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Abstract. Numerical experiments for hypersonic flows using AUSM-family flux functions have 
been conducted in one-dimensional (1D) and multi-dimensional (1.5D) contexts. We paid a 
particular attention to “interfacial speed of sound c1/2 (i.e., speed of sound numerically defined 
at cell-interface),” and its definition has been proved to improve robustness of AUSM-family 
fluxes against shock anomalies, i.e., both shock instabilities and oscillations. This finding 
motivated us further to investigate the behaviour of our recently proposed scheme, SLAU 
(Simple Low-dissipation AUSM). Finally, we reached the present modification in which 
numerical dissipation term in pressure flux function was changed to be proportional to 
interfacial Mach number at supersonic speeds. The improved scheme, named SLAU2, showed 
universal robustness against the shock anomalies irrelevant to c1/2. SLAU2 is considered to be 
“properly dissipative” for both shock and contact discontinuities, and also for low speed flow 
computations. 
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1 INTRODUCTION 
Hypersonic flow computations still 

suffer from anomalous solutions such as a 
“carbuncle phenomenon1, 2, 3, 4 (Fig.1).” It is 
very easy from simple examples in Fig.1 to 
find a “correct” solution. However, in 
practical simulations involving complex 
geometries with complex flow phenomena 
(Ref. [5], for instance), it is almost 
impossible to identify such anomalies, if 
any. This difficulty degrades the reliability 
of currently available CFD methods and 
afflicts the use of them in hypersonic flows. 

Those anomalies are sometimes called 
“shock instabilities,6,7” because they occur 
at numerically resolved shock waves by 
finite-volume, shock-capturing methods.2 
Usage of those terminologies are scattered 
even among the related-researchers, and a 
part of the reasons lies in the fact that it is still an open question whether the carbuncle 
phenomenon is numerical artifact or not. Until almost a decade ago, the carbuncle had 
been regarded as a numerical anomalous solution2; however, more recent studies8, 9, 10, 11 
argued that the carbuncle was a rather mathematical or physical solution. In the present 
study, we take the viewpoint that the shock anomalies are partly caused by the lack of 
mathematical expression for internal shock structure by the governing equations12 on 
the grounds that 
- The carbuncle appears as one of the physical solutions, as if a spike is mounted 

ahead of a blunt-body in a hypersonic flow.13 This fact excludes the following 
simple classification: A physical solution is “correct,” and a carbuncle solution is 
unphysical. 

- In the real physics, a shock wave has finite thickness and inside structure. From the 
viewpoint of continuum mechanics, on the other hand, a shock wave is regarded as a 
zero-thickness discontinuity. Euler equations to be solved are based on the latter, but 
a numerically captured shock (by shock-capturing methods) usually contains a few 
computational cells forming numerical internal shock structure.14, 15, 16 

- The numerical shock structure violates Euler equations and/or the Rankine-
Hugoniot relation.14, 15 Both are valid only “across” the shock, not “inside” it. 
Further discussions are found in Refs. [4, 6, 16, 17]. 

- There is no reported anomalous solution by a shock-fitting method which produces 
no shock width.2, 18 

Then, among the scattered terminologies, we redefined the shock related anomalous 
solutions* as in Table112, that is, “shock anomalies” are categorized into two phenomena 
of “shock oscillations” and “shock instabilities.” The carbuncle belongs to the latter 
family and appears only in multi-dimensions. “Oscillations” stand for the oscillatory 
behaviors of the captured shock, whether in time or space, confined within only two 
cells. Such situations often arise when, in a non-shock-aligned grid, the shock jumps 

                                                 
* Although the conventional term “shock instabilities” is used in the title of the present paper, we 
will use the new, recently updated definitions of “shock anomalies (Table 1)” in the rest of  the paper. 

(a) “Correct” solution 

 
 

(b) Carbuncle solution

 
 

Fig. 1 2-D blunt-body simulation results. 
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from one set of mesh line to another.12 The spatially multi-dimensional oscillation is 
also referred to as “asymmetry.” 

