplying much more 
information and finer details about the flow features than usual RANS (Reynolds 
Averaged Navier-stokes equations) methods. Explicit information about the 
instantaneous spatial structure and the unsteady behavior of the flow allows us to get 
more accurate results on statistical quantities or to acquire some spectral quantities if 
needed. Therefore, LES is a relevant method to account for turbulent effects with 
accuracy in engineering flows even if this approach is CPU time consuming with 
respect to RANS methods. In the LES framework, turbulent flows are solved on a 
coarser grid than the one required to describe all the scales of the turbulent spectrum. 
We consider that any flow quantity can be split in a large scale component φ  (which is 
the resolved part of this quantity and is directly solved on the grid) and a subgrid scale 
component φ ′′ . The classical LES methodology consists in applying an implicit spatial 
filter to the governing equations (1) and (2). From this filtering procedure, the 
governing equations for incompressible flows are similar to those showed previously, 
(1) and (2). However, additional nonlinear terms appear in the momentum equation as a 
consequence of interactions between subgrid scales. The filtered equations then read: 

 
0∇ ⋅ =v , (8)

 

( ) ( )t
0

1 P
t ρ

∂
+∇ ⋅ ⊗ = ∇ ⋅ +∇ ⋅ −∇

∂
v v v τ τ , (9)

 
where tτ  is the subgrid stress tensor which is defined as: 

 
( )t 0ρ= − ⊗ − ⊗v v v vτ . (10)

 
Following a Boussinesq approximation, this term can be modeled by: 

 
t t2μ= − Sτ , (11)
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where tμ  stands for the subgrid viscosity. 
Numerous LES models of μt have been developed and can be found in the literature. 

For instance, we can cite the well-known Smagorinsky model9 or equivalently the 
vorticity model10. This kind of models is very popular thanks to its low time consuming 
and easy implementation. But they show a too high dissipative effect, particularly in 
regions where the dissipative length scale is greater than the filter cut-off length, 
including areas where the whole spectrum of turbulent scales is resolved. More accurate 
and sophisticated models have been developed including a dynamical procedure 11. 
However, these models are time consuming and it is delicate to use them when dealing 
with complex configuration flows. In some cases, they can generate a wrong subgrid 
behavior, or worst, numerical instabilities. In this study, we choose to use the mixed 
scale model which is a good compromise between the Smagorinsky model and the 
dynamical procedure regarding the accuracy as well as the CPU time consumption. 
 

2.3.2. Mixed scale model 

The mixed scale model was developed to improve the behavior of the vorticity model 
in the specific regions mentioned above. This model was first introduced by Ta Phuoc12 
and used by Sagaut13, 14 for incompressible flow calculations. The mixed scale model is 
derived from a class of models which supposed that the subgrid viscosity is a function 
of the transfer rate, ε , of the kinetic energy, the kinetic energy at the cut-off, ( )cE k , 
and the cut-off wave number, ck : 
 

( )( )cct kkEf ,,εμ = . (12)
 

Following a dimensional analysis and assuming a local spectral equilibrium, we may 
obtain a one parameter family model, written in the physical space as: 
 

( ) ( )1 1
t MC α α αμ ρ Δ− +′′= uω , (13)

 
with 
 

ij ijω ω= ⋅ω , (14)
 
where ijω  is the vorticity tensor and the Einstein convention is adopted, Δ  the implicit 
filter cut-off length scale related to the mesh size and MC  the model constant that needs 
evaluation. ′′u  stands for a velocity scale that must be representative of the subgrid 
scale velocity. Following Bardina et al.15 about the TKE model, this velocity scale has 
been related to the subgrid kinetic energy by using a scale similarity assumption. 
Thanks to an analytical test filter ( )⋅̂  with a cut-off length scale Δ̂  larger than Δ , the 
subgrid scale velocity is estimated by using the subgrid kinetic energy at the highest 
resolved wave numbers, cq : 
 

( ) ( )c i i i i
1 ˆ ˆq u u u u
2

′′ = = − ⋅ −u , (15)
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where the Einstein convention is adopted for the index i  of the velocity components iu . 
In the following, the explicit test filter is typically expressed using a trapezoidal rule16 
with ˆ 2Δ Δ= . 

