
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal,14-17 June 2010

ADAPTIVE TWO-STEP PEER METHODS FOR THERMALLY
COUPLED INCOMPRESSIBLE FLOW

Bettina Gottermeier∗ and Jens Lang†

∗Technische Universität Darmstadt,
Department of Mathematics,

Dolivostr. 15, 64293 Darmstadt, Germany
e-mail: gottermeier@mathematik.tu-darmstadt.de

†Technische Universität Darmstadt,
Department of Mathematics and Center of Smart Interfaces,

Dolivostr. 15, 64293 Darmstadt, Germany
e-mail: lang@mathematik.tu-darmstadt.de

Key words: Two-step peer methods, thermally coupled flow, stabilized finite elements

Abstract. In the present paper, we apply two-step peer methods up to order five to
thermally coupled incompressible flow. These methods were first developed for ODEs and
subsequently applied to parabolic PDEs. Because of their linearly implicit character only
linear systems have to be solved in each time step. Additionally, good stability properties
are given by optimal zero-stability and L(α)-stability with an angle of at least α = 85◦.
The main advantage over one-step methods lies in the fact that even in the application to
PDEs no order reduction is observed. To investigate whether the higher order of conver-
gence of the two-step peer methods equipped with variable time steps pays off in practically
relevant CFD computations, we apply the peer methods to a typical benchmark problem,
the thermo-convective instability of plane Poiseuille flow, and study the accuracy and ef-
ficiency of these methods. Comparisons are made with linearly implicit one-step methods
of Rosenbrock-type with classical order two and three. The two-step methods are highly
accurate and more efficient than one-step Rosenbrock methods, in particular than Ros2,
which is similar to the well-known Crank-Nicolson method.
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1 INTRODUCTION

A numerical study of a benchmark problem for thermally coupled incompressible
flows1,4 is presented in this paper. The problem consists of a two-dimensional laminar
flow in a rectangular domain, which is suddenly heated from below and results in a
thermo-convective instability. Besides the practical interest in this benchmark problem,
the system of nonlinear equations forms a very good test case for numerical methods as
instabilities and even transition to turbulence can occur in these flows1.

Following the Rothe method, the system of nonlinear equations is first discretized in
time. Explicit or simple implicit numerical methods as the backward Euler method, the
Crank-Nicolson method or the fractional-step θ-method are widely-used to approximate
the temporal evolution of incompressible flows. Besides their low order of convergence,
it is difficult to realize an adaptive time step control which increases the efficiency of
these methods7. In this paper, linearly implicit two-step peer methods5 of higher order
equipped with variable time steps are used to discretize the nonlinear equations in time.
Such methods take a linear combination of stage values to approximate the exact solution
at intermediate points. All of these stage values have the same order of accuracy and the
same stability properties, which is the reason for calling the methods ’peer’. The methods
considered here are up to fifth order accurate and exhibit good stability properties with
optimal zero-stability and L(α)-stability with a large angle α. They are robust with
respect to step size changes due to the strong damping property at infinity. Because of
their linearly implicit structure, only linear systems have to be solved in each time step.
Even in the application to PDEs, the peer methods do not suffer from order reduction,
which is the main advantage over one-step methods. Additionally, they have shown
a superior performance with respect to accuracy and efficiency compared to one-step
methods5,6.

The outline of the present paper reads as follows: We introduce the benchmark problem
of the thermo-convective instability of plane Poiseuille flow in Sect. 2. Then, in Sect. 3,
the resulting system of nonlinear equations is discretized in time with linearly implicit
two-step peer methods. For the space discretization, a stabilized finite element method
based on piecewise linear elements for the velocity, pressure, and temperature is used.
The time-adaptive simulations are performed with the software package Kardos3, whose
results are presented in Sect. 4. Finally, a summary of our results and conclusion can be
found in Sect. 5.

