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Abstract. The most common procedures to deal with the pressure velocity coupling
within a pressure-based, segregated approach are those pertaining to the SIMPLE family
of schemes. These approaches connect velocity corrections to pressure gradient correc-
tions by appropriately neglecting some terms in the correcting velocity equation derived
from the momentum equations. In collocated grids there exist two types of velocity fields:
the convecting velocity, a continuity-satisfying (CS) field and the convected velocity, a
momentum-satisfying (MS) variable. SIMPLE-family schemes were originally derived for
staggered grids where there is only one type of velocity and no interpolation is required
to obtain the CS field from the MS one. In collocated grids the convecting face velocity,
that is the only one required to satisfy continuity, is calculated in a special manner usually
following what is called the Pressure Weighted Interpolation Method (PWIM) (C. Rhie,
W. Chow. AIAA J. vol 21(11), pp 1525-1532, 1983). To carry over the SIMPLE-related
staggered approaches to a collocated grid the velocity corrections should be linked to the
pressure gradient corrections by algebraic manipulations of the MS field equations and then
transferred via PWIM to the CS expressions. In this paper it will be argued that some of
previously employed implementations of SIMPLEC are inconsistent with this procedure.
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1 INTRODUCTION

Within a pressure-based method for numerically solving the Navier-Stokes equations,
SIMPLE-type schemes are the most popular approaches in handling the pressure velocity
coupling. Generally speaking, in these methods the velocity is originally predicted with
the momentum equations containing the pressure field at the previous step and later
corrected with a velocity/pressure-gradient correction whose expression is derived from
the original momentum equation. The continuity equation is transformed into another
one for the pressure correction that is next utilized to drive the velocity field towards
satisfying mass conservation and in some of the schemes also serves to update the pressure
field. In a collocated variable arrangement there are peculiarities associated to the use
of these schemes due to the dual velocity field at nodes and faces. SIMPLE schemes
were originally devised in a staggered variable arrangement where there is only a relation
between velocity corrections and pressure gradient corrections. This is no longer the case
in a collocated grid where the momentum-satisfying field follows a relation at the nodes
whereas at the faces it is dependent on the actual approach employed in the collocated grid
(PWIM/MWIM and/or their transient extensions). This paper focusses on the correct
way to derive the relation at the faces for SIMPLE [1] and SIMPLEC [2], especially for
the latter where an inconsistency in its expression as used by some previous researchers
will be commented upon.

2 SIMPLE AND SIMPLEC SCHEMES FOR AN UNSTEADY FLOW

In a collocated arrangement there are two types of velocity fields: the convected velocity
located at the nodes that satisfies the momentum equation (Momentum-Satisfying field)
and the convecting velocity at the faces that is required to satisfy continuity (Continuity-
Satisfying field). The MS field is computed following the traditional procedure of first
discretizing the momentum equation and then solving the resulting algebraic system.
Each convected velocity equation in the system represents a balance in a certain finite
volume between the net convective and diffusive fluxes and the source terms. Contrary
to the convected velocity the CS field is not governed by a convection-diffusion equation
of its own. At any arbitrary face location e, let us say along the x coordinate, its value
is obtained with an algebraic expression derived, with some assumptions, from the e-
averaged nodal equations. The e-average of a variable φ is an arithmetic average defined
as

φ
e

= fxφP + (1− fx)φE i = P,E (1)

fx is a weighting factor and P and E are the nodes that share the face e. This average
provides the value of φ at e in terms of known values at P and E. Depending on the way
fx is defined the average can be strictly geometric or be weighted by some other variable.
Details are given in Pascau [3]. Because of this dual velocity field the collocated arrange-
ment requires two SIMPLE relations between the correcting velocity and the correcting
pressure gradient.
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To discuss the procedure a general unsteady case (real or pseudo) with underrelax-
ation will be considered. The relaxed unsteady discretized momentum equation for the u
velocity is

