
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal,14-17 June 2010

COMPARISON OF BODY-FITTED AND IMMERSED BOUNDARY

METHODS FOR BIOMECHANICAL APPLICATIONS

Bruno Tayllamin∗, Simon Mendez∗, Ramiro Moreno†, Ming Chau††, Franck

Nicoud∗

∗I3M, University Montpellier 2, France
bruno.tayllamin@math.univ-montp2.fr, simon.mendez@math.univ-montp2.fr,

franck.nicoud@univ-montp2.fr
†INSERM U 858 I2MR, University Hospital Toulouse-Rangueil, France

moreno.r@chu-toulouse.fr
††Advanced Solutions Accelerator, Montpellier, France

mchau@advancedsolutionsaccelerator.com

Key words: CFD, Immersed boundary, blood flow, stenosis, aorta

Abstract. New Immersed Boundary methods for a staggered grid are developed and

compared with a reference Body-Fitted method in the context of biomedical blood flow sim-

ulations. The Immersed Boundary methods developed consist in reconstructing the velocity

value close to the wall using different interpolation procedures while keeping a homogeneous

Neumann boundary condition for pressure. The methods are devised to be robust enough

in order to cope with complex geometry arising in the biomedical context. The capability

of the Immersed Boundary methods to achieve mass conservation is assessed when con-

sidering the case of the flow through a stenotic vessel. To demonstrate the potential of

these Immersed Boundary methods to cope with more physilogical flow, simulation of a

pulsatile flow through an aortic cross was performed. In both flow cases, the flow solution

obtained using the Immersed Boundary methods is compared with that obtained using a

Body-Fitted method.

1 INTRODUCTION

The most common approach in Computational Fluid Dynamics (CFD) in complex
geometry is to make use of a body-fitted (BF) method based either on finite volume or
finite element methodology. This approach has led to accurate simulations of blood flow
in arteries 5, 9. However, the generation of the body-fitted grid is time consuming and
requires an engineering knowledge from the user. Thus, the use of a body-fitted method
for blood flow simulation is restrained to research area and has limited benefit for clinical
purposes.

The Immersed Boundary Method (IBM) has emerged as an alternate method1, 4 which
does not require any grid generation task. Simulations of flow into complex geometries4
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are done on a Cartesian grid which can be automatically generated, the presence of solid
boundaries being accounted for by appropriate forcing added to the classical flow equa-
tions. The method is thus more appropriate for a practical use of blood flow simulations
in clinical routine.

Using a cartesian grid has the disadvantage that, in general, the physical boundary
of the body does not conform to the grid; it is possible that not even a single node
belonging to the grid matches the physical boundary. The difficulty is thus to set onto
the cartesian grid the boundary conditions needed to solve the flow equations, altough
these normally apply at the body surface. The IBM permits to cope with this difficulty by
enforcing the effects of the physical boundary conditions over the flow solution computed
on the cartesian grid. Several formulations of the IBM have been proposed for the forcing
procedure (see Mittal et Iaccarino4 for a review). These formulations belong either to a
discrete or a continuous approach. In the former, the forcing is applied directly on the
discretized flow equations while in the latter the forcing generally takes the form of a
body force term added to the continous flow equations.

In the reconstruction formulation the value of the flow variables is directly enforced on
the cartesian grid nodes closest to the physical boundary instead of being computed by
solving the fluid flow equations1. The enforced value of a flow variable usually takes the
form of a linear combination between the value of that variable at the physical boundary
and its value further inside the flow domain. Fadlun et al.1 used a linear interpolation for
enforcing the velocity value on nodes closest to the physical boundary.

The enforced variables serve as boundary conditions for solving the flow equations
inside the flow domain of the cartesian grid. In Fadlun et al.1 only velocity was enforced.
Thus the flow equations were numerically solved using a Dirichlet boundary condition for
velocity over the nodes closest to the physical boundary. However, the pressure boundary
condition over the boundary nodes was let undefined; pressure was computed on every
node of the grid including the nodes where velocity was enforced. When using a pressure
correction scheme, the pressure gradient at boundary nodes can modify the enforced
velocity value, possibily decreasing the accuracy of the reconstruction procedure2. Kang et

al.3 show another drawback of letting the pressure boundary condition undefined. Due to
the discretizing procedure, the pressure derivatives at the nodes closest to the body surface
are computed using both physical pressure on nodes in the fluid domain and unphysical
pressure on nodes outside. An unphysical ”pressure coupling”3 between the flow domain
and the outside can then take place. According to these authors, this ”pressure coupling”
can affect the whole flow solution depending on the flow case considered. These previous
studies demonstrate the need to restrain the pressure computation to the part of the
cartesian grid where the fluid flows. This implies to enforce both a velocity and a pressure
boundary condition at nodes in the fluid domain closest to the body surface.