2 PROBLEM DESCRIPTION

We consider a two-dimensional thermally coupled incompressible flow in a horizontal
channel Ω = [0, 10] × [0, 1], which has been proposed as a benchmark problem for open
boundary flows by Evans and Paolucci4. These flows are modelled by the well-known
Navier-Stokes equations with the Boussinesq approximation for the thermal coupling given
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in dimensionless form by

∂tu + (u · ∇)u−Re−1∆u +∇p = −Fr−1T ĝ , (1a)

∇ · u = 0 , (1b)

∂tT + (u · ∇)T − Pe−1∆T = 0 , x ∈ Ω , t ∈ (0, te] . (1c)

The vector u = (u1, u2)
T ∈ R2 is the velocity field, the scalar p and T are the pressure and

temperature. The system of equations has to be equipped with appropriate initial and
boundary conditions. The dimensionless parameters characterizing the problem are the
Reynolds number Re, the Froude number Fr and the Peclet number Pe. We set Re = 10,
Fr = 1/150, and Pe = 20/3. The vector ĝ represents the normalized gravitational
acceleration. We have ĝ = (0,−1)T for our benchmark problem.

The fluid of the laminar flow is suddenly heated from below with constant temperature
Tb = 1.0 at the bottom wall, whereas the top wall is maintained at temperature Tt = 0.
For x1 = 0, we impose a linear distribution of the temperature, i.e., T (t, 0, x2) = 1 − x2,
which is the same linear function as for the initial condition. For the velocity, we prescribe
a parabolic inflow profile at the inlet given by

u1(t, 0, x2) = 6x2(1− x2) , u2(t, 0, x2) = 0 ,

and no-slip boundary conditions at the top and bottom wall. The initial condition is
equivalent to the parabolic inflow profile. At the right outflow boundary non-flux condi-
tions are imposed for velocity and temperature.

The performance of the different solvers for the benchmark problem is measured by
means of the time- and space-averaged Nusselt numbers at the top and bottom boundary.
We define the Nusselt numbers by4

Nub =
1

L(t2 − t1)

∫ t2

t1

∫ 10

0

− ∂T

∂x2

(t, x1, 0) dx1 dt ,

and

Nut =
1

L(t2 − t1)

∫ t2

t1

∫ 10

0

− ∂T

∂x2

(t, x1, 1) dx1 dt ,

for the time interval [t1, t2] = [3, 15]. L is defined by the ratio of length and height of the
domain Ω, i.e., L = 10.

3 TIME AND SPACE DISCRETIZATION

We first discretize (1) in time with an s-stage linearly implicit two-step peer method5.
Afterwards, stabilized linear finite elements8 are used for the space discretization.
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Let τm > 0 be a variable time step. Then, an approximation Vmi = (Pmi, Umi, Tmi)
T to

the exact solution at time tmi := tm + ciτm with tm = tm−1,s for m ≥ 1 and ci ∈ [−1, 1],
cs = 1, can be computed from the recursive form

∇(Pmi − P 0
mi) +

(
I

τmγ
− 1

Re
∆ + Um−1,s · ∇

)
(Umi − U0

mi)

+ ((Umi − U0
mi) · ∇)Um−1,s +

1

Fr
(Tmi − T 0

mi)ĝ

= −∇P 0
mi −

(
U0

mi · ∇ − 1

Re
∆

)
U0

mi −
1

Fr
T 0

miĝ

+
1

τmγ
(wU,i − U0

mi) , (2a)

∇ · (Umi − U0
mi) = −∇ · U0

mi , (2b)

((Umi − U0
mi) · ∇)Tm−1,s +

(
I

τmγ
− 1

Pe
∆ + Um−1,s · ∇

)
(Tmi − T 0

mi)

= −(U0
mi · ∇)T 0

mi +
1

Pe
∆T 0

mi +
1

τmγ
(wT,i − T 0

mi) (2c)

for i = 1, ..., s, with the corresponding boundary conditions taken at tmi. The internal
values wi = (wP,i, wU,i, wT,i)

T are defined by

wi =
i−1∑
j=1

1

γ
aij(Vmj − wj) +

s∑
j=1

uij(σm)Vm−1,j

and the predictors by

V 0
mi =

i−1∑
j=1

1

γ
a0

ij(Vmj − wj) +
s∑

j=1

u0
ij(σm)Vm−1,j .