ÃuP |Pu
∗
P = αu

∑
j|P

Auju
∗
j + SuP∆VP

− αu∆VP ∂p

∂x

∣∣∣∣∣
l

P

+ (1− αu)ÃuP |PulP +

+ αu
ρP∆VP

∆t
unP

ÃuP |P =
∑
j|P

Auj +
ρP∆VP

∆t
= AuP |P +

ρP∆VP
∆t

(2)

αu being the relaxation factor. Two indices are used where needed. For instance the sum
is carried over all j-neighbours of P, (j|P ), and AuP |P is the diagonal, (P ), coefficient of
node P. The term in brackets contains two addends: the contribution of the neighbour
nodes and all sources but the pressure gradient which is considered separately. There is
also a contribution from the previous iteration ulP and the preceding time step unP . The
equivalent fictitious equation for the east face velocity is

ÃuP |eu
∗
e = αu

∑
j|e
Auju

∗
j + Sue∆Ve

− αu∆Ve ∂p
∂x

∣∣∣∣∣
l

e

+ (1− αu)ÃuP |eule +

+ αu
ρe∆Ve

∆t
une

ÃuP |e =
∑
j|e
Auj +

ρe∆Ve
∆t

= AuP |e +
ρe∆Ve

∆t
(3)

and written in an alternative way

u∗e = αu

∑j|eA
u
ju
∗
j + Sue∆Ve

ÃuP |e

− αu ∆Ve

ÃuP |e

∂p

∂x

∣∣∣∣∣
l

e

+ (1− αu)ule +

+ αu
ρe∆Ve

∆tÃuP |e
une (4)

Let us note that this expression is never computed as it stands, it is only employed to
derive a workable u∗e expression. There are several terms in the previous equation that
are not directly computable, namely, the factor ∆Ve/Ã

u
P |e and the term in brackets. The

diagonal coefficient ÃuP |e is never assembled because the discretized transport equation
at e is not computed. It has to be obtained as a function of the diagonal coefficients of
the nodes. On the other hand, how to estimate the term in brackets (the contribution
from neighbour faces plus the source term) is at the root of the different approaches to
calculate the face velocity. PICTURE [3], the consistent extension to unsteady problems
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of the well known Rhie-Chow procedure, assumes that a factor contained in this term
can be calculated as an arithmetic mean of its counterparts in the equations of the nodes
that share the face, just as Rhie-Chow proposed for a steady problem. The core of this
approach is the following expression

Hu
e =

∑
j|eA

u
ju
∗
j + Sue∆Ve

ÃuP |e
=

∑
j|eA

u
ju
∗
j + Sue∆Ve

(1 + δe)AuP |e
=

=
1

1 + δe

∑j|iA
u
ju
∗
j + Sui ∆Vi

AuP |i

e i = P,E (5)

where the factor calculated as an average is apparent and δe is defined as

δe =
ρe∆Ve
∆tAuP |e

⇒ ÃuP |e = AuP |e +
ρe∆Ve

∆t
= (1 + δe)A

u
P |e (6)

Averaging this factor and not the whole term in brackets in Eqn. 4 is necessary in order to
obtain a consistent scheme, that is, one that provides steady solutions independent of the
time step [3]. At the same time, we cannot include the previous iteration or the preceding
time step contribution in Hu

e , the factor to be calculated as an average, otherwise the
solution would depend on the time step and the relaxation factor. Once a means to
estimate ∆Ve/Ã

u
P |e is proposed the procedure could be considered complete as all terms

in Eqn. 4 will then be computable. In terms of δe this final expression is

u∗e =
αu

1 + δe

∑j|iA
u
ju
∗
j + Sui ∆Vi

AuP |i

e − αu∆t

ρe

δe
1 + δe

∂p

∂x

∣∣∣∣∣
l

e

+ (1− αu)ule +

+ αu
δe

1 + δe
une (7)

