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Abstract. A novel Galerkin reduced order model based on proper orthogonal decompo-
sition (POD) has been developed for large-eddy simulations (LES) with the Smagorinsky
subgrid-scale model. We propose to use the subgrid-scale model of the original simula-
tion to stabilize a POD reduced model based on LES snapshots in a consistent way. The
varying eddy viscosity field can be taken into account in the reduced model by dynamically
updating its coefficients. For the validation of the model, snapshots of an LES of the tur-
bulent flow around a circular cylinder at Re = 3900 are used. It is shown that the reduced
model reproduces the drag and lift coefficients reasonably and captures the kinetic energy
spectrum well for low and medium frequencies, while the computational cost is significantly
reduced.
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1 INTRODUCTION

The possibility to approximate complex three-dimensional flows by low-dimensional
models has gained attention by theoreticians, who hope to better understand the nature
of flow phenomena, as well as practitioners, who hope to speed up their optimization or
control processes. Research has focussed on reduced models resulting from a Galerkin
projection of the flow equations on the coherent structures of the flow field, see Holmes
et al. (1996)1 for details. Typically, the coherent structures are extracted from a set
of representative flow snapshots by means of the snapshot POD introduced by Sirovich
(1987)2. Although it is often possible to capture a large fraction of the kinetic energy of
the flow field by a linear combination of a small number of POD modes, robustness is still
an issue in POD-Galerkin reduced modeling. Spurious limit cycles and even divergence
have been observed already for simple flow configurations at low Reynolds numbers3.

Several improvements have been suggested and validated recently, but it is still a chal-
lenge to progress to turbulent flows, where the larger coherent structures are superposed
by an increasing fraction of chaotic flow details. We mention a few publications that focus
on reduced models for transitional and turbulent flows: Telib et al. (2004)4 used the least-
squares calibration method introduced by Galletti et al. (2004)5 to build a reduced model
of the flow in a T-mixer, which gave good results for the transitional flow at Re = 300
and Re = 400. Buffoni et al. (2006)6 applied the method of Galletti et al. (2007)7, which
is based on a pseudo-spectral model calibration, to the three-dimensional flow around a
square cylinder at Re = 300. Couplet et al. (2005)8 described a calibrated reduced-order
model for the turbulent flow past a backward-facing step based on snapshots generated by
a large-eddy simulation. They chose a Reynolds number of 7432 based on the step height.
The authors briefly mentioned the possibility of taking an LES subgrid-scale model into
account in the Galerkin model, but rejected this approach in favor of calibrating the
coefficients of a reduced model based on the Navier-Stokes equations.

In this work we pick up the thought of incorporating a subgrid-scale model as a sta-
bilization technique for the POD-Galerkin modeling of turbulent flows. We take the LES
equations with the Smagorinsky subgrid-scale model and perform a Galerkin projection
on the POD modes. Since the eddy viscosity introduced by Smagorinsky (1963)9 is highly
non-linear, we do not take it into account in the Galerkin projection, but update the
corresponding model coefficients during the time integration of the reduced model.

We test the presented approach using LES snapshots of the flow around a circular
cylinder at Re = 3900. The simulations are performed with the code KARDOS10, which
incorporates a stabilized Galerkin/least–squares finite element method. The equations
are discretized in space with linear finite elements on a tetrahedral mesh and in time with
the Rosenbrock method ROS3P using automatic step size control; see Lang (1998)11 for
details.
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2 REDUCED-ORDER MODEL

We are given a tetrahedral finite element mesh consisting of the mesh nodes x1, . . . ,xM .
At every snapshot time tn, n = 1, . . . , N , and at every mesh node xm velocity values ui

mn,
i = 1, 2, 3, are available from a three-dimensional direct or large-eddy simulation. The
snapshot ensemble mean of the velocity at each nodal point is given by ūi

m = 1
N

∑N
n=1 u

i
mn.

Using the finite element functions ψm(x) with local support, the velocities and the mean
velocities can be expressed as functions of space in the following way:

ui
n(x) =

M∑
m=1

ui
mnψm(x), n = 1, . . . , N, i = 1, 2, 3,

ūi(x) =
M∑

m=1

ūi
mψm(x), i = 1, 2, 3.

We define a snapshot matrix S by

S =

 WS1

WS2

WS3

 , where Si =

 ui
11 − ūi

1 . . . ui
1N − ūi

1
...