The above system is first solved for the differences P̂mi = Pmi − P 0
mi, Ûmi = Umi − U0

mi,
T̂mi = Tmi−T 0

mi, and these values are than updated by using the predictors. The numerical
solution at time tm+1 is given by the last stage values Pms, Ums, and Tms.

We choose stretched Chebychev nodes

ci := −
cos

((
i− 1

2

)
π
s

)
cos

(
π
2s

) , i = 1, . . . , s

for the abscissa c ∈ Rs. The coefficients aij can be combined in a lower triangular matrix
A ∈ Rs×s with positive diagonal elements aii = γ, the coefficients uij build a possibly full
matrix U ∈ Rs×s. The matrix U depends on the step size ratio σm = τm/τm−1 because of
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the order conditions of the method for variable step sizes. For the real coefficients of the
predictor, similar properties are valid:

A0 = (a0
ij) with a0

ij = 0 for i ≤ j and U0 = (u0
ij(σm)) .

Using an appropriate set of coefficients, we get order s − 1 for variable time steps and
order s for constant time steps.5

A variable step size approach based on an embedding strategy is used to increase the
efficiency of the methods. A linear combination of the Vmi, i = 1, . . . , s − 1, yields a
second solution Ṽms of inferior order p̃ = s− 2, which serves for an approximation of the
local error

ERRt :=

 1

n

n∑
i=1

‖Vms − Ṽms‖2
L2(

ScalRi‖eT
i Vms‖L2 + ScalAi

√
|Ω|

)2


1
2

.

ScalRi and ScalAi are parameters for the relative and absolute scaling factors, respec-
tively. Let TOLt denote the desired time tolerance. The new time step size is then given
by

τnew = min{τmax, min{2, max{0.2, (TOLt/ERRt)
1/(p̃+1)}} × 0.9τm} .

A description in more detail can be found in Gerisch et al.5

We solve the time-independent spatial problems (2) by a linear finite element method8

on a triangular mesh T h with characteristic length size h. Let S1
h denote the space of

piecewise linear continuous functions over T h. For the differences P̂mi, Ûmi and T̂mi, the
standard Galerkin finite element solutions P̂ h

mi ∈ S1
h, Ûh

mi ∈ S1
h × S1

h and T̂ h
mi ∈ S1

h are
given by the equations

−
(
P̂ h

mi,∇ · ϕu

)
+

1

τmγ

(
Ûh

mi, ϕu

)
+

1

Re

(
∇Ûh

mi,∇ϕu

)
+

(
(Uh

m−1,s · ∇)Ûh
mi, ϕu

)
+

(
(Ûh

mi · ∇)Uh
m−1,s, ϕu

)
+

1

Fr

(
T̂ h

mi ĝ, ϕu

)
=

(
P 0,h

mi ,∇ · ϕu

)
−

(
(U0,h

mi · ∇)U0,h
mi , ϕu

)
− 1

Re

(
∇U0,h

mi ,∇ϕu

)
− 1

Fr

(
T 0

mi ĝ, ϕu

)
+

1

τmγ

(
wh

U,i, ϕu

)
− 1

τmγ

(
U0,h

mi , ϕu

)
, (3a)(

∇ · Ûh
mi, ϕp

)
= −

(
∇ · U0,h

mi , ϕp

)
, (3b)(

(Ûh
mi · ∇)T h

m−1,s, ϕT

)
+

1

τmγ

(
T̂ h

mi, ϕT

)
+

1

Pe

(
∇T̂ h

mi,∇ϕT

)
+

(
(Uh

m−1,s · ∇)T̂ h
mi, ϕT

)
= −

(
(U0,h

mi · ∇)T 0,h
mi , ϕT

)
− 1

Pe

(
∇T 0,h

mi ,∇ϕT

)
+

1

τmγ

(
wh

T,i, ϕT

)
− 1

τmγ

(
T 0,h

mi , ϕT

)
(3c)

5



Bettina Gottermeier and Jens Lang

for all ϕu ∈ S1
h × S1

h, ϕp ∈ S1
h, and ϕT ∈ S1

h. Here, (·, ·) is the usual inner product in
L2(Ω).