The mixed scale model can also be written as the algebraic average of the vorticity 
model10 and the TKE model15: 
 

k

1

2 2
sg B cC C q

ω

α α

ω

μ μ

μ ρ Δ ρ Δ

−
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ω . (16)

 
ωC and BC  are constants of the vorticity10 and the TKE15 models, respectively. In 

practice, common values of ωC  are: [ ]C 0.1,0.12ω ∈
17, 18, 19 and, in order to respect 

Galilean invariance, BC 1.0=  15. Depending on the value of the parameter α , equation 
(16) becomes either the vorticity model, when 1α = , or the TKE model, for 0α = . For 
0 1α< < , the TKE model can therefore be seen as a damping function of the vorticity 
model. Thanks to this, the subgrid viscosity is then damped smoothly and vanishes in 
regions where all the scales are well resolved. As a natural value, we have chosen 

1 / 2α = , in agreement with simulations carried out with this model so far14, 20, 21. 
Hence, in the following, the presented results have been obtained by setting the model 
coefficient αα −= 12

BSM CCC  at its current corresponding value MC 0.04= .  
 

3 NUMERICAL MODELING OF THE DISCRETE PHASE 

3.1 Mathematical formulation  

The individual motion of particles in the flow is modeled following a Lagrangian 
approach, where the trajectory of each particle is found by solving a set of ordinary 
differential equations along its path. This approach is specially suited to model two-
phase flows with low particle concentration, high accelerations and with non-uniform 
properties, as in the present work. 

Neglecting rotational effects of the particles, the differential equations used to 
compute the particle location vector px  and velocity vector pv  of a single particle of 
mass pm  are: 
 

p
p

d
dt

=
x

v , (17)

 
p

p i
i

d
m

dt
=∑

v
F . (18)

 
All relevant forces iF  acting upon the particle (admitted to be a sphere of diameter 

pd  and density pρ ) must be included in equation (18). In this study, we consider the 
aerodynamic drag, DF , the gravity force, gF , the pressure gradient force, PF , the 
transverse lift, LF  (also known as the Saffman force), the Archimedes force, Π , and the 
added mass force, AF , so that equation (18) becomes: 
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p
p D g P L A

d
m

dt
= + + + + +

v
F F F F FΠ . (19)

 
The aerodynamic (friction and pressure) drag is expressed by: 
 

( )D p D p p2
p p

3 m C Re
4 d

μ
ρ

= −F v v , (20)

 
where the particle Reynolds number is defined as: 
 

Re 0 p p
p

dρ

μ

−
=

v v
, (21)

 
and v , μ  and 0ρ  are the carrier fluid velocity, dynamic viscosity and constant density, 
respectively. 

The drag coefficient DC  in equation (20) is computed using the empirical 
formulation proposed by Wallis22: 
 

p
0.687

D p p p

p p

24 Re 0.5
C Re 24 3.6 Re 0.5 Re 1000

0.44 Re Re 1000

⎧ <
⎪= + < <⎨
⎪ >⎩

. (22)

 
Denoting the acceleration of gravity by g , the gravity and the Archimedes forces: 

 
3

g p p p
1m d
6
π ρ= =F g g , (23)

 
3

p 0
1 d
6
π ρ= − gΠ  (24)

 
can be cast into a single expression for the body forces, BF : 
 

( )3
B p p 0

1 d
6
π ρ ρ= −F g . (25)

 
The force originated by the pressure gradient of the carrier fluid surrounding the 

particle, P∇ , is: 
 

P p
p

Pm
ρ
∇

= −F . (26)

 
The transverse lift is due to the non-uniform relative velocity over the particle and 

the resulting non-uniform pressure distribution. Following Sommerfeld23, it is given by: 
 

( )20
L p LS p pd C d

2 4
ρ π ⎡ ⎤= − ×⎣ ⎦F v v Ω . (27)
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In equation (27), Ω  is the rotational of the flow field at the particle location and the 
lift coefficient, LSC , is given by: 
 

( )LS p S
S

4.1126C f Re ,Re
Re

= , (28)

 
where: 
 

2
0 p

S

d
Re

ρ
μ

=
Ω

 (29)

 
and ( )p Sf Re ,Re  is a correction function proposed by Mei24, based on the calculations 
performed by Dandy and Dwyer 25: 
 

( ) ( ) p
p

p S

p p

Re
1 0.3314 exp 0.3314 0.1 Re 40

10f Re ,Re
0.0524 Re 40 Re 100

β β

β

⎧ ⎛ ⎞
− − + < <⎪ ⎜ ⎟⎪= ⎝ ⎠⎨

⎪ < <⎪⎩

, (30)

 
with S p0.5(Re / Re )β = .  