...
ui

M1 − ūi
M . . . ui

MN − ūi
M


and W is a suitable weighting matrix, e.g. the identity matrix or a matrix resulting from
the spatial discretization of the problem; see Kunisch and Volkwein (1999)12. Note that
we use the velocity fluctuations around the snapshot mean to set up the snapshot matrix.
The truncated singular value decomposition of this snapshot matrix yields

S ≈ URΣRV
T
R =

 WU1
R

WU2
R

WU3
R

 ΣRV
T
R with U i

R =

 ϕi
11 . . . ϕi

1R
...

...
ϕi

M1 . . . ϕi
MR

 ,

where R is the rank of the truncation. The matrix ΣR is a diagonal matrix with the
singular values σr, ordered decreasingly by magnitude, on the diagonal. The squares of
the singular values are called POD energies, denoted by λr = σ2

r . Using the elements of
the orthogonal matrix UR in combination with their respective finite element functions,
we define the POD modes of the velocity components as

ϕi
r(x) =

M∑
m=1

ϕi
mrψm(x), r = 1, . . . , R, i = 1, 2, 3.

With an adequate number of representative snapshots of a flow field that lends itself
reasonably well to a POD, and with a sufficiently large R, we are able to approximate any
realization of the flow field by a linear combination of the snapshot mean and the POD
modes:
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ui(x, t) = ūi(x) +
R∑

r=1

ar(t)ϕ
i
r(x), i = 1, 2, 3. (1)

The continuity equation is automatically fulfilled by the velocity POD, provided that
the snapshots are divergence free. The Navier-Stokes momentum equations are given by

∂tui + uj∂xj
ui + ∂xi

p = ∂xj
(ν(∂xj

ui + ∂xi
uj)), i = 1, 2, 3,

using Einstein summation over the index j. By a Galerkin projection on the velocity
POD (1) we obtain a system of ordinary differential equations

Aqrȧq = Bpqrapaq + Cqraq +Dr, r = 1, . . . , R (2)

for the POD coefficients a1(t), . . . , aR(t). Here we use the Einstein summation convention
to sum over p and q, taking values from 1 to R.

If the positive square root of the finite element mass matrix is used as a weighting
matrix W for the POD, then the matrix formed by the coefficients Aqr in (2) simplifies
to the identity matrix. This, however, does hardly influence the computational effort
of a numerical time integration scheme, since the evaluation of the right-hand side is
more expensive than the forward and backward substitution necessary if the equations
are coupled.

The Galerkin projection on the divergence-free POD modes and subsequent integration
by parts reduces the pressure term to a boundary integral that nearly vanishes. According
to the discussion in Noack et al. (2005)13 it is not always possible to neglect the pressure,
but its importance reduces with an increase of the Reynolds number. In this study we do
not take the pressure into account for the time integration of the reduced model.

We define the LES momentum equations with the Smagorinsky subgrid-scale model as

∂tui + uj∂xj
ui + ∂xi

p = ∂xj
((ν + νt/2)(∂xj

ui + ∂xi
uj)), i = 1, 2, 3,

where

νt = (CS∆)2

√
∂xi
uj∂xi

uj

2
+
∂xi
uj∂xj

ui

2
, (3)

with the Smagorinsky constant CS and with the local filter width ∆ corresponding to the
maximum edge length of each tetrahedron. We perform a Galerkin projection of the LES
momentum equations on the POD, leaving νt as a time- and space-dependent parameter.
The resulting system of ordinary differential equations is given by

Aqrȧq = Bpqrapaq + (Cqr + Ct
qr(t))aq +Dr +Dt

r(t), r = 1, . . . , R, (4)

where for any q and r
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Ct
qr(t) =

(
ϕi

r(x), ∂xj
νt(x, t)∂xj

ϕi
q(x)

)
+

(
ϕi

r(x), ∂xj
νt(x, t)∂xi

ϕj
q(x)

)
, (5)

Dt
r(t) =

(
ϕi

r(x), ∂xj
νt(x, t)∂xj

ūi(x)
)

+
(
ϕi

r(x), ∂xj
νt(x, t)∂xi

ūj(x)
)
. (6)

To compute Ct
qr and Dt

r we first construct the derivatives of the velocity field from the
current POD coefficients using (1) together with suitable discrete derivative operators.
For linear finite elements the derivatives of the velocities and POD modes are constant
within each tetrahedron. Using (3) we can compute the turbulent eddy viscosity νt. After
integrating (5) and (6) by parts and neglecting the boundary terms we approximate the
coefficients by

Ct
qr(t) ≈ C̃t

qr(t) = −
(
∂xj

ϕi
r(x), νt(x, t)∂xj

ϕi
q(x)

)
−

(
∂xj

ϕi
r(x), νt(x, t)∂xi

ϕj
q(x)

)
,

Dt
r(t) ≈ D̃t

r(t) = −
(
∂xj

ϕi
r(x), νt(x, t)∂xj

ūi(x)
)
−

(
∂xj

ϕi
r(x), νt(x, t)∂xi

ūj(x)
)
.

