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Abstract. A metric-based refinement criterion computation technique is presented for the
automatic grid refinement procedure implemented in ISIS-CFD, the unstructured finite-
volume flow solver developed by CNRS and Ecole Centrale de Nantes. For this general
technique, two refinement criteria are presented: one that refines at the location of the
water surface, and one that is based on the second spatial derivatives of the pressure. Two
test cases show that these criteria produce accurate flow solutions in an effective way.
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1 INTRODUCTION

An automatic grid refinement procedure has been developed for ISIS-CFD, the un-
structured finite-volume RANS solver for hydrodynamic flows, created by the Numerical
Modelling group at ECN [8]. As this commercialised flow solver is used for solving large-
scale realistic flow problems of industrial complexity, strong requirements are posed on
the grid refinement procedure in terms of efficiency, robustness, and flexibility. Therefore,
the method performs anisotropic refinement of the unstructured hexahedral meshes that
ISIS-CFD uses, it allows the easy exchange and implementation of refinement criteria,
and it is fully parallelised including automatic dynamic load balancing [10].

For ship flow computation, several physical phenomena of a highly different nature
play a role. Typically, the flow around a ship involves the generation of a wave pattern
at the free surface, as well as vorticity production and viscous effects on the ship hull. A
grid refinement procedure must be able to adapt a grid to each of these features, even to
multiple features at once.

Therefore, flexibility in the choice of the refinement criterion, which indicates where the
grid must be refined, is essential; this paper presents a metric-based refinement criterion
strategy that offers a very flexible basis for the development of criteria, and the possibility
to easily combine several criteria. After an introduction of the flow solver and refinement
procedure in section 2, the section 3 defines this strategy. Then section 4 introduces two
ship flow refinement criteria, which are applied to flow computations in section 5. The
paper ends with a conclusion.

2 FLOW SOLVER AND REFINEMENT PROCEDURE

ISIS-CFD, available as a part of the FINETM/Marine computing suite, is an incom-
pressible unsteady Reynolds-averaged Navier-Stokes (RANS) method [2, 8]. The solver
is based on the finite volume method to build the spatial discretisation of the transport
equations. The unstructured discretisation is face-based, which means that cells with an
arbitrary number of arbitrarily shaped faces are accepted.

The velocity field is obtained from the momentum conservation equations and the
pressure field is extracted from the mass conservation constraint, or continuity equation,
transformed into a pressure equation. In the case of turbulent flows, transport equations
for the variables in the turbulence model are added to the discretisation. Free-surface
flow is simulated with a multi-phase flow (VoF) approach: the water surface is captured
with a conservation equation for the volume fraction of water, discretised with specific
compressive discretisation schemes [8].

The method features sophisticated turbulence models, 6 DOF motion for simulated
ships [7], and the possibility of modelling more than two phases. For brevity, these
options are not further described here.

Recently, an automatic grid refinement capability has been integrated in ISIS-CFD
[10]. The goal of the development was to produce a method that can be used in daily
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practice for all the applications of this code and that can be easily maintained as the code
develops over the years. Therefore, the mesh adaptation method has been made general:
it allows unstructured grids around complex geometries, directional refinement to keep
the size of 3D refined grids low, and derefinement of refined grids to enable unsteady flow
simulation. The method is flexible to allow the easy changing of refinement criteria and,
like the flow solver, it is fully parallel. The refinement procedure is completely integrated
in the flow solver.

To ensure robustness and flexibility of the grid refinement method, it is divided into
three distinct parts that exchange only minimal information. First, the refinement crite-
rion is computed, a scalar or tensor field that indicates the local desired cell size. Based
on this criterion, the decision is taken which cells to refine or to derefine. Finally, the
actual grid adaptation is performed. This step includes automatic load balancing with
the ParMETIS library [5]. During a computation, the grid refinement method is called
every few time steps, to keep the grid well adapted to the flow solution as it develops.

3 METRIC-BASED REFINEMENT

For the refinement criterion computation, we recently developed a strategy based on
metrics. This technique has been used often for the generation, and the adaptive refine-
ment, of unstructured tetrahedral meshes (see e.g. [3]). For the unstructured hexahedral
meshes that we use, it is the most flexible way of specifying any type of anisotropic
refinement.

In the method, the refinement criterion is computed as a field of 3×3 SPD tensors.
The metric tensor Ci (R3 → R3) in each cell is considered as a geometric operator that
transforms each cell Ωi in the physical space into a deformed cell Ω̃i in a modified space.
Then, in each cell, directional refinement is applied to produce a grid that is as nearly
uniform as possible in the modified space (see figure 1). Using suitable tensors Ci, desired
cell sizes in any given direction can be specified.

b) Modified space.a) Physical space. c) Refinement.