The added mass force accounts for the acceleration or deceleration of the fluid 
surrounding the particle. Again following Sommerfeld23, it is given by: 

 

( ). p
A A 0 p

p

m d0 5C
dt

ρ
ρ

= −F v v ,  (31)

 
where: 
 

A 2
C

0.132C 2.1
A 0.12

= −
+

, (32)

 
2

p
C

p
p

A
d

d
dt

−
=

−

v v

v v
.  

(33)

 
Owing to the low particle concentration, a one-way coupling formulation was adopted, 
thus meaning that the influence of particles upon the carrier fluid flow and inter-particle 
collisions were not considered in this first approach. 

3.2 Numerical solution 

Equation (19) was solved using a fourth-order Runge-Kutta numerical integration. 
The selection of the integration time step, tΔ , was based on the local value of the 
Stokes number, /p fSt τ τ= , where pτ  and fτ  are the characteristic particle and fluid 
response times, respectively. pτ  is given by: 
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ln
1

p S
S 0

1 e1
1 K

τ τ
τ

−⎛ ⎞−
= − −⎜ ⎟+⎝ ⎠

. (34)

 
In this equation, Sτ  is the response time due to the aerodynamic drag force alone: 
 

Re

2
p p

S
D p

d4
3 C

ρ
τ

μ
= , (35)

 
and 0K  is a correction factor that accounts for the remaining forces acting on the 
particle: 
 

/i p
i D

0

m
K ≠=

∑ F

v
. (36)

 
On the other hand, fτ  is calculated through: 
 

f
δτ =
v

, (37)

 
where δ  is a linear dimension which characterizes the local size of the Eulerian grid. If 
St 1<< , the particle follows the fluid flow, and the time step used is ftΔ τ= ; if instead 
St ~ 1  or St 1>> , then ptΔ τ= . The particle should not be allowed to cross more than 
one Eulerian cell per time step, tΔ , which must also be kept bellow the stability limit 
for the Runge-Kutta method. Additional details may be found in Oliveira26. 

 

3.3 LES subgrid influence  

In the present simulations, the carrier fluid is air and the particle phase is made of oil 
(isopropanol) droplets, thus meaning that the particle density is much greater than the 
carrier fluid density. For these conditions, it is acceptable to ignore the influence that the 
subgrid scale effects of the carrier fluid LES might have upon the particle trajectory 
calculations23. 
 

3.4 Particle-wall collision 

After hitting a solid boundary, a particle can adhere to it, rebound or splash. Sikalo27 
showed that there is a critical value, crα , of the particle impact angle on the wall, α , 
bellow which the hitting particle adheres to the surface. The critical value is 
independent of the size of the droplet and depends solely on the Weber number, We: 
 

We
C

cr =α , (38)

 
where C is a property of the droplet fluid. For isopropanol, C 104º=  (cf. Tekam1). The 
Weber number is given by: 
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2

p p pd
We

ρ

σ
=

v
, (39)

 
where σ  is the surface tension of the droplet. For isopropanol: 
 

. ( )23 0 0789 T 24σ = − − [ ]mmN / , (40)
 
T  being the droplet temperature in Cº . 

The impact of oil droplets in walls was simulated using binary models proposed by 
Tekam1. These models simulate the rebound/adhesion of the droplet, depending on a 
critical value, crWe , of the Weber number, nWe , based on the particle velocity 
component normal to the wall, ( )p n

v :  

 

( )2

p p p n
n

d
We

ρ

σ
=

v
. (41)

 
If crn WeWe < , the droplet rebounds, otherwise it will adhere to the boundary. When 

a particle rebounds, the velocity after-impact is computed following an energy budget 
analysis of the collision. A rebound coefficient, r , is then defined to relate the incident, 
and the rebound particle velocities, ,p iv  and ,p rv , respectively: 
 

, ,p r p ir=v v . (42)
 