Let Vm be the volume of the tetrahedron with index m and let xm be some location inside
this tetrahedron. Assuming linear finite elements we can now write

C̃t
qr(t) = −

Mtetra∑
m=1

Vm

(
∂xj

ϕi
r(xm)∂xj

ϕi
q(xm) + ∂xj

ϕi
r(xm)∂xi

ϕj
q(xm)

)
νt(xm, t),

D̃t
r(t) = −

Mtetra∑
m=1

Vm

(
∂xj

ϕi
r(xm)∂xj

ūi(xm) + ∂xj
ϕi

r(xm)∂xi
ūj(xm)

)
νt(xm, t),

where Mtetra is the total number of tetrahedra. We see that the updates of the coefficients
are inner products of the time-dependent eddy viscosity vector with some time-constant
data that can be preprocessed and stored as R2 +R vectors in memory.

With suitable initial conditions at hand we can solve the system of equations (4) using
a numerical time integrator, which requires several evaluations of the right-hand side of
the system during the solution process. The computationally most expensive part of the
evaluation of the right-hand side is the updating of the time-dependent coefficients. To
save computing time, we can extrapolate the coefficients C̃t

qr and D̃t
r over some steps of

the time integrator. This procedure is described in the following: Let the sequence of time
steps of the time integrator be t1 < t2 < · · · < tN . From t1 to t4 we compute the coefficients
in all steps. We define the quadratic polynomials c1,2,3

qr (t) = c(C̃t
qr(t1), C̃

t
qr(t2), C̃

t
qr(t3), t)

and d1,2,3
r (t) = d(D̃t

r(t1), D̃
t
r(t2), D̃

t
r(t3), t) that interpolate the values at the first three time

steps and measure the relative extrapolation errors at t4 using

eCt =
( R∑

q,r=1

(
c1,2,3
qr (t4)− Ct

qr(t4)
)2

) 1
2
/
( R∑

q,r=1

Ct
qr(t4)

2
) 1

2
,

eDt =
( R∑

r=1

(
d1,2,3

r (t4)−Dt
r(t4)

)2
) 1

2
/
( R∑

r=1

Dt
r(t4)

2
) 1

2
.
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Given some error tolerance ε, the times for the next required updates are defined as

tCt = t4 + min
(
2 · (t4 − t3),

(
ε/eCt(t4)

) 1
3 · (t4 − t3)

)
,

tDt = t4 + min
(
2 · (t4 − t3),

(
ε/eDt(t4)

) 1
3 · (t4 − t3)

)
.

At the time points tn, n > 4, we take c2,3,4
qr (tn) as values for the model coefficients as

long as tn + (tn − tn−1) < tCt . Otherwise, we perform an update, define c3,4,n
qr (t) as

the new extrapolation polynomial, compute the next update time and continue the time
integration. Independently, we control the updates of Dt

r in the same manner.

3 RESULTS

We set up two test cases of flows around a circular cylinder. The first simulation of
a laminar periodic flow at Re = 100 is used to validate the standard model (2) without
eddy viscosity. The second simulation of a turbulent flow at Re = 3900 is used to test
the stability, accuracy and efficiency of the reduced LES model (4).

3.1 Periodic flow

We run a direct numerical simulation (DNS) with a Reynolds number of Re = 100
based on the cylinder diameter, the inflow velocity and the kinematic viscosity. The
cylinder of diameter d = 1 is centered at x1 = x2 = 2 aligned with the x3-axis within a
box-shaped domain of 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 4 and 0 ≤ x3 ≤ 0.1. This is a pseudo two-
dimensional setting, which corresponds to the two-dimensional nature of the flow around
a circular cylinder in the laminar vortex shedding regime typical for the chosen Reynolds
number14. At x1 = 0 we prescribe an inflow velocity u1 = 1, u2 = u3 = 0. With a
viscosity of ν = 0.01 the desired Reynolds number is obtained. At x1 = 10 we prescribe a
homogeneous Neumann outflow condition, at the cylinder boundary we impose a no-slip
condition, while at the side walls we impose a free-slip condition. For the pressure we
define homogeneous Neumann conditions at all boundaries. We discretize the domain
with an unstructured tetrahedral mesh consisting of 38288 nodes, locally refined near the
cylinder.