We now clearly see that the shock 
anomalies should not have any single 
cause, nor is there any single cure.4 It is 
difficult to establish such cures 
theoretically, because we still have not 
reached an accepted conclusions for 
how numerical internal shock structure 
should be expressed, as stated above. It is also difficult to establish them experimentally, 
because the anomalies depend on mesh geometry, mesh size, flow Mach number, and 
specific heat ratio.2,4,12 Nevertheless, Kitamura et al.4 conducted experimental 
investigations by paying particular attention to “flux functions” and “mesh.” In their 
numerical experiments, one dimensional and multi-dimensional shock anomalies are 
independently tested for many flux functions. 

Thus, in this work, SLAU (Simple Low-dissipation AUSM) flux recently developed 
by the authors19 is tested first as the same manner as Refs. [4, 12]. The SLAU is one of 
low-dissipation schemes of AUSM-family, but free from any tunable parameters. SLAU 
showed an excellent performance at low speeds,19, 20 not to mention in moderate speed 
regimes, but as many other flux functions, anomalous behaviors were observed at 
shocks under some circumstances. 

In the present paper, after brief explanations for the computational methods (Sec. 2), 
fundamental discriptions for “cell-interfacial speed of sound,” denoted as c1/2, will be 
given (Sec. 3). The c1/2 is the speed of sound numerically defined at a cell-interface, 
usually, and used to calculate an AUSM-family numerical flux.19, 21, 22 We will focus on 
the role of c1/2, and the numerical tests in Refs. [4, 12] (reviewed in Sec. 4) will be 
conducted for SLAU and other fluxes (Sec. 5). 

The definition of c1/2 is included in the above-mentioned question of what the 
numerical shock structure should be, since c1/2 is left as a scheme’s parameter while 
other physical quantities at the cell-interfaces such as primitive variables are somehow 
interpolated from cell-center values. Naturally, the c1/2 has many options, and it will be 
explored in the present work which expression is suitable for SLAU or other AUSM-
family fluxes for improvements of its robustness/stability against the captured shocks. 

Ref. [23] is, to the best of the authors’ knowledge, the only one in which the effects 
of c1/2 was studied for high Mach numbers. Liou and Edwards23 revealed that slight 
modifications of c1/2 can influence stability of the shock for AUSM+ and even Roe 
flux24 or Van Leer’s FVS.25 However, their discussions were limited to one dimension 
and the most of their work was dedicated to low speed flow discussions. As 
demonstrated in Ref. [4], 1D and multi-dimensional shock anomalies should be 
considered separately, and this will be done in the present work. 

Finally, based on the findings in Sec. 5, the SLAU flux will be modified to have 
more proper amount of dissipation both inside and outside the shock (Sec. 6). As will be 
demonstrated from numerical examples, the improved scheme, named SLAU2, is 
promising for a broad spectrum of flow speed regimes. 

                                                 
†  The authors used the term “1D carbuncle” in the earlier work4, but here we abandoned this 
expression to avoid confusions.  

Anomalies Oscillations Instabilities 
1D Y (in time)† N (Not observed 

yet) 
Multi-D Y (both in time 

and space) 
Y (Carbuncle) 

Table 1 Shock anomalies 
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2 COMPUTATIONAL METHOD 

2.1 Governing Equations  
The governing equations are the two-dimensional, compressible Euler or Navier-

Stokes equations: 

where ρ is density, u, v are velocity components in Cartesian coordinates, E is total 
energy, p is pressure, H is total enthalpy [H = E + (p/ρ)], and T is temperature. The 
working gas is assumed to be air approximated by the calorically-perfect-gas model 
with the specific heat ratio γ =1.4. The Prandtl number is Pr=0.72. The molecular 
viscosity μ is calculated by the Sutherland’s formula, and the thermal conductivity κ is 
given by κ = μcp/Pr, where cp is specific heat at constant pressure. 

2.2 Computational Method 
The following methods are used for computations herein, if not mentioned otherwise. 
As for spatial discretization, the primitive variables at cell centers are used also as 

cell-interfacial values for spatially first order cases; In second order simulations, the 
primitive variables at each cell-interface are interpolated by using MUSCL 
reconstruction26 with Van Albada’s limiter.27 Then, inviscid fluxes at the cell-interface 
are calculated from the following flux functions: 
SLAU: 
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where the interfacial speed of sound c1/2 is given by 

 

and 
 

 
AUSM+: 
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and the interfacial speed of sound c1/2 is 

 

where 

is critical speed of sound, and  
 

 
Viscous fluxes are computed by using second order central difference in viscous 

simulations, whereas for time integration, forward Euler method (first order in time), or 
LU-SGS is employed. 