Following the proposal of Wang and Watkins28, which was later tested by Park and 
Watkins29, the rebound coefficient is given by: 
 

( )2 2r 1 0.95 sin α= − . (43)
 

4 RESULTS 

4.1 Description of the test case 

The flow configuration adopted here in order to validate the above described 
numerical method was also used in Tekam’s theoretical and experimental study1. It 
consists of an oil decanter equipped with two identical baffles, the dimensions of which 
are indicated in the schematic representation of figure 1. 
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Figure 1: Sketch of the geometry and relevant dimensions (in meter) 
 
The values of the main parameters regarding the continuous phase are summarized in 

table 1. The Reynolds number, Re , is based on the equivalent hydraulic diameter of the 
inlet section. The inlet fluid velocity, inv , is aligned with the x axis. 

 
0ρ  0.946 3. −mkg  
μ 2.18e-5 1./ −smkg  
υ  2.304e-5 12 . −sm  

in
v  1.0 1. −sm  
Re  578.593  

 
Table 1: Main parameter values for the continuous phase 

 
Particles (oil droplets) were injected at the inlet with the same velocity as the carrier 

fluid (air). The injection of particles started at an instant t0 for which enough time had 
elapsed for the main turbulent structures of the airflow to be already established. Oil 
droplets were then introduced into the domain at a constant mass rate, during a pre-
defined time interval, ptΔ . Each oil droplet was injected at a randomly chosen location 
of the inlet section. The values of the main parameters that characterize the dispersed 
phase are summarized in table 2. 

 
pρ  795 3. −mkg  

pd  5 mμ  

p in
v  1.0 1. −sm  

 

 
Table 2: Main parameter values for the dispersed phase 

 
 
The efficiency of the decanter is assessed by comparing the particulate mass flow 

that left the domain, outm , and the one that is injected, inm , during the same time 
interval, ptΔ . An efficiency coefficient, η , is then defined as: 
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in out

in

m m
m

η
−

= . (44)

 
Particle-wall interaction is simulated using isopropanol properties. The values of the 
relevant parameters for the particle impact model described in section 3.4 are indicated 
in table 3. The value for the critical Weber number was taken from reference data1 as 
being representative of real conditions. 
 

C  104  
σ  . ( )23 0 0789 T 24× −  [ ]mmN /  

crWe  1  
 

 
Table 3: Main parameter values for the particle-wall interaction model 

 
For the present preliminary study, a (x,y,z) regularly spaced Eulerian mesh with 

( 450 100 20× × ) nodes was used to discretize the flow domain. This numerical grid was 
chosen in order to ensure a spatial resolution of 0.5mm, approximately corresponding to 
a grid spacing of about 2 wall units. The outlet boundary of the calculation domain was 
artificially displaced downwards, in order to avoid dealing with numerical problems due 
to the flow recirculation that occurs near the exit section of the decanter. Figure 3 shows 
the discretization mesh that was used in the simulations. 
 

Figure 3: The 900,000 elements ( )450 100 20× ×  discretization mesh 

 

4.2 Results discussion 

The first flow calculations in this work were performed without particles and using a 
numerical domain that coincides with the decanter volume (no duct extension at the 
outlet). Considering the configuration of the decanter, a high level of vorticity is 
generated by the presence of the baffles and is advected by the main flow towards the 
exit of the domain. Moreover, a separated flow arises downstream of the second baffle. 
This large unsteady vortex sharply interacts with the outlet boundary conditions which 
are not commonly defined to manage the presence of intense vortices. As a 
consequence, the strong influence of the outlet boundary conditions badly affects the 
flow features. This point will be discussed in more detail at the conference. In order to 
overcome this problem, the outflow boundary has been displaced, so that the domain is 
artificially extended to include an exit duct, as represented in figure 3. Calculation can 
thus provide a better prediction of the flow characteristics, showing that a high level of 
vorticity is actually present in the vicinity of the decanter outlet section, as is discussed 
in the following paragraphs. 
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In fact, the LES results for the continuous phase show that the large eddy motion 
plays a noticeable role in the flow features and can affect the particule transport, 
particularly in the second part of the decanter, between the second baffle and the outlet, 
where the turbulence intensity is higher (see figure 7). As this large eddy motion cannot 
be easily modeled by a usual RANS procedure, we expect a better performance of the 
LES approach. 
 