Although using Eqn. 7 to obtain u∗e is completely acceptable, it is preferable to derive
an alternative expression by noticing that the e-average in Eq. 5 can also be obtained by
e-averaging the two nodal equations at P and E. The reason for seeking this alternative
is that we have in fact two options to evaluate the i-terms in Eqn. 7. The first option is to
calculate the average with factors that have been estimated before solving the momentum
equation, that is, using the following approximation

∑
j|eA

u
ju
∗
j + Sue∆Ve

AuP |e
=

∑j|iA
u(l)
j ulj + S

u(l)
i ∆Vi

A
u(l)
P |i

e (8)

where the (previous) iteration l at which the factors are calculated is explicitly indicated.
The second option is to employ in the average the nodal velocities coming from the
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momentum equation solution

∑
j|eA

u
ju
∗
j + Sue∆Ve

AuP |e
=

∑j|iA
u(l)
j u∗j + S

u(l)
i ∆Vi

A
u(l)
P |i

e (9)

Xu and Zhang [4] showed that this second version was faster to converge because it uses
velocity values as soon as they become available. The actual implementation does not use
the average in Eqn. 9 as it is, instead it operates with the nodal equations to cast this
average as a function of face velocity values and averages. The procedure involves writing
an equation for the node E similar to Eqn. 2 and e-average the equations at nodes P and
E. The final expression is

(1 + δi)u∗i
e

= αu

∑j|iA
u
ju
∗
j + ∆ViSui
AuP |i

e + αu∆t

 δi
ρi

− ∂p

∂x

∣∣∣∣∣
l

i

e

+ (1− αu)(1 + δi)uli
e

+ αuδiuni
e

i = P,E (10)

and then

αu

∑j|iA
u
ju
∗
j + ∆ViSui
AuP |i

e = (1 + δi)u∗i
e

+ αu∆t

 δi
ρi

∂p

∂x

∣∣∣∣∣
l

i

e

− (1− αu)(1 + δi)uli
e
− αuδiuni

e
i = P,E (11)

Substituting this in Eqns. 4 by means of Eqn. 5 gives the final expression in terms of δi
and δe

(1 + δe)u
∗
e = (1 + δi)u∗i

e
+ αu∆t

 δi
ρi

∂p

∂x

∣∣∣∣∣
l

i

e

− δe
ρe

∂p

∂x

∣∣∣∣∣
l

e

+

+ (1− αu)
[
(1 + δe)u

l
e − (1 + δi)uli

e]
+ αu

[
δeu

n
e − δiuni

e
]

(12)

Thus the CS field at the current iteration depends on the MS and pressure fields at the
same iteration, as well as on values from previous inner iteration and time step. Eqn.
7 and Eqn. 12 are totally equivalent only in the case that Eqn. 10 is satisfied, that is,
when the momentum equation has zero residual at iteration l. In any other case both are
different approximations to the same face velocity. From a computational point of view
it is more convenient this last expression as we do not have to recalculate the summation
in Eqn. 7 with the newly available nodal velocities. In the final expression there is only
one factor, δe, to be estimated as a function of its nodal values so we only require one
assumption for the evaluation of the complete expression. Although other averages are
not excluded, in all computational cases to be presented the traditional arithmetic average
has been adopted, δe = δi

e
.
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We calculate the face velocity with Eqn. 12 employing the most recent values of the
nodal velocity u∗, right after solving the momentum equation for the MS field. Let us
assume that Eqn. 2 is rewritten for a sought MS field that, with an updated pressure
field to be determined and via Eqn. 12, provides a CS field that satisfies continuity. All
these fields will be denoted with the superindex l + 1.