Figure 1: Tensor refinement criterion. Cell Ωi and unit circle (reference) in normal space (a), deformed
cell Ω̃i and deformed circle after application of the transformation Ci (b), and refinement to create a
uniform grid in the modified space (c).

As the metric formulation is very general, it can be used to implement refinement
criteria based on different quantities. These criteria can also be easily combined, it is
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enough to take, in each cell, the approximate maximum of two or more criterion tensors
using an approximation like the one given by [3].

Interestingly, the combination of metric-based refinement with a fixed original grid
gives a highly robust procedure. The major problem in metric-based tetrahedral grid
generation is the prevention of singular tensors, that produce infinite-sized cells. Here,
the maximum cell size is limited by the original grid, so singularity in the tensors is not a
problem. On the contrary, we use singular tensors to our advantage, to specify refinement
in one direction only (see the next section for an example). Thus, any symmetric positive-
semidefinite tensor can be used as a refinement criterion.

4 REFINEMENT CRITERIA FOR SHIP FLOW

We present two criteria to be used for the computation of the flow field generated by
a ship. To accurately simulate water waves numerically, it is necessary to have a fine
grid at the location of the water surface; this gives good resolution of the volume-fraction
equation used in ISIS-CFD to indicate the surface position. Thus, our first criterion
refines at the location of the water surface. However, the orbital velocity fields of the
waves must also be resolved correctly, as well as the water flow below and around the
ship’s hull, that drives the wave making. Therefore, another criterion is chosen based on
the Hessian of the pressure, to capture the pressure and velocity fields that produce the
waves. It is our intention to finally combine these two criteria into one.

4.1 Free-surface criterion

Our first criterion refines in the neighbourhood of the water surface. Directional re-
finement is employed to refine the grid in the direction normal to the surface only. Where
the free surface is diagonal to the grid directions, isotropic refinement is used, but where
the surface is horizontal, directional refinement is chosen; the resulting zone of directional
refinement includes the undisturbed water surface, as well as smooth wave crests and
troughs. This is essential to keep the number of grid cells low, as the water surface is
often nearly undisturbed in most of the domain. Figure 2 gives an illustration of this
refinement principle.

Figure 2: Isotropic and directional refinement at the free surface. The curves represent volume fraction
isolines.
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Directional refinement normal to the free surface implies, that the refinement criterion
imposes a constraint on the cell size in that normal direction only. The cell size in all
other directions is kept as large as possible. Thus, cells that are oriented diagonally to
the interface must necessarily be refined in all directions, but cells that are aligned with
the interface can be refined in one direction only. In the context of tensorial refinement,
this is obtained by specifying tensors with only one non-zero eigenvalue, associated with
an eigenvector normal to the surface. As explained above, this poses no problems from a
numerical point of view.

4.2 Hessian-based refinement

The Hessian matrix of second spatial derivatives of the solution is a common choice as
a refinement criterion. We base this criterion on the pressure field, so it reacts both to
wave fields and to vorticity at the ship hull.

The major difficulty in using the Hessian tensor as a refinement criterion is the accurate
evaluation of the second derivatives, independent of the mesh. If the criterion computation
is perturbed by local grid refinement, it may react more to existing grid refinement than
to the pressure field. To prevent this undesired effect, numerical errors in the computed
second derivatives must be significantly smaller than the derivatives themselves in all cells.

A particular problem associated with unstructured hexahedral meshes, is that the grid
remains irregular when it is refined. For structured grids, and even for most unstructured
tetrahedral meshes, when the grid is refined the cells get more and more the same shape
and size as their neighbours. On unstructured hex meshes however, there will always be
cells that are two times smaller than their direct neighbours. This means, that numerical
schemes which rely on mesh regularity to get good accuracy are not suited for these
meshes; a useful scheme must give sufficient accuracy for arbitrary cell configurations.

For the computation of second derivatives, we use a least-squares method based on
third-order polynomials. In each cell, the polynomial is computed that best fits the pres-
sure in the cell, its neighbours and its neighbours’ neighbours, in the least-squares sense.
The approximated Hessian is constructed from the second derivatives of this polynomial.
The least-squares procedure guarantees that the difference between the approximating
polynomial and the real pressure is not in the space of third-order polynomials; therefore,
it is at least fourth-order. Hence, the approximated second derivatives are second-order
accurate, independent of the mesh geometry. For simpler methods like the well-known
Gauss integration, this cannot be guaranteed.