The question of making velocity and pressure boundary conditions consistent has been
raised by Ikeno et Kajishima2. This question is of particular relevance when a staggered
grid is used since pressure nodes do not coincide with velocity nodes. Ikeno et Kajishima2
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assessed the effect of different treatments of the pressure boundary condition while using
an interpolation scheme to enforce velocity on a staggered grid. In the present study,
different velocity reconstruction methods are compared, while enforcing a homogenous
Neumann pressure boundary condition on a staggered grid. We follow the strategy of Kang
et al.3 originally formulated on a collocated mesh, where pressure is only computed over
the flow domain of the grid. We propose new forcing methods for velocity on staggered
grids and compare them with existing ones.

The numerical method is described in section 2, where the different formulations for
velocity reconstruction are detailed. An academic test case corresponding to a locally
constricted pipe is then discussed in section 3. The occlusion mimics the presence of an
atherosclerotic plaque narrowing the lumen of a human vessel. Results from our IBM
are notably compared with a reference solution obtained using a high-order body-fitted
(BF) numerical tool. Special attention is paid to the error in mass conservation, which
will serve as a quality criterion. Eventually, the application of the method to a pulsatile
flow through an in vitro model of an aorta cross is presented in section 4. The general
satisfactory agreement between the IBM and the BF results demonstrate the potential of
the former for clinical routine applications.

2 FORMALISM

We assume blood to be a Newtonian fluid and the flow to be incompressible. Thus
the governing equations are the 3-D Navier-Stokes (N.S.) equations (with summation
convention):

∂ui

∂t
+ uj

∂ui

∂xj

= −
1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

, (1)

∂ui

∂xi

= 0, (2)

over Ωfluid (see Fig. 1) where ui is the ith component of the flow velocity vector U , xi the
ith space variable, t is the time variable, ρ is the density, p is the pressure, and ν is the
kinematic viscosity.

Assuming a one-step explicit time integration scheme, the time discretized equations
are at time step n:
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where un+1
i and pn+1 are to be computed.
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2.1 Numerical method

The projection scheme on a staggered cartesian grid initialy proposed by Harlow et
Welch8 is used in this study. It is recalled in the following for completness and to introduce
useful notations. A classical way to solve the coupled system Eqs. (3) and (4) is to use a
projection method8 where the time stepping is split in two steps: the prediction and the
correction steps. During the prediction step, equation

ūi = un
i + ∆t(−un

j

∂un
i

∂xj

−
1

ρ

∂pn

∂xi

+ ν
∂2un

i

∂xj∂xj

) (5)

is used to compute a predicted velocity ūi which is not divergence free. In the correction
step, velocity and pressure are advanced in time using:

un+1
i = ū −

∆t

ρ

∂δp

∂xi

(6)

pn+1 = pn + δp, (7)

where the pressure update δp is computed so that the velocity field at time n + 1 is
divergence free:

¯∂ui

∂xi

=
∆t

ρ

∂2δp

∂xi∂xi

(8)

Equations (5) to (8) can easily be embedded into a three-stage Runge-Kutta scheme in
order to increase accuracy. The only change compared to the previous equations is to
replace ∆t by αk∆t where (α1, α2, α3) = (0.5, 0.5, 1). A staggered cartesian grid is then
used to discretize the spatial derivatives of (5) to (8) thanks to finite differences:
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where
δ1

∆xj

stands for centered 1st order derivative in the j direction and
δ2

∆x2
j

for the

centered 2nd order derivative. Algebraic equations (9) to (11) are to be solved for un+1
i

and pn+1 at each nodes included in Ωfluid.
The numerical method being fully explicit, the time step must satisfy both the convec-

tive and diffusive stability criteria. In the present study, the CFL and Fourier numbers
were set to 0.5 and 0.4 respectively, well below their theoretical limit values. Still, some
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numerical instabilities were sometimes observed for complex flows solved on coarse meshes.
For stability improvement, a 4th-order Artificial Viscosity (AV4) term is thus added to
(9) yielding:

ū = un
i + ∆t(−un

j

δ1un
i

∆xj

−
1

ρ

δ1pn

∆xi

+ ν
δ2un

i
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) − sC∗
av4∆x4

j

δ4un
i
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, (12)

where
δ4

∆x4
j

stands for the 4th-order derivative in the j direction. The amount of AV4

depends on the value of s, a user parameter set between 0 and 1. Besides, C∗
av4 is the

value of the AV4 coefficient for which the 4th-order artificial term is comparable to the
physical 2nd-order diffusive term. This value is obtained by considering a 1-D flow model
and assuming the complex exponential

u = eikx (13)

to be part of the numerical solution, where k is the wave number and x the space variable.
The coefficient C∗

av4 is assessed by writing:

∆tν
δ2u

∆x2
∼ C∗

av4∆x4 δ4u

∆x4
. (14)

Considering k =
2π

L
to be a physically relevant wave number, where L is the characteristic

length of the computational domain, Eqs. (13) and (14) lead to:

C∗
av4 ∼ ∆t

νN4
x

(2πL)2
, (15)

where Nx is the characteristic number of grid nodes. Using coefficient C∗
av4 as computed

in (15) will dissipate even the largest scales of size L. This would be the case when the
user parameter s is set to unity. Very small values of s are obviously preferred so that
only a small amount of artificial viscosity is added. The AV4 acts as a numerical diffusive
term for high spatial frequency variables value that are unphysical noise. Application to
the 3D problem is straighforward, the user parameters being the characteristic length of
the flow and value of the scaling s.

2.2 Immersed Boundaries

For inlets and outlets, classical Dirichlet and non-reflecting conditions are used. On
the other hand, a specific treatment is required to handle solid boundaries. Note that
only rigid walls are considered in this study. Calling Γib such solid boundary, the physical
conditions to impose over Γib are obviously:

ui,Γib
= 0, (16)
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Figure 1: Immersed Boundary

∂δp

∂xi

ni = 0, (17)

where n = (n1, n2, n3) is the unit vector normal to Γib. In this paper, n is chosen inward.
In order to locate the physical boundary Γib on the cartesian grid, we use a distance
fonction φ defined on each node of the grid. This fonction gives at each node the normal
distance to the closest boundary Γib. φ is defined as:

φ(xi) = 0 xi ∈ Γib, (18)

φ(xi) > 0 xi ∈ Ωfluid, (19)

φ(xi) < 0 xi /∈ Ωfluid, (20)

where xi stands for the position vector of a grid node where the ith component of the
velocity is defined. Following Kang et al.3 we approximate the physical domain Ωfluid

by the computational domain Ωa
3 (see Fig. 1). Ωa is defined as containing all the cells

entirely lying inside Ωfluid (see Fig. 2). We also define Γa as being the boundary of Ωa

and Γenforcing as refering to all the faces which receive a specific treatment through the
immersed boundary method. Of course, Γenforcing contains Γa since a boundary condition
must be given on each face belonging to the boundary of the computational domain. Note
that due to the staggered grid arrangement, Γenforcing also contains the faces interior to Ωa

that have at least one neighbour outside (see Fig. 1). Four forcing methods are considered
in this paper. Independantly of these methods, the velocity value outside Ωa is always set
to zero.
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Figure 2: The Approximated Domain on the Staggered grid

The first method, denoted by ”A”, consists in forcing the velocity value over Γa to its
value over Γib given by (16). In other words, the boundary condition (16), which normally
applies on Γib, is replaced by ui = 0 on Γa. This method is rather similar to the ”step
wise way” of Fadlun et al.1. The remaining nodes of Γenforcing that do not belong to Γa do
not receive any specific treatment. Instead, velocity at these nodes is obtained by solving
the flow equations, as it is done further inside Ωa. Velocity is forced to zero outside Ωa.
Note that this makes the effective zero velocity boundary somewhat different than the
stair step like boundary Γa.

In the second forcing method ”B”, the boundary condition (16), which normally applies
on Γib, is replaced by a Dirichlet condition on Γenforcing :

ūi,enforcing = αūi,Ωa
. (21)

This is a linear interpolation where α =
φxi,enforcing

φxi,Ωa

and where ūi,Ωa
is the velocity

solution to the discretized N.S. equations at xi,Ωa
. The node xi,Ωa

is chosen among the
neighbours of xi,enforcing belonging to Ωa in such a way to maximize the quantity:

xi,Ωa
− xi,enforcing

‖xi,Ωa
− xi,enforcing‖

· n, (22)

where

n =
∇φ(xi,enforcing)

‖∇φ(xi,enforcing)‖
(23)

is an approximation to the local normal to the body surface Γib. In doing so, the inner
node which is the most aligned to the immersed boundary normal is selected. Clearly, this
approach is only 1st-order accurate and could be improved by using several internal nodes
xi,Ωa

to define ui,enforcing. However, this simple approach was preferred in this study
where the main focus is put on mass conservation issues and biomedical applications,
where rather large uncertainties regarding the geometry definition are present.