3 INTERFACIAL SPEED OF SOUND 
Most of AUSM-family schemes, including all-speed schemes such as AUSM+-up,22 

LDFSS,28 LSHUS,29 SLAU,19 and SD-SLAU,30 need speed of sound at the cell interface. 
A simple arithmetic averaging in Eq. (4j), for example, works well for LSHUS, SLAU 
and SD-SLAU for general cases. 

On the other hand, another definition in Eq. (5f) is used for AUSM+ to capture 
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even Roe flux or Van Leer’s FVS. However, their discussions were limited to one 
dimension and the most of their work was dedicated to low speed flow discussions. As 
demonstrated in Ref. [4], 1D and multi-dimensional shock anomalies should be 
considered separately, and this will be done later in the present work. 

Figure 2 shows an example of how c1/2 differs depending on its definitions for a 
Mach 6 normal shock. The abscissa stands for index of the cell-interface, and the 
ordinate the cell-interfacial speed of sound, c1/2, standardized by the freestream velocity, 
U∞. The normal shock is placed exactly at the cell-interface between i=12 and 13 cells 
(= 12th interface) in the 50 cells of a one-dimensional computational grid (shown later 
in Fig. 3). Then, the c1/2 is extracted at the very beginning of the computation (before 
the temporal evolution in the first timestep)‡ for each definition. 

 

 
It is seen from the graph that the interfacial speed of sound, c1/2, changes 

dramatically “inside” the shock, while it is uniform elsewhere. The arithmetic averaged 
value from Eq. (4j), 0.31816, is in the middle of the five definitions, and the Eq. (5f), 
AUSM+ default, gave 0.18981 which is approximately 60% of the arithmetic averaged 
value. This difference will increase with Mach number (e.g, at a stronger shock), 
because the sound speeds cL and cR will differ more between both sides of the 
discontinuity. Note that the interface speed of sound c1/2 controls the amount of 
numerical diffusion in some of the numerical flux function (the third term of Eq. (4g), 
for instance). Effects of changing these definitions on the shock stability/robustness of 
the schemes will be examined in the next section. 

We remind the readers of that this modification of c1/2 is only applicable to internal 
shock; the speed of sound “outside” the shock is retained. 

                                                 
‡ Thus, any of numerical methods in the code, such as flux functions, affected the calculated values 
of c1/2. Hand-calculations also yielded the same outputs. 

0.31816

0.18981

0.27978

0.43568

0

0.1
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Arith. Avg. (SLAU)
Min c~ (AUSM+)
Max c~ (AUSM+)
Geom. Avg. (AUSM+)
Roe Avg. (Roe)

Inside the Shock

Note: All the values shown here are 
c 1/2, NOT c L nor c R.

Fig. 2 Interfacial speed of sound c1/2 (standardized by freestream Mach number, 6.0) with different 
definitions for normal shock. 
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4 NUMERICAL EXPERIMENTS 

4.1 1D (One-Dimensional) Steady Normal Shock Test 
From the viewpoint of continuum mechanics, a shock wave is regarded as a thin 

jump discontinuity, but a captured shock has numerical internal structure. However, it is 
hard to establish what this internal structure should be.14, 15, 16 For example, the Godunov 
and Roe schemes produce an intermediate state that lies on the Hugoniot curve joining 
QR to QL, but such a state does not preserve mass flux inside the shock.14 On the other 
hand, at least one intermediate state is needed to allow representation of a shock that is 
not precisely located at a mesh interface. Even more, as already shown in Fig. 2, the 
shock precisely lying on the cell interface has its internal structure having a degree of 
freedom for choice of the sound speed c1/2. Therefore, following Ref. [4], we will first 
conduct the “1D test” in order to see the role of c1/2 for AUSM-family schemes on the 
shock stability/robustness. 

In this test, we prescribe initial conditions that include an intermediate state and 
boundary conditions that force the shock to remain in its initial position. The grid 
comprises 50 equally spaced cells, as in Fig. 3, with initial conditions for left (L: i≤12) 
and right (R: i≥14): 

 

 
where 

 

 
following the Rankine-Hugoniot conditions across the normal shock. The internal shock 
conditions (M: i=13) are as follows: 

1) The density is given as 
 

 
where the shock-position parameter ε = 0.0, 0.1, ... , 0.9. 