From the simulation we store N = 400 velocity snapshots, corresponding to all solution
data available between t1 = 0 and tN ≈ 27.2, which excludes the transient start-up time.
On the left side of Figure 1 the field of the absolute velocity |u| = (uiui)

1
2 at the final

time tN is shown.
We perform a POD of the selected snapshots using the method described above, withW

equal to the identity matrix. The POD energies λ1, . . . , λ8 are plotted semi-logarithmically
in Figure 1 on the right.

Using the 8 most energetic modes and the snapshot mean, we create a POD-Galerkin
model with constant model coefficients, according to (2). As an initial condition we take
the projection of the first snapshot on the POD. We solve the model with a variable time
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Figure 1: Test case with Re = 100. Left: Absolute velocity field at the final snapshot time. Right: POD
energies λ1, . . . , λ8 obtained using 400 snapshots.

step explicit Runge-Kutta method over the time interval in which we took the snapshots.
For the comparison of the result with the snapshot data, we pick the mesh node next to the
coordinates (4, 2, 0.05), which is located downstream of the cylinder in the middle of the
wake. In Figure 2 we plot the absolute velocity at this point together with the projection
of the solution of the reduced model back to the physical space. It can be observed
that the reduced model represents the dynamics of the full model well. The small visible
differences could be explained by the numerical error present in the computation of the
model coefficients as well as by neglecting boundary terms and less energetic modes.

0 5 10 15 20 25 30
0

0.5

1

t

|u
|

Figure 2: Absolute velocity computed with the POD-Galerkin model (solid line) compared to snapshot
samples (dots) at the mesh node next to (4, 2, 0.05) for the Re = 100 test case.

In Figure 3 we present the drag and lift coefficients obtained with the LES compared
to the ones obtained with the reduced model. For the computation of these quantities the
pressure field at the cylinder boundary is necessary. To compute the pressure field from
the solution of the reduced model we employ the pressure model of Akhtar et al. (2009)15.
We perform a snapshot POD of the pressure fluctuations and represent the pressure field
at any time as a linear combination of the pressure snapshot mean and the pressure
POD modes. To compute the pressure POD coefficients corresponding to the solution
of the reduced model, we use a Galerkin projection of the pressure Poisson equation on
the velocity and pressure modes. The pressure computations are carried out as a post-
processing step after the time integration of the reduced model. Figure 3 shows that the
result of the reduced model matches very well with the DNS in terms of drag and lift.

For this simple example of laminar vortex shedding, which is well approximated by a
POD, the computing time for the reduced model is a very small fraction of the computing
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Figure 3: Drag coefficient CD(t) and lift coefficient CL(t) for the test case with Re = 100. The dots
correspond to the values obtained from the LES, the solid lines correspond to the values obtained with
the reduced model by employing the technique of Akhtar et al. (2009)15.

time of the DNS: Using a single 3GHz core of a Sun X64 workstation, for the DNS
231 120 s of wall clock time were spent, the computation of the velocity POD and the
model coefficients took 28 s in total and the actual time integration took merely 5 s.

3.2 Turbulent flow

For the large-eddy simulation we use the following geometry: A cylinder of diameter
d = 1 is centered at x1 = x2 = 10 aligned with the x3-axis within a box-shaped domain of
0 ≤ x1 ≤ 30, 0 ≤ x2 ≤ 20 and 0 ≤ x3 ≤ 3. We prescribe the same boundary conditions as
for the case with Re = 100, but set the viscosity to ν = 1/3900 and choose CS = 0.15. For
the spatial discretization we use a mesh with 70731 nodes, locally refined at the cylinder
and in the wake near the cylinder.

We take 400 snapshots between t1 = 0 and tN ≈ 28.6 as input for the POD. A cutout
of the absolute velocity field at tN is shown in Figure 4 on the left. The POD energies of
the first 64 modes are plotted on the right.

1 8 16 24 32 40 48 56 64
10

2
10

3
10

4
10

5
10

6

r

λ r

Figure 4: Test case with Re = 3900. Left: Cutout of the absolute velocity field at the final snapshot
time. Right: POD energies λ1, . . . , λ64 obtained using 400 snapshots.
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We perform a run of the reduced model with Smagorinsky stabilization, as given by
(4), using 64 POD modes and using the projection of the first snapshot on the POD as
initial data. Employing a quadratic extrapolation of the time-dependent coefficients with
an error tolerance of ε = 0.1 we obtain solutions at 1090 time steps after performing 125
updates of Ct

qr and, incidentally, also 125 updates of Dt
r.

The turbulence naturally induces a high sensitivity of the solution with respect to the
model parameters and the initial conditions, therefore we can expect a divergence between
the