In the last forcing methods ”C” and ”D”, a correction is added to the forcing ”B”.
The first step is to compute, before the interpolation procedure ”B”, the velocity U at
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the center of the neighbour cells of xi,enforcing . The second step consists in applying
the forcing ”B” as described above. Finally, a correction to the enforced value ūi,enforcing

is computed and added. The correction is meant to remove the normal component of the
flow velocity at xi,enforcing:

ūi,enforcing = αūi,Ωa
− (ūj,cellnj)ni (24)

where ūj,cell is computed at the center of neighbour cells before the forcing ”B” is applied.
In method ”C”, uj,cell is computed in the neighbour cell that belongs to the fluid domain
Ωa. In ”D”, uj,cell is computed at exact location of xi,enforcing using the two neighbour
cells, should they belong to Ωa or not. For all the approaches ”A”, ”B”, ”C”, and ”D” the
homogeneous Neumann boundary condition for pressure (17) is enforced over Γa. Thus,
on theses nodes, the pressure correction (10) does not act. In other words, the velocity
values enforced on Γa by the IBM remain unchanged after the projection step has been
completed.

2.3 The BF numerical tool : the YALES2 solver

YALES2 (http://nonpremixed.insa-rouen.fr/∼moureau/yales2.html) is an unstructured,
body-fitted Computational Fluid Dynamics solver, covering a wide range of applications6.
Thanks to its object-oriented structure, using modules in Fortran 90, it is very modular
and includes multi-physics solvers: solvers for incompressible and compressible flows, level-
set, magneto-hydrodynamic, spray, lagrangian particle tracking solvers, among others.
YALES2 relies on central finite-volume schemes of fourth order in space. A fourth-order
time integration is used. For the present application, the incompressible Navier–Stokes
equations are solved using a fractional step method. The deflated PCG method is used
for the Poisson solver. YALES2 is a massively parallel CFD solver, based on MPI.

3 IDEALIZED STENOSIS CONFIGURATION

A first simple configuration is studied to evaluate the different IBM implementations,
presented earlier. Grid-converged YALES2 results are generated in the same configura-
tion, and are used as a reference.

3.1 Presentation of the computations

3.1.1 Geometry

The configuration studied in this section is an idealized stenosis. It is one of the
most popular geometries in computational fluid dynamics studies for cardio-vascular ap-
plications. To mimic stenotic flows in arteries, a rigid straight pipe is considered, with
a constriction. The geometry is perfectly axisymmetric. The diameter of the pipe is
D = 0.05 m far from the stenosis, and the diameter is halved at the throat of the stenosis.
The axis of the geometry is the z axis. The origin of the axes is located at the center of
the throat. The radius of the stenosis is
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r(z) =
D

2
[1 − 0.25(1 + cos(2πz/L))] if|z| ≤ L/2, (25)

r(z) =
D

2
if|z| ≥ L/2. (26)

The length of the constriction is L = 4 D. The domain inlet is located at z = −10 D,
while the outlet is located at z = 10 D in the computations performed with the BF solver
and z = 30 D in the computations performed with the IBM solver. This extension of the
domain has been decided for the IBM computations to observe the portion downstream
of the constriction, where the flow goes back to the Poiseuille solution.

3.1.2 Grid

The grid used in the computations depends on the solver: for the computations using
the IBM solver, a cartesian grid with constant spacing ∆x/D = 0.03, ∆y/D = 0.03
and ∆z/D = 0.2 is used. The BF solver uses body-fitted unstructured grids. In the
computations presented here, two grids are used. Grid 1 contains 3,194,042 tetrahedral
cells. Typical cell sizes are 0.025 D at the throat and 0.05 D far from the throat. Grid 2
is a direct refinement of grid 1 by automatic refinement: each tetrahedral cell is cut into
8 cells by YALES2. Grid 2 thus contains 25,552,336 tetrahedral cells, with typical cell
sizes 0.0125D at the throat and 0.025 D far from the throat. The use of the two grids
allows to check the grid convergence of the solution. Figure 3 shows the geometry of the
configuration and of a view of the surface mesh of grid 1 in the throat region.

Figure 3: Top: computational domain for the BF calculations S5 and S6 (−10D ≤ z ≤ 10D). Bottom:
view of the surface mesh of grid 1 (S5); zoom in the throat region shown in the top figure.

3.1.3 Run parameters

Simulations are laminar, with the inflow Reynolds number Re = W0D/ν ≈ 250, with
W0 = 0.0172 m s−1 the uniform velocity imposed at the inlet condition and ν = 3.5×10−6
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m2.s−1 the kinematic viscosity. Table 1 reports the parameters of the simulations pre-
sented in the following section. As only one operating point is considered, only numerical
parameters change between simulations: solver, grid, time step and implementation for
the IBM. In table 1, the time step ∆t is defined by comparison with a characteristic time
t0 = D/W0 = 2.91 s.