ÃuP |Pu
l+1
P = αu

∑
j|P

Auju
l+1
j + SuP∆VP

− αu∆VP ∂p

∂x

∣∣∣∣∣
l+1

P

+

+ (1− αu)ÃuP |PulP + αu
ρP∆VP

∆t
unP (13)

When the relaxed iterations have converged the l + 1 iteration value becomes the n + 1
time step value. The SIMPLE procedure starts out by deriving the expression for the
nodal velocity correction in terms of the pressure gradient correction using the momentum
equation and then transferring this expression to that of the face velocity correction. The
first task is accomplished subtracting Eqn. 2 from Eqn. 13, considering ul+1 = u∗ + u′,
u′ being the velocity correction

ÃuP |Pu
′
P = αu

∑
j|P

Auju
′
j − αu∆VP

∂p

∂x

∣∣∣∣∣
′

P

(14)

where the change in the source has been neglected. SIMPLE also neglects the contribution
from the neighbour corrections giving a final algebraic relation

u′P = −αu
∆VP

ÃuP |P

∂p

∂x

∣∣∣∣∣
′

P

⇒ (1 + δP )u′P = −αu∆t
δP
ρP

∂p

∂x

∣∣∣∣∣
′

P

(15)

The expression at the face at iteration l + 1 is

(1 + δe)u
l+1
e = (1 + δi)u

l+1
i

e
+ αu∆t

 δi
ρi

∂p

∂x

∣∣∣∣∣
l+1

i

e

− δe
ρe

∂p

∂x

∣∣∣∣∣
l+1

e

+

+ (1− αu)
[
(1 + δe)u

l
e − (1 + δi)uli

e]
+ αu

[
δeu

n
e − δiuni

e
]

(16)

Subtracting Eqn. 12 from Eqn. 16 we obtain

(1 + δe)u
′
e = (1 + δi)u′i

e
+ αu∆t

 δi
ρi

∂p

∂x

∣∣∣∣∣
′

i

e

− δe
ρe

∂p

∂x

∣∣∣∣∣
′

e

 (17)

but Eqn. 15 and a similar one for u′E show that

(1 + δi)u′i
e

= −αu∆t
δi
ρi

∂p

∂x

∣∣∣∣∣
′

i

e

(18)
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then the face correction is

(1 + δe)u
′
e = −αu∆t

δe
ρe

∂p

∂x

∣∣∣∣∣
′

e

(19)

formally identical to the nodal correction. This expression is well known but we wanted to
specify all steps taken in the proper derivation. The steady state expressions are recovered
when δi,e → 0 and δi,e∆t/ρi,e → ∆Vi,e/A

u
P |i,e, that is

u′e = −αu
∆Ve
AuP |e

∂p

∂x

∣∣∣∣∣
′

e

u′i = −αu
∆Vi
AuP |i

∂p

∂x

∣∣∣∣∣
′

i

i = E,P (20)

and similar equations for the other faces (west, north and south in 2D).
We have just shown that if SIMPLE is used both nodal and face corrections have the

same expression. We must stress that the face relation has not been assumed a priori nor
has it been obtained with the fictitious ’momentum equation’ at the face, rather it has
been extracted from the face velocity expression and the momentum corrections.

Now let us show that when SIMPLEC is employed the face expression is different from
the nodal one. SIMPLEC proposal does not neglect the neighbour contribution in Eqn.
14, instead it subtracts from both sides αu(

∑
j|P A

u
j )u
′
PÃuP |P − αu∑

j|P
Auj

u′P = αu
∑
j|P

Auj (u
′
j − u′P )− αu∆VP

∂p

∂x

∣∣∣∣∣
′

P

(21)

SIMPLEC assumes that it is the difference between neighbour velocity corrections what
is negligible, a distinct assumption from that of SIMPLE where the neighbour velocity
corrections were not conserved in the final expression. Hence, it neglects the first term
on the right hand side providing the algebraic relation

(1 + δP )u′P = −αu∆t
δP
ρP

(1 + k̃P )
∂p

∂x

∣∣∣∣∣
′

P

(22)

where k̃P is defined as

k̃P =
αu
∑
j|P A

u
j

ÃuP |P − αu
∑
j|P A

u
j

=
αurp

1− αurp + δP
; rp =

∑
j|P A

u
j

AuP |P

rp is equal to one over most part of the domain except at the boundaries due to Dirichlet
boundary conditions1. Substituting Eqn. 22 and that for node E in Eqn. 17 gives