2) The other variables are calculated based on ρM so that all variables lie on the 
Hugoniot curve, connected to QL and QR, as in Ref. [16]. 

At the outflow boundary we prescribe the mass flux at the ghost cell (i=imax+1): 
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The inflow boundary has the freestream values. The freestream Mach number was 
chosen in the range 1.5≤M∞≤20.0 in the original paper4; however, here only M∞=6.0 is 
chosen because the solutions in the 1-D problem were almost the same for M∞≥6.0 in 
Ref. [4]. Then, the computations are first order both in spatial and temporal accuracy, 
and conducted until 40,000 steps with CFL=0.5. If a scheme is always stable for all the 
values of ε, the scheme can be labeled as 1-D stable. Typical solutions are shown in Fig. 
4 in which a stable solution is labeled as ‘2: Good,’ and an oscillatory solution as ‘1: 
Fair.’ Detailed explanations will be given later together with “1.5D problem” solutions 
in 4.2. 

 

 

4.2 1.5D (One-and-Half Dimensional) Steady Normal Shock Test 
Next we will solve a steady shock that is initially aligned in one direction in a 2-D 

field (Fig. 5). We expected that such a computed flowfield should behave in a 1-D 
manner unless multidimensional instability is introduced, and thus, we called this 
problem a “1.5D test.4” This is a simplified carbuncle problem that was developed first 
by Quirk3 and modified by Dumbser et al.,31 but we used a grid that is extended farther 
downstream from the shock: 50×25 cells spaced evenly without any perturbation (no 
other kinds of perturbations are introduced either). The freestream Mach number chosen 
is M∞=6.0, again. The periodical condition is imposed for the boundaries of j direction, 
whereas the other initial conditions and boundary conditions are the same as in the 1-D 
tests. The computations are conducted for 40,000 steps with CFL=0.5. If a scheme is 
stable for all the shock positions ε, the scheme can be labeled as 1.5D stable. 

Typical solutions are shown in Fig. 6. In Figs. 4 and 6, 
- ‘2’ denotes a stable and symmetric solution with at least three orders of (L2-

norm of) density residual reduction. 
- ‘1’ denotes an asymmetry and/or oscillation of the shock confined within two 

cells of the shock normal direction. 
- ‘0’ denotes an unstable solution usually associated with total breakdown of the 

shock (“carbuncle”). The residual stagnated at a significant value. 
These points introduced in Ref. [12] will be used later in Table 2. 

 

 

Fig. 3 Computational grid and conditions for 1D steady normal shock Test. 

(a) 2: Good (Stable) 

 

(b) 1: Fair (Oscillatory) 

 

Fig. 4  Typical solutions of Mach number contours for 1D steady normal shock test. 

ishock=12+ε
M∞=6.0 

i
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Fig. 5 Computational grid and conditions for 1.5D steady normal shock test. 

 

 

5 ROLE OF INTERFACIAL SPEED OF SOUND 
In the present study, SLAU and AUSM+ of AUSM-family fluxes with different c1/2 

definitions are tested through the 1D and 1.5D numerical experiments. A selection of 
computations is summarized in Table 2. The results of Roe flux24 are also shown for 
reference. Total points in terms of shock stability/robustness of each scheme are given 
in the rightmost column (in 40 points maximum). 

 

(a) 2: Good (Stable) 

 

 
(b) 1: Fair (Oscillatory) 
 

 

(c) 1: Fair (Asymmetry) 

 

(d) 0: Poor (Instability: ‘Carbuncle’) 

 

Fig. 6 Typical solutions for 1.5 dimensional steady shock test. 

ishock=12+εM∞=6.0 

i 

j 
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The following features are noteworthy from Table 2: 
- SLAU and AUSM+ both are more robust against shock anomalies than Roe flux. 
- SLAU is 1D stable for all the possible shock locations ε. 
- When c1/2 is changed from arithmetic average to that of AUSM+ in which 

critical speed of sound is used, SLAU shows better performances in 1.5D test 
while retaining 1D stability. This choice is the best (total points: 35) among all 
the other combinations of c1/2 and flux functions shown here. 