Simulation Solver Grid IBM Time step ∆t/t0
S1 IBM 40x40x200 A 1.93 × 10−2

S2 IBM 40x40x200 B 1.87 × 10−2

S3 IBM 40x40x200 C 1.89 × 10−2

S4 IBM 40x40x200 D 1.88 × 10−2

S5 BF grid 1 - 2.63 × 10−3

S6 BF grid 2 - 5.50 × 10−3

Table 1: Operating conditions and numerical characteristics of the simulations presented. The reader is
referred to section 2.2 for the definition of the immersed boundaries implementation methods.

3.2 Results

Before comparing IBM and BF results, two preliminary features have to be studied.
First, if BF results are considered as reference results, they have to be independent of the
grid. This is what is shown in the next paragraph. Concerning IBM results, a critical
aspect is mass conservation. Thus, § 3.2.2 is devoted to the evaluation of the different
IBM implementations in terms of mass conservation. The last part of this section will
compare IBM and BF results in terms of pressure and velocity profiles.

3.2.1 BF simulations: grid convergence results

Grid convergence has been tested thanks to automatic refinement available in YALES2.
Grid 1 was refined by cutting each tetrahedral cell into eight cells. This automatic re-
finement uses the method developed by Rivara7. This capacity allows to perform grid
refinement studies in a simple and efficient manner, without reusing a grid generator.
Velocity and pressure profiles were extracted from simulations S5 and S6, and no major
difference is observed between the two calculations, as shown in Fig. 4. Hence, when
comparing to IBM simulations, BF results will be extracted only from simulation S6.

3.2.2 IBM simulations: mass conservation

One major issue when using immersed boundaries method is the mass conservation.
As solid boundaries are not described by the mesh itself, the impermeable wall condition
is not represented by a zero normal velocity at the wall. It is thus of major importance
to control mass conservation in the calculations. This paragraph is dedicated to the
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Figure 4: Comparison of runs S5 ( ) and S6 ( ) to show grid convergence in the YALES2 results.
Axial velocity (a) and pressure (b) profiles are extracted over the centerline.

comparisons of the IBM implementations regarding the mass (or volume) flow rate along
the domain.

The volume flow rate is calculated at each cross-section of the domain described by the
mesh (ie every ∆z/D = 0.2) by integration over the faces entirely included in the fluid
domain. The volume flow rate can be plotted as a function of the axial coordinate z, as
in Fig. 5.

Figure 5(a) displays the volume flow rate results by non-dimensionalizing Q by the
inlet volume flow rate Q0. As expected, method A (simulation S1) ensures perfect mass
conservation (Q = Q0 along the domain). The three other simulations show changes in
the volume flow rate near the inlet boundary condition. This is due to the prescription of
constant velocity at the inlet condition. Imposing constant inflow velocity, which ignores
the effect of the adjacent non-slipping condition at the wall, leads to important non-
zero wall normal velocity near the intersection between the wall and the inflow. Gain or
loss of mass is thus observed near the inlet. Further downstream (and upstream of the
constriction), the flow becomes parallel to the wall and Q is conserved for all methods.
The constriction is the region where the volume flow rate varies most. Whatever the
IBM (expect for method A of course), the simulation shows a loss of mass where the
cross-section decreases and a gain followed by a small loss where it expands. Variations
of volume flow rate are the highest for simulation S2 (IBM B) and the smallest for S4
(IBM D). In the downstream portion of the domain, mass conservation is ensured when
the flow reaches a parallel state. Figure 5(b) allows to compare the methods by non-
dimensionalizing Q by a value typical of the volume flow rate effectively reaching the
constriction. This allows to visualize the net gain/loss of mass due to the constriction
(without the inflow effect). Method D (S4) is shown to be the best method for mass
conservation (except for method A that is designed to strictly conserve mass).
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Figure 5: Volume flow rate as a function of the axial coordinate z/D for simulations S1 ( ), S2 (
), S3 ( ), S4 ( ). The volume flow rate is non-dimensionalized by the inlet volume flow rate Q0

(a) or the volume flow rate at z = −5D, in the straight tube portion upstream of the constriction (b).