(1 + δe)u
′
e = −αu∆t

 δi
ρi
k̃i
∂p

∂x

∣∣∣∣∣
′

i

e

+
δe
ρe

∂p

∂x

∣∣∣∣∣
′

e

 (23)

1If there is a source term dependent on the velocity that has been linearized, rp could everywhere be
different from one.
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which is totally different from that at the nodes. If SIMPLEC idea had been carried over
to the face expression the result would have been

(1 + δe)u
′
e = −αu∆t

δe
ρe

(1 + k̃e)
∂p

∂x

∣∣∣∣∣
′

e

(24)

The two expressions are identical only in the case

δi
ρi
k̃i
∂p

∂x

∣∣∣∣∣
′

i

e

=
δe
ρe
k̃e

∂p

∂x

∣∣∣∣∣
′

e

(25)

a numerical condition that is rarely satisfied. Note that for a steady problem the expres-
sions are

u′i = − αu
1− αu

∆Vi
AuP |i

∂p

∂x

∣∣∣∣∣
′

i

u′e = −αu

∆Ve
AuP |e

∂p

∂x

∣∣∣∣∣
′

e

+
αu

1− αu

∆Vi
AuP |i

∂p

∂x

∣∣∣∣∣
′

i

e
 (26)

and the above requirement results in

∆Vi
AuP |i

∂p

∂x

∣∣∣∣∣
′

i

e

=
∆Ve
AuP |e

∂p

∂x

∣∣∣∣∣
′

e

(27)

Shen et al. [5] also realized the condition above but they neglected the variation of ∆V/AuP
transforming Eqn. 27 in a linearity requirement for the gradient of the pressure correction,
that is, they claimed that Eqn. 24 could only be used if the gradient of the pressure
correction was linear. Shen et al were interested in devising a scheme that gives steady
state solutions free of time step dependence. To do so they had to introduce another
relaxation factor that eventually produced an expression with no limitations whereas
we derive the face velocity expression based on the nodal correction. For an unsteady
incompressible simulation with small time steps such that δi,e >> 1 the condition given
in Eqn. 25 amounts to requiring the pressure gradient to be linear because in that case
k̃i,e = αu/δi,e. A very special case where the previous equality is satisfied for any time

step is that of a fully developed flow where k̃i = k̃e, δi = δe, and the pressure gradient
is constant. Apart from the formal limitations there is also a strong case against using
Eqn. 24: the corrected velocity would not satisfy the face velocity expression with the
updated pressure field. If that approach was followed every inner iteration would start
with a newly corrected face velocity incompatible with its equation, thus slowing down
the convergence process.

Apart from Shen et al’s formulation SIMPLEC inconsistent in collocated grids was
used by Johansson et al. [6] and Oliveira et al [7] in steady problems. In the first paper
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an ad-hoc amount of dissipation was introduced via a factor between 0.5 and 1 that sub-
stitutes the underrelaxation factor in the diffusion coefficient αu∆Ve/A

u
P |e of the pressure

correction equation after considering the difference between ∆Ve/A
u
P |e and (∆Vi/AuP |i)

e

to be negligible. This latter assumption allows to express the pressure contribution to
the face velocity as a dissipative third order derivative which converts into a fourth order
derivative when assembling the mass flow balance of the control volume. Their formula-
tion is slightly different from that presented here due to the ad-hoc coefficient but it is
still inconsistent, although we must stress again that the inconsistency only affects the
number of iterations and not the final solution. A similar coefficient was also introduced
by Rahman et al. [8] under a SIMPLE strategy.

The implementation of SIMPLEC consistent via Eqn. 23 and other similar for velocity
corrections produces a pentadiagonal matrix (in 1D) that is diagonally dominant with
all off-diagonal terms negative. The resulting matrix is solved with the Penta Diagonal
Matrix Algorithm (PDMA), an extension of the well known TDMA.