- AUSM+, on the other hand, shows no remarkable improvements of robustness 
against the shock with the choice of c1/2. For example, by changing c1/2 from its 
original form to arithmetic or Roe average, its 1D stability is enhanced but the 
multi-dimensional stability/robustness pays the cost (this trend is consistent with 
original Roe and its more dissipative version, entropy-fixed Roe,32 as shown in 
Ref. [4]). Consequently, overall rating for AUSM+ flux (total points: 33) is 
almost unaffected. 

Schemes and c1/2 
definitions 

Test 
Problem ε=0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Total

SLAU (original) 

[c1/2= 0.5(cL+cR)] 

1D 2 2 2 2 2 2 2 2 2 2 
33 

1.5D 1 2 2 2 1 1 1 1 1 1 

SLAU 

[c1/2=min(cL
~,cR

~)] 

1D 2 2 2 2 2 2 2 2 2 2 
35 

1.5D 2 2 2 1 1 1 1 1 2 2 

AUSM+ 

[c1/2= 0.5(cL+cR)] 

1D 2 2 2 2 1 1 2 2 2 2 
32 

1.5D 2 2 2 2 1 1 1 1 1 1 

AUSM+ (original) 

[c1/2=min(cL
~,cR

~)] 

1D 2 2 2 2 1 1 1 2 2 2 
33 

1.5D 2 2 2 2 1 1 1 1 2 2 

AUSM+ 

[c1/2= 
RoeAvg(cL,cR)] 

1D 2 2 2 2 1 1 2 2 2 2 
33 

1.5D 2 2 2 2 1 1 1 1 1 2 

Roe 

[c1/2= 
RoeAvg(cL,cR)] 

1D 1 2 2 2 2 2 2 1 1 1 
22 

1.5D 0 2 2 2 0 0 0 0 0 0 

Table 2 1D and 1.5D tests for schemes with various c1/2 definitions (ε: shock location parameter4; the initial shock is 
imposed exactly on a cell-interface when ε=0.0, and at the cell-center when ε=0.5.) 
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In summary, the choice of c1/2 influences response of flux functions to the captured 
shock. Particularly, SLAU with c1/2 of AUSM+ default, Eq. (5f), showed improvement 
of the shock stability/robustness, whereas changes of c1/2 yielded little effect on 
AUSM+ flux. This difference between SLAU and AUSM+ fluxes seems to stem from 
the fact that SLAU has numerical dissipation term having c1/2 (the third term of Eq. 
(4g)) which is absent in AUSM+. Remember that this term controls amount of 
dissipation. With modification of c1/2 of SLAU from arithmetic average to the AUSM+ 
form, its magnitude is reduced as stated earlier (Fig. 2). From Eqs. (4g)-(4i) one can 
easily trace that this reduction of c1/2 led to more dissipation in the numerical dissipation 
term. Thus, it is said that more proper amount of dissipation is fed into the SLAU flux 
by the current modification. Based on these findings, we will consider further 
improvement of the SLAU scheme in the next section. 

6 SLAU2: IMPROVEMENT OF SLAU IN DISSIPATION TERM 

6.1 Derivation of SLAU2 
For clarity, Eqs. (4g)-(4i) are rewritten as follows: 

Pressure term in SLAU: 
 

 
According to this equation, at supersonic (M>1) the first parenthesis of the 

dissipation term, the third term of Eq. (8a), reduces to unity. In other words, the 
numerical dissipation introduced from this term is constant regardless of Mach number 
at a supersonic speed. 

Then, we considered modifying this term so that the dissipation is proportional to the 
Mach number as follows: 

 

 
Considering possible extension to real fluids,28 the above expression is improved 

further. 
Pressure term in SLAU2: 

 

 
This modified flux is named “SLAU2.” 

6.2 Numerical Results 
The newly developed scheme “SLAU2” is tested for several cases. 
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6.2.1. 1D and 1.5D Steady Normal Shock Tests 
The first set of tests is the 1D and 1.5D steady normal shock problems. The results 

are summarized in Table 3. 
 