3.2.3 Comparisons of the IBM and BF results

The aim of this section is to compare results from the IBM and the BF solvers. First,
pressure is shown over the centerline (Fig. 6). As the mass flow rate is different in
each simulation, direct comparison is not easy. Figure 6 shows the shape of evolution of
pressure over the centerline, by comparing (P − Po)− (Pi − Po), Pi being the pressure at
the inlet condition (z/D = −10) and Po the pressure where the outlet condition is located
in simulation S6 (z/D = 10). Pressure results from the IBM simulations all reproduce
the shape of the results obtained in the BF simulation S6. Better comparison is obtained
with method D (simulation S4). The bottom figure of Fig. 6 displays a pressure field from
simulation S4, to show the smoothness of the instantaneous field obtained using the IBM
solver. This is an advanteage of following the ”pressure decoupling” strategy of Kang
et al.3. It allows the flow solution in the computational domain to stay unaffected by
unphysical variables lying in the remaining part of the grid that could otherwise, through
the pressure computation, cause local and unphysical irregularities.

Streamwise and transverse velocity profiles extracted from the symmetry plane y =
0 are now presented. Eight profiles are shown, at z/D = −3;−2;−1; 0; 1; 2; 3; 4, for
simulations S1 to S4 (IBM) and S6 (BF). Comparing velocity profiles is not that easy,
as the same inlet condition for all simulations (W0 = 0.0172 m.s−1) leads to different
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Figure 6: Pressure in the IBM calculations. Top: comparison of non-dimensionalized pressure over the
centerline for simulations S1 ( ), S2 ( ), S3 ( ), S4 ( ) and S6 ( ). Bottom: pressure
field in simulation S4, over the symmetry plane. Scale is from black (low values) to light grey (high
values). White pressure isolines allow to show the smoothness of the pressure field.

volume flow rates. Moreover, the volume flow rate varies locally in simulations (as shown
in § 3.2.2). For comparisons of the different simulations, velocity profiles have been non-
dimensionalized by the local bulk velocity in each calculation (local volume flow rate
divided by the real cross-section). Figure 7 displays streamwise velocity profiles. It
appears that all IBM simulations give reasonable results. The shape of the streamwise
velocity profiles is always well reproduced, except at z/D = −1 (Fig. 7c), where IBM
simulations show an important contraction of the flow. The size of the recirculation zone
downstream of the constriction is well predicted. However, methods B, C and D under-
predict the intensity of the back flow. This is expected to be corrected by improving the
interpolation method in the IBM implementation (Eqs. (22) and (23)).

Figure 8 displays transverse (wall-normal) velocity profiles (x velocity U against the
x coordinate). More differences between the IBM and BF simulations are observed.
Curiously, methods A and B show non-physical wall-normal velocity at the first two
profiles (z/D = −3 (a) and z/D = −2 (b)). However, values of velocity are small and
these errors are not critical. Method A is shown to anticipate the contraction location,
due to the gross geometry description. In the constriction region, velocity profiles in all
simulations are very similar, method B being the less accurate in general.

Overall, method B (simulation S2) is the one showing the largest differences with the
BF results. Methods C and D give similar results. Method D is preferred to method C
for the slightly better mass conservation properties shown in the former section. Method
A is rather good, though it is expected to suffer more than the other methods of low
resolution.
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Figure 7: Comparison of non-dimensional streamwise velocity W profiles for simulations S1 ( ), S2
( ), S3 ( ), S4 ( ) and S6 ( ). W is non-dimensionalized by the local bulk velocity Wb in
each simulation. Profiles extracted on the (x,z) plane, for y = 0, at z = −3D (a), z = −2D (b), z = −D
(c), z = 0 (d), z = D (e), z = 2D (f), z = 3D (g) and z = 4D (h).

4 IN VITRO MODEL OF AORTIC CROSS

The aim of this section is to provide a preliminary comparison in a more realistic case.
The in vitro model of an aortic cross was used in the University Hospital of Toulouse
Rangueil (France), to make detailed measurements using Magnetic Resonance Imaging.
These measurements were done with a moving geometry (see Nicoud et al.10). Here, as a
first step, the geometry of the aorta is fixed and corresponds to one phase of the moving
geometry.

4.1 Presentation of the computations

The geometry of the aorta model is presented in Fig. 9. Compared to a real aorta
geometry, the ascending aorta has been lengthened and severely bent. The left subclavian
artery is not represented. The boundary conditions (BC) are denoted by numbers in Fig. 9:
BC 1 is the main inflow condition, the inlet of the ascending aorta. BCs 2 and 3 represent
the brachiocephalic trunk and the common carotid artery, respectively. BC 4 is an outlet
condition on the descending aorta. BC 5 is a rigid non-slip wall boundary condition.