Since we use the same finite element functions for pressure and velocity, a relaxation
of the incompressibility condition

∇ · u = δT∇ ·
(

∂tu + (u · ∇)u− 1

Re
∆u +∇p +

1

Fr
T ĝ

)
(4)

is necessary to avoid spurious pressure modes of the numerical solution. Note that the
term on the right hand side is identically zero. The parameter δT is locally defined on
each triangle T ∈ T h through8

δT = c
hb

2uref

R̂e√
1 + R̂e

2
, R̂e = hburefRe , c = 0.4

for a global reference velocity uref and the diameter hb of the two-dimensional ball which
is area-equivalent to the element T . For our benchmark problem, we use uref = 1. Con-
sequently, we have to replace (3b) by a discrete version of (4). Using partial integration
for the divergence term on the right hand side it reads(

∇ · Ûh
mi, ϕp

)
+

∑
T∈T h

δT

{(
∇P̂ h

mi,∇ϕp

)
T

+
1

τmγ

(
Ûh

mi,∇ϕp

)
T

− 1

Re

(
∆Ûh

mi,∇ϕp

)
T

+
(
(Uh

m−1,s · ∇)Ûh
mi,∇ϕp

)
T

+
(
(Ûh

mi · ∇)Uh
m−1,s,∇ϕp

)
T

+
1

Fr

(
T̂ h

mi ĝ,∇ϕp

)
T

}
= −

(
∇ · U0,h

mi , ϕp

)
+

∑
T∈T h

δT

{
−

(
∇P 0,h

mi ,∇ϕp

)
T

−
(
(U0,h

mi · ∇)U0,h
mi ,∇ϕp

)
T

+
1

Re

(
∆U0,h

mi ,∇ϕp

)
T

− 1

Fr

(
T 0

mi ĝ,∇ϕp

)
T

+
1

τmγ

(
wh

U,i,∇ϕp

)
T
− 1

τmγ

(
U0,h

mi ,∇ϕp

)
T

}
(5)

for all ϕp ∈ S1
h. We note that in our setting, the second order terms ∆Ûh

mi and ∆Û0,h
mi

vanish since linear elements are used.

4 NUMERICAL RESULTS

We apply the two-step peer methods Peer4 and Peer55, which have order three and
four for variable step sizes, to solve the benchmark problem (1) and study the accuracy and
efficiency of these methods compared to the linearly implicit one-step Rosenbrock methods
Ros3p10 and Ros3pl9 of classical order three. The second-order method Ros22 is also
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included in the simulations to obtain a comparison to the widely-used Crank-Nicolson
method, which is quite similar to Ros2. For the spatial discretization, an unstructured
mesh consisting of 76,087 triangles is used. We have used the facilities of the fully space-
time adaptive solver Kardos to a priori design a spatial discretization that guarantees a
relative spatial accuracy of nearly 10−4 over the whole time interval.

For small values of the Rayleigh number, Ra = RePe/Fr = 10, 000 in our case,
the Poiseuille flow results in a thermo-convective instability, where travelling transverse
waves occur with axes perpendicular to the main flow direction1, see Fig. 1. The irregular

(a) Streamlines

(b) Temperature contours

Figure 1: Streamlines and temperature contours at time t = 8.90.

behaviour of the fluid at the right boundary can also be observed in this figure, which raises
the question if the boundary condition at the outlet represents the infinitely long channel
correctly. The appropriate setting of boundary conditions for the numerical simulation
of flows in infinite domains is still a great challenge. However, the artificial boundary
conditions do not have an impact on the numerical solution for 2 ≤ x1 ≤ 8, which was
observed by Evans and Paolucci4.

We computed the following reference values for the Nusselt number at the bottom and
top boundary

Nub = 2.400353 , Nut = 2.575916 ,

which result from simulations with decreasing constant step sizes for all methods. The
reference values are converged up to the sixth decimal and equal for all methods consid-
ered. The reference value Nut at the top boundary is comparable to the value obtained
by Evans and Paolucci4. There Nub was not considered.