 
SLAU2 demonstrates an excellent performance against the shock anomalies 

regardless of the choice of c1/2 (our experience tells that the version of c1/2=min(cL
~,cR

~) 
is more robust than that of the arithmetic average, though). By adding more numerical 
dissipation to the flux for M>1, the improved scheme showed universal robustness (both 
1D and 1.5D stabilities) against the shock. Nevertheless, we stress here that the things 
are not that simple: Too much dissipation addition to the flux yields 1D stability but 
also multi-dimensional anomalies, as reviewed above4 for Roe flux with entropy-fix32 or 
EC-Roe flux.33 In addition, although more dissipative schemes such as HLLE,34 Van 
Leer’s25 or Hänel’s35 FVS, also marked full scores (40 points) in the same test sets,12 
they are known to be incapable of capturing a contact discontinuity or a boundary-layer. 
Therefore, it is extremely hard to establish a scheme which is “properly dissipative” for 
both shock and contact discontinuities. Thus, the present scheme “SLAU2” will be 
tested in a boundary-layer resolution problem later in 6.2.5. 

Furthermore, similar modifications could be made for other AUSM-family fluxes 
having a numerical dissipation term with c1/2 in the pressure flux, such as AUSM+-up22, 
but not for others, such as AUSM+ or SHUS which has c1/2 only in the mass flux term. 

6.2.2. Oblique Shock over Flat Plate with Incidence 

A hypersonic flow with an oblique shock around a thin plate at M∞=5.0 with α=5º 
was computed by the spatially second order code. The results are summarized in Fig. 7. 
Oscillations in space behind the shocks were observed in the results of SLAU and 
AUSM+. These wiggles, often reported for these fluxes,12, 36 were due to lack of 
numerical expression for internal structure of the shock,4, 14, 15, 16 especially where the 
shock jumps from one mesh line to another. In SLAU2, on the other hand, the 
emergence of these wiggles was successfully suppressed by proper amount of numerical 
dissipation addition near the shock. 

Schemes and c1/2 
definitions 

Test 
Problem ε=0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Total

SLAU2 

[c1/2= 0.5(cL+cR)] 

1D 2 2 2 2 2 2 2 2 2 2 
40 

1.5D 2 2 2 2 2 2 2 2 2 2 

SLAU2 

 [c1/2=min(cL
~,cR

~)] 

1D 2 2 2 2 2 2 2 2 2 2 
40 

1.5D 2 2 2 2 2 2 2 2 2 2 

Table 3 1D and 1.5D tests for SLAU2 flux with various c1/2 definitions (ε: shock location parameter4; the initial 
shock is imposed exactly on a cell-interface when ε=0.0, and at the cell-center when ε=0.5.) 
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6.2.3. Low Speed Flow around NACA0012 Airfoil 
It is known that at low speeds, say M<0.1, preconditioning should be used on the 

time-derivative and the numerical dissipation terms both.20, 37, 38 Specifically, the latter 
is necessary to obtain physical solutions, whereas the former is recommended to 
accelerate convergence. 

In this example, an inviscid flow of M∞=0.01 around NACA0012 airfoil with no 
angle-of-attack20 is calculated by using SLAU2 coupled with preconditioned LU-SGS 
(pLU-SGS). The code attains second order accuracy in space by Green-Gauss formula39. 
The computation was conducted for 2,000 steps with CFL=20. The result is shown in 
Fig. 8. For comparison, SLAU with pLU-SGS and Roe with (unpreconditioned) LU-
SGS cases are also shown. 

 
It is clearly seen from those figures that the SLAU2, as the original SLAU, produced 

a physically correct pressure profiles, whereas the Roe flux failed. 
From D’Alemdert’s paradox an object in an inviscid subsonic flow should have no 

aerodynamic drag. Thus, the drag coefficient CD is a good measure of numerical errors 
introduced by the computational method used. The computed CD showed the following 
values: Roe/LU-SGS (0.0720), SLAU/pLU-SGS (0.0037), and SLAU2/pLU-SGS 
(0.0032). SLAU2 as well as SLAU showed much smaller errors than the Roe flux. 

6.2.4. Transonic Flow around NACA0012 Airfoil with Angle-of-Attack 

M∞=0.85, α=1.25º, inviscid flow around NACA0012 is computed. This example is 
widely used to see how fluxes and/or limiters work at a shock formed in the leeward of 

(a) SLAU 

 
 

(b) AUSM+ 

 
 

(c) SLAU2 

 
 

Fig. 7 Pressure contours around thin plate at M∞=5.0, α=5 degree. 