Note that the extra pipe section at the inlet of the computational domain (near BC 1
in Fig. 9) is part of the in vitro model. It was designed in such a way to promote the swirl
motion of the fluid flow at the inlet of the physiological part of the phantom in order to
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Figure 8: Comparison of non-dimensional transverse velocity U profiles for simulations S1 ( ), S2
( ), S3 ( ), S4 ( ) and S6 ( ). U is non-dimensionalized by the local bulk velocity Wb in
each simulation. Profiles extracted on the (x,z) plane, for y = 0, at z = −3D (a), z = −2D (b), z = −D
(c), z = 0 (d), z = D (e), z = 2D (f), z = 3D (g) and z = 4D (h).

reproduce the in vivo hemodynamic conditions more closely. The simulations began from
an initially quiescent flow state and continued for a number of full cardiac cycles in order
to allow the development of a fully periodic flow, representative of a regular heartbeat.
It was found that the main features of the vascular flow field became periodic within four
cycles.

In the calculation, BC 1 is mainly an inflow condition while BCs 2, 3 and 4 are outflow
conditions: mass goes out of the domain through 2, 3 and 4. In terms of numerics, the flow
is prescribed at BCs 1, 2 and 3 and let free at BC 4. Zero velocity is imposed on the rigid
wall (BC 5). In both calculations, the flow rate Qj is the quantity imposed at BCs j =1,
2 and 3, through a Fourier series in time t: Qj = a0,j +

∑
i=1,5(ai,jcos(iωt) + bi,jsin(iωt)).

ω is a pulsation, prescribed at ω = 6.3263 s−1. The cardiac cycle lasts 1 s. ai,j and bi,j

coefficients are given in Table 2.

BC a0,j a1,j a2,j a3,j a4,j a5,j b1,j b2,j b3,j b4,j b5,j

j=1 40.15 16.94 -22.59 1.05 -2.15 -1.61 28.50 -0.21 1.56 2.33 -0.72
j=2 -4.23 1.58 2.64 -0.48 -1.27 0.03 2.41 -0.32 -1.67 1.17 0.20
j=3 -1.70 0.63 1.06 -0.19 -0.51 0.01 0.97 -0.13 -0.67 0.47 0.08

Table 2: Coefficients of the time Fourier series defining the volume flow rate at BCs 1, 2 and 3. Values
are scaled by 10−6 m3.s−1)
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Figure 9: Presentation of the aortic cross model geometry. Left view: computational domain. Right
views: presentation of the skin mesh of the BF computation. The scale is shown by the black bar of 2
cm. The horizontal black line cutting the left figure shows the location of the cutting plane used later
for flow comparisons in Fig. 12.

Figure 10 presents the volume flow rates imposed at BCs 1, 2 and 3. As the wall is
rigid, the flow rate at BC 4 exactly compensates the flow rates at the other BCs. Note
that BCs 2 and 3 are always outflow conditions, while BC 1 is an inflow condition most
of the time, but experiences negative flow rates during a short period of the cycle (0.5 s
≤ t ≤ 0.575s).

The grids used in the IBM and BF solvers share the same characteristic discretization
size of 1 mm. Figure 9 displays views of the skin mesh in the BF computation: mesh
size is sufficient to have a reasonable description of the geometry. The BF grid contains
1,195,791 tetrahedral cells. For the calculation presented in this section method C has
been used.

4.2 Results

Numerical results are compared in a sagittal plane cutting through BC 3. The velocity
magnitude is displayed in Fig 11. Two instantaneous fields are shown for each simulation:
one during systole, at ts = 0.3 s (Fig 11a,b) and one during diastole, at td = 0.5 s
(Fig 11c,d). The velocity magnitude fields are very similar between the BF and the IBM
simulations. The global flow structure is well reproduced, even if differences are seen in
the details. Some crucial features of the flow are well reproduced by the IBM solver,
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Figure 10: Evolution of volume flow rates Q at BC 1 ( ), BC 2 ( ) and BC 3 ( ) during the
cardiac cycle of 1 s. Systole (ts) and diastole (td) instants, used in the remainder of the article, are
defined in the figure.

notably the detached flow (low-velocity regions) near the internal wall, where curvature
is high. Note that the most striking difference between both simulations lies in the small
eddies visible in the BF solver. This is due to the difference in the order of the methods:
the IBM solver uses a second-order scheme in space, while the BF solver uses a fourth-
order scheme. For a fairer comparison, simulations to come with the BF method in future
studies will be performed with a second-order scheme.

For more precise comparisons between the two solvers, Fig. 12 allows visualization
of the flow in two cross-sections of the aorta model. A horizontal plane is defined (see
Fig. 9). It cuts the aorta model at two locations, one in the ascending aorta and the other
in the descending aorta. The velocity component in the direction normal to the plane is
displayed at the same time instants as for the sagittal plane: ts = 0.3 s (Fig. 12a) and
td = 0.5 s (Fig. 12b).