5 TEST CASES

5.1 KVLCC2 tanker

To test the Hessian-based criterion, the flow around the KVLCC2 (KRISO Very Large
Crude Carrier) tanker is computed. This model scale computation at Re = 4.6 · 106 was
one of the test cases in the Gothenburg 2000 workshop, see [6]. It is a double model test,
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so the water surface motion is not taken into account. The computations are performed
with a single fluid (water) and a symmetry boundary condition is imposed at the position
of the undisturbed water surface. The anisotropic EASM turbulence model is used to
obtain good resolution of longitudinal vorticity.
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Figure 3: KVLCC2 tanker, cross-sections of the grid at Y/L = 0.02 at the front of the ship (top) and at
the back (bottom).

Figure 3 shows two Y cross-sections of the refined grid (having 600k cells), created
from a coarse original grid that has 58k cells. The pressure-based refinement is clearly
concentrated at the front and the back of the ship, the regions where the pressure changes
most. At the very front and back, all refinement is isotropic. However, further to the ship’s
centre and aft of the ship, where the flow is mostly aligned with the X-axis, directional
refinement appears. Thus, the tensor-based procedure is effective in detecting the main
flow directions.

The axial flow in the propeller plane (X/L = 0.0175) is given in figure 4. The principal
feature of this flow is a hook-shaped region of low axial velocity. On the original grid,
this hook shape is not resolved. But on the refined grid (showing refinement that is
concentrated in the zone around the propeller) the hook shape appears, closely resembling
the experimental results. This result is excellent for a grid of 600k cells; when computing
this flow without grid refinement, usually about 1M cells must be used to obtain similar
results. This also proves the efficiency of the grid refinement procedure.
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Figure 4: KVLCC2 tanker. Grid cross-sections and axial velocity u/U∞ isolines are shown on the original
coarse grid and the refined grid. The velocity is compared with experiments.

5.2 DTMB 5512 in head waves

As a test of the free surface refinement criterion, we compute the wave diffraction
problem for the DTMB 5512 destroyer at Fr = 0.28 with fixed attitude in head waves
of wave length λ = 1.5L and specific amplitude Ak = 2πA

λ
= 0.025, which corresponds to

case 4 of the Tokyo 2005 workshop [4].
For this case, a fine grid is made with a grid spacing of L/1000 in z-direction at and

around the free surface, as advised for ISIS-CFD to accurately capture an incoming wave
field. Next to the ship, a large box of fine cells is placed to capture the diffracting waves
from the hull. This fine grid has 2.31M cells. A coarse grid is made as a basis for the grid
refinement, with 2 times coarser cells, in all directions, around the free surface and in the
fine box. This grid has 0.83M cells. Automatic grid refinement is then used to get a grid
spacing of L/1000 normal to the water surface. During the computation, the number of
cells oscillates between 0.94M and 0.99M.

Figure 5 shows the time evolution of the drag and pitch moment coefficients. The values
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Figure 5: Time evolution of the drag coefficient CT and the pitching moment coefficient CM , compared
with experiments (mean + first harmonic) from [1]. t = 0 corresponds to the beginning of the computa-
tion.

compare reasonably well with experiments from IIHR, the phase difference is observed in
other computations as well [1]. Most importantly, the refined-grid and fine-grid solutions
are nearly indistinguishable.

Wave patterns at four different instants are given in figure 6, compared with the fine-
grid results which correspond well with experiments (as shown in [9]). On the refined
and fine grid, the wave height near the hull is equivalent; the breaking bow and stern
waves are even captured more sharply on the refined grid. The incoming wave fields are
nearly identical. Only in the diffracted waves away from the hull, the fine-grid solution is
sometimes marginally better. Here, a combination with Hessian-based refinement below
the water surface would be useful.

Altogether, the grid refinement produces a solution of similar quality as the fine-grid
solution, using 2.5 times less cells.

6 CONCLUSIONS

A metric-based refinement criterion computation strategy is presented for the auto-
matic grid refinement procedure of the ISIS-CFD finite-volume flow solver. This pro-
cedure gives a flexible and general framework for anisotropic grid refinement, is robust
with respect to the singularity of the tensorial refinement criterion, and allows the easy
combination of several refinement criteria.

Two refinement criteria for free-surface water flow are described. The first produces
directional refinement normal to the water surface; this criterion uses tensors that have
only one non-zero eigenvalue. The other criterion is based on the second spatial derivatives
of the pressure. A least-squares method with third-order polynomials is used to get a
second-order accurate evaluation of the second derivatives, on any mesh.

Two test cases, the double-model flow around the KVLCC2 tanker and the DTMB
5512 destroyer in head waves, show that the two refinement criteria produce accurate
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Figure 6: Comparison of wave patterns on the refined and the fine grid for the DTMB fixed in head
waves. The images show four different instants; Te is the wave encounter period and t = 0 corresponds
to a wave crest passing x = 0.

solutions in an effective way. It is also shown that combining the two criteria may be
useful; we plan to implement this combination in the near future.
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