Time-adaptive simulations are performed for the comparison of the one- and two-step
solvers considered, where tolerances of 10−2, 5× 10−3, . . . , 5× 10−5 for the peer methods
and Rosenbrock methods are required. Fig. 2 and Fig. 3 relate the relative error of
the computed Nusselt numbers at the bottom and top boundary to the CPU time in
seconds. The higher accuracy and better efficiency of Peer4 and Peer5 compared to
the Rosenbrock methods are obvious. Peer4 delivers the best results. The relatively
poor performance of Ros2, which is clearly outperformed by the peer methods and also
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Figure 2: Nusselt number at bottom boundary. The relative error of the Nusselt number at the
bottom boundary of the plane Poiseuille flow is presented for peer and Rosenbrock solvers. The requested
time tolerances are 10−2, 5× 10−3, . . . , 5× 10−5.

by the other third-order methods, shows the usefulness of higher order approximations
for the thermo-convective benchmark problem.

5 CONCLUSIONS

A numerical solution of thermally coupled benchmark flow is provided by two linearly
implicit two-step peer methods and three one-step Rosenbrock methods combined with
finite element methods to discretize in space. We could observe that the peer method
Peer4, which has order three for variable time steps and order four for constant time
steps, performs very well compared to the other Rosenbrock solvers tested. It clearly
outperforms the second order method Ros2, which is similar to the well-known Crank-
Nicolson method, by several orders of magnitude. The second two-step peer method,
Peer5, still performs well but less efficient than Peer4. We conclude that two-step peer
methods recommend themselves as good candidates for CFD computations that demand
for high resolution.
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Figure 3: Nusselt number at top boundary. The relative error of the Nusselt number at the top
boundary of the plane Poiseuille flow is presented for peer and Rosenbrock solvers. The requested time
tolerances are 10−2, 5× 10−3, . . . , 5× 10−5.

REFERENCES

[1] R. Codina and J. Principe, Dynamic subscales in the finite element approximation
of thermally coupled incompressible flows. Int. J. Numer. Meth. Fluids, 54, 707–730
(2007).

[2] K. Dekker and J.G. Verwer, Stability of Runge-Kutta methos for stiff nonlinear
differential equations, North-Holland Elsevier Science Publishers, 1984.

[3] B. Erdmann, J. Lang and R. Roitzsch, KARDOS user’s guide. Tech. Rep. ZR 02–42,
Konrad-Zuse-Zentrum Berlin, 2002.

[4] G. Evans and S. Paolucci, The thermoconvective instability of plane Poiseuille flow
heated from below: a proposed benchmark solution for open boundary flows. Int. J.
Numer. Meth. Fluids, 11, 1001–1013 (1990).

[5] A. Gerisch, J. Lang, H. Podhaisky and R. Weiner, High-order linearly implicit two-
step peer — finite element methods for time-dependent PDEs. Appl. Numer. Math.,
59, 624–638 (2009).

9



Bettina Gottermeier and Jens Lang

[6] B. Gottermeier, J. Lang, Adaptive two-step peer methods for incompressible Navier-
Stokes equations. Tech. Rep. 2592, Technische Universität Darmstadt, 2009. — to
appear in Proceedings of ENUMATH 2009, Springer-Verlag.

[7] V. John, J. Rang, Adaptive time step control for the incompressible Navier-Stokes
equations. Comput. Meth. Appl. Mech. Engrg., 199, 514–524 (2010).

[8] J. Lang, Adaptive incompressible flow computations with linearly implicit time dis-
cretization and stabilized finite elements. In: K. D. Papailiou, D. Tsahalis, J. Periaux,
C. Hirsch and M. Pandolfi (eds.) Computational Fluid Dynamics, pp. 200–204, John
Wiley & Sons, New York (1998).

[9] J. Lang, D. Teleaga, Towards a fully space-time adaptive FEM for magnetoquasistat-
ics. IEEE Trans. Magn., 44, 1238–1241 (2008).

[10] J. Lang, J. Verwer, ROS3P — an accurate third-order Rosenbrock solver designed
for parabolic problems. BIT, 41, 731–738 (2001).

10