Scale is the same in BF and IBM results but differ for the systole and diastole instants.
Conclusions are similar with what was drawn from the sagittal plane comparisons. The
overall structure is reproduced, even if the agreement is not perfect. Again the reason
for these difference in the details have yet to be established, though the order of the
numerical method is expected to have a major role. In such a dynamical flow, showing
strong variations in space and time, the impact of the order of the numerical method can
be very important. Recall that the cell size is similar in both calculations.
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(a) (b)

(c) (d)

Figure 11: Velocity magnitude over a sagittal plane during systole at time ts = 0.3 s (a,b) and during
systole at time td = 0.5 s (c,d). Comparison of BF (a,c) and IBM (b,d) results.
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(a) (b)

Figure 12: Comparison of BF and IBM results on vertical velocity (normal to the cutting planes) over
the cross-section located on the horizontal plane shown in Fig. 9 during systole (a) and diastole (b).

5 CONCLUSION

Here we use the IBM to simulate blood flow into idealized human vessels. We developed
new forcing methods for reconstructing the velocity value close to the vessel wall and used
a homogeneous Neumann boundary condition for pressure at this location. In section 2.2
the methods were described and formulated for a staggered grid.

In section 3 the case of a stenotic flow was considered to assess the IBM properties.
Results obtained using the different IBM implementations were compared with those
obtained using a reference BF method. It was shown that, overall, the different IBM
are capable to achieve mass conservation with reasonable accuracy. Also, flow solution
obtained using the IBM and the BF are quite similar.

Preliminar results of the simulation of a physiological pulsatile flow through a aortic
cross model were shown in section 4. Comparisons between the IBM and the BF showed
that, again, the general agreement between these methods is satisfactory, altough a more
detailed analysis is needed.

Results obtained in this study support the capability of the IBM to cope with complex
and physiologically relevant flow whithout the grid generation tasks needed. This demon-
strate the potential of the IBM to perform clinical applications of blood flow simulation.

6 ACKNOWLEDGEMENTS

This work was conducted in the framework of the OCFIA research program funded
by the Agence Nationale de la Recherche (ANR-07-CIS7-006-02). This work was granted
access to the HPC resources of CINES (Centre Informatique National de l’Enseignement

19



Bruno Tayllamin, Simon Mendez, Ramiro Moreno, Ming Chau, Franck Nicoud

Supérieur) under the allocations c2010035139 and x2010036363 made by GENCI (Grand
Equipement National de Calcul Intensif). Dr. V. Moureau is gratefully acknowledged for
giving access to the YALES2 solver.

References

[1] E. A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof. Combined Immersed-Boundary
Finite-Difference Methods for Three-Dimensional Complex Flow Simulations, J.

Comp. Phys., 161, 35-60 (2000).

[2] T. Ikeno and T. Kajishima, Finite-difference immersed boundary method consistent
with wall conditions for incompressible turbulent flow simulations, J. Comp. Phys.,
226, 1485-1508 (2007).

[3] S. Kang, G. Iaccarino, F. Ham and P. Moin, Prediction of wall-pressure fluctuation in
turbulent flows with an immersed boundary method, J. Comp. Phys., 228, 6753-6772
(2009).

[4] R. Mittal and G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech.,
37, 239-261 (2005).

[5] R. Moreno, M. Chau, S. Jeetoo, F. Nicoud, F. Viart, A. Salvayre, H. Rousseau,
Optimized Computational Functional Imaging for Arteries, In proceedings of the 8th

International Meeting on High Performance Computing for Computational Science,
Toulouse, France (2008).

[6] V. Moureau and O. Desjardins, A second-order Ghost-Fluid Method for the primary
atomization of liquid fuel in air-blast type injectors, In proceedings of the Summer

Program 2008, Center For Turbulence Research, Stanford University(2008).

[7] M. C. Rivara, Mesh refinement processes based on the generalized bisection of sim-
plices, SIAM Journal of Numerical Analysis, 31, 604-613 (1984).

[8] F. H. Harlow and J. E. Welch, Numerical calculation of the time-dependent viscous
incompressible flow of fluid with free surface, Physics of Fluids, 8, 2182-2189 (1965).

[9] D. I. Hollnagel, P. E. Summers, D. Poulikakos, S. S. Kollias, Comparative velocity
investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiogra-
phy, laser Doppler velocimetry and computational fluid dynamics, NMR Biomed, 22,
795-808 (2009).

[10] F. Nicoud, R. Moreno, B. Tayllamin, M. Chau, H. Rousseau, Computational hemo-
dynamics in moving geometries whithout solving the fluid-structure interaction prob-
lem, Conference on Modelling Fluid Flow, Hungary (2009).

20