(a) Roe/LU-SGS 

 

(b) SLAU/pLU-SGS (c) SLAU2/pLU-SGS 

Fig. 8 Pressure contours around NACA0012 airfoil at M∞=0.01, α=0 degree. 
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the airfoil.40, 41 Green-Gauss formula is again used for spatial reconstruction but this 
time coupled with Venkatakrishnan’s limiter40 with Wang’s correction (ε’=0.05).42 

The results are shown in Fig. 9. SLAU and SLAU2 are indistinguishable from the Cp 
graph of Fig. 9 (b), both capturing the leeward shock (x/L≈0.6; L is the chord length) 
without any unphysical oscillations; the Roe solution is similar to SLAU and SLAU2; 
AUSM+, however, showed slight spurious over/undershoots at the shock. 

6.2.5. Boundary-Layer over Flat Plate 
As in Ref. [43], a M∞=0.2 flow over a flat plate is solved by second-order Navier-

Stokes code using different flux functions along with MUSCL without a limiter and 
second-order Runge-Kutta (Fig. 10). The computation was carried out for 50,000 time 
steps with CFL = 0.5 for each case. In most cases the density residual dropped at least 
three orders. The results showed that SLAU2 reproduced Blasius’ analytical velocity 
profile as well as SLAU or Roe, whereas HLLE, one of notoriously dissipative solvers, 
did not. 

Therefore, SLAU2 is considered to be “properly dissipative,” because most of the 
other flux functions failed in either of 1D or 1.5D test, and the rare exceptions are only 
from the two major groups12: One consists of very dissipative fluxes such as HLLE,34 
Van Leer’s25 and Hänel’s35 FVSes; The other has hybrid fluxes such as AUSMDV 
(Shock-Fix)44 and Rotated-RHLL,43 which sometimes encounters difficulties in its 
hybridization mechanism and introduces complexity in the code. SLAU2 is the first flux 
which is free from any of those restrictions, i.e., free from shock anomalies, too much 
dissipation, or hybrid mechanisms between more than one fluxes. 

(a) Mach number contours (SLAU2), 
from black (low) to white (high) 

 
 

(b) Pressure profiles 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
0 0.2 0.4 0.6 0.8 1x/L

C
p
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AUSM+
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SLAU2

 

Fig. 9 Mach number contours and pressure profiles around NACA0012 airfoil at M∞=0.85, α=1.25 degree. 
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7 CONCLUSIONS  
Numerical experiments of hypersonic flows using AUSM-family flux functions have 

been conducted in one-dimensional (1D) and multi-dimensional (1.5D) contexts. We 
paid a particular attention to “(cell-)interfacial speed of sound,” c1/2, i.e., the speed of 
sound numerically defined at a cell-interface. The results are summarized as follows: 

• The choice of c1/2 generally influences response of flux functions to the captured 
shock. 

• Particularly, SLAU (Simple Low-dissipation AUSM) with c1/2 of AUSM+ default 
showed improvement of the shock stability/robustness. 

• On the contrary, changes of c1/2 yielded little effect on AUSM+ flux. 

These findings motivated us further to investigate the behaviour of SLAU, our 
recently proposed scheme. Finally, we reached the present modification in which 
numerical dissipation term in the pressure flux was changed to be proportional to 
interfacial Mach number at supersonic speeds. The improved scheme, named SLAU2, 
showed the following features: 

• Excellent robustness against the shock anomalies of both 1D and 1.5D irrelevant to 
c1/2. 

• Wiggles at an oblique shock that appeared for original SLAU or AUSM+ are 
eliminated. 

• The numerical example of low speed flow (M∞=0.01) demonstrated the comparable 
low-dissipation nature to the original SLAU. 
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Fig. 10 Velocity profiles over flat plate at Rex=2.2×104 for M∞=0.2, α=0 degree. 
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• The solution was almost identical to the original SLAU for a transonic flow test 
case involving a normal shock. 

• A boundary-layer over a flat plate is well resolved as the original SLAU or Roe 
fluxes. 

Therefore, SLAU2 is considered to be “properly dissipative” for both shock and 
contact discontinuities, and also for low speed flow computations. 
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