3 RESULTS

The comparison of the different schemes, consistent and inconsistent, is carried out in
two 2D laminar flows, both in a lid driven square cavity. The assessment is by no means
exhaustive, our intention is just to show the improvement brought about by the consistent
implementation of SIMPLEC. The Reynolds numbers of the two computational experi-
ments are 103 and 5. 103 based on lid velocity. The convergence monitor is a coefficient
defined as the ratio of p-norms of the momentum residuals and the left hand side of the
discretized momentum equation, the latter considered as a normalizing factor.

resu =

(∑
i

∣∣∣AuP |iui −∑j|iA
u
juj − Sui ∆Vi + ∆Vi

∂p
∂x

∣∣∣
i

∣∣∣p)1/p(∑
i

∣∣∣AuP |iui∣∣∣p)1/p ; p = 1, 2, . . . ,∞ (28)

Likewise, a residual for the υ-velocity can be defined, resυ. The mass imbalance is calcu-
lated as

resm =
(
∑
i |(ρeu∗e − ρwu∗w)∆y + (ρnυ

∗
n − ρsυ∗s)∆x|

p)
1/p

(
∑
i inflow

p
i )

1/p
; p = 1, 2, . . . ,∞ (29)

where inflow is the mass flow coming into a cell. The monitoring value for the velocities is
res = max(resu, resυ) and the calculation stops when res < 10−8 and resm < 10−6. The
initial condition is 10−6 for velocities and pressure, the lid velocity being 1. All cases have
been calculated with the residual based on the L1 norms (p = 1) with a grid of 100x100.
For Re = 1000 the grid is uniform and for Re = 5000 it is expanding/contracting in both
directions with ratios 1.1 and 1/1.1 respectively. A high-order discretization scheme,
NOTABLE [9], with a deferred correction technique has been employed for the convective
terms.
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Figure 1: Comparison of the performance of different schemes in the lid-driven cavity case, Re=1000.
The numbers in the names refer to the underrelaxation factor for the velocity.

In Figure 1 a comparison of the convergence rate of the inconsistent and consistent
SIMPLEC approaches is presented for a steady case, computed by setting ∆t = 1025. Each
curve corresponds to a constant value of αu and it finishes at the last αp before blowup.
For the sake of comparison SIMPLE results are also presented. As can be seen SIMPLE
requires αp to be less than one whereas both consistent and inconsistent SIMPLEC can
converge with a much greater factor (up to 4.6 for SIMPLECi (inconsistent)). SIMPLECc
(consistent) needs less iterations for convergence than the other two. For a given pair of
α’s SIMPLECc is much quicker than SIMPLECi, the best case of SIMPLECc being a
25% better than the best case of SIMPLECi in terms of required iterations.

Figure 2: Comparison of the performance of different schemes in the lid-driven cavity case, Re=5000.
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Figure 2 shows results for the second case with SIMPLEC and SIMPLE. For Re = 5000
the convective term is dominant over a larger part of the domain and the pressure-velocity
coupling is more difficult to handle. This leads to an increase in the number of iterations
required for convergence with respect to the Re = 1000 case. The improvement introduced
by SIMPLECc over SIMPLECi is now more noticeable with a reduction of more than 30%
in the best case, around 3000 iterations as against 4500. Both SIMPLECi and SIMPLECc
are more robust than SIMPLE as the latter requires a fair amount of good luck to hit the
optimum underrelaxation factor, being too much penalized if it is missed.

4 CONCLUSIONS

In this paper a SIMPLEC scheme for a collocated grid and consistent with the ex-
pression of the face velocity has been proposed. The correct derivation produces a pen-
tadiagonal matrix in each coordinate that is subsequently solved by a PDM algorithm
that is slightly more costly in terms of CPU time and memory requirements than the
classical TDM algorithm. The assessment is by no means exhaustive but in a flow where
the convective term is of the same order as the pressure term in most part of the domain
the performance is greatly enhanced.
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