 
Figure 4: Time-averaged velocity field at plane z=0.005m

 

Figure 5: Time-averaged velocity field magnitude at plane z=0.005m 
 
Figures 4 and 5 show the time averaged airflow velocity field and its magnitude v , 

respectively, within a domain section located at the mid-plane. 
  

 
Figure 6: Tekam’s results corresponding to those shown in figure 4 (see 1) 

 
The corresponding results obtained by Tekam1, using a RANS formulation, together 

with a k ε−  turbulence model, are shown in figure 6. From a qualitative viewpoint, 
general agreement is seen to hold between the present results for the time averaged 
velocity distribution and those obtained by Tekam. However, as opposed to the present 
calculations, no recirculation was predicted by this author for the region close to the 
decanter outlet section. This might be due to the RANS procedure coupled with the 
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wrong effect of the outlet boundary conditions, which are defined without duct 
extension. 

 

Figure 7: Standard deviation of time-averaged velocity field magnitude at plane z=0.005m 
 

In figure 7, the standard deviation distribution of the time-averaged velocity field is 
shown for the plane section of figures 4 and 5. A high level of fluctuation is observed in 
the vicinity of the decanter exit. Again, this explains the need of knowing in detail the 
flow structure and its unsteady behavior beyond the outlet of the decanter. That 
knowledge improves the flow description and more specifically the separated flow 
prediction in the decanter outlet region. 

Once the continuous phase flow was well established, particles were then 
permanently released during a time interval defined by 0 p0 t t tΔ≤ − ≤ , with .pt 0 04 sΔ = . 
An illustration including sample particle trajectories is shown in figure 8. Some droplets 
are seen to follow the main flow, while others are trapped within different flow 
recirculation structures. 

 

 
Figure 8: Sample trajectories of particles that were injected at x=0, in the plane z=0.005m 

 
Figure 9 shows the variation with time of the decanter efficiency, η , as defined in 

section 4.1. The duration of the initial phase, for which 1η ≅ , corresponds to the time 
interval that is typically taken by a particle to go through the whole decanter, from inlet 
to exit. 

 



João P. Pinto, Yann Fraigneau, Luis A. Oliveira, Christian Tenaud 

 15

 
Figure 9: Time variation of the decanter efficiency, η  

 
Despite the discrepancies on the velocity field, mainly close to the outlet, the 

asymptotic value of η seems to converge toward the range recorded by Tekam1, from 
5 % to 30 % depending on the grid refinement used (lower values corresponding to 
more refined grids). However, the present efficiency coefficient still evolves and more 
detailed results will be presented at the conference. A close quantitative agreement 
should however not be expected, considering the above mentioned ability of the LES to 
take into account the highly fluctuating character of the carrier fluid flow (in particular 
within the close vicinity of the decanter exit), together with the influence exerted by that 
behavior upon the dynamics of the particulate phase. 

5 CONCLUSIONS  

In this work, we have successfully simulated the transport of oil droplets inside a 
decanter, by following a LES approach for the airflow coupled with a Lagrangian 
method for the dispersed phase, including a particle-wall interaction modeling. Even 
though these are only preliminary results of recently started research, the first 
comparisons that were established with published data are encouraging. More 
specifically, we have pointed out the need of taking into account in detail the unsteady 
behavior of the flow and its structure, which can affect the particulate transport. 
Moreover, it is relevant to shift the outflow boundary conditions downstream the 
decanter outlet in order to avoid any harmful disturbance on the flow features. 

Future developments will include a more elaborate model for particle motion, by 
taking into account a number of relevant features, namely the inclusion of: 

 
• two-way coupling effects between the continuous phase and the dispersed 

phase; 
• LES subgrid scale effects on particles; 
• a modified drag coefficient as a function of the distance to walls as was 

proposed by Risk 30; 
• particle rotation and sphericity; 
• collisions between particles; 
• surface roughness influence in the impact model; 
• rarefaction effects through a Brownian force, which is important for particle 

diameters lower than 0.5 mμ . 
 

The dependence of the decanter efficiency as a function of the droplet characteristics 
(namely their diameter) will also be addressed. Results on that issue should be available 
for the oral presentation of this work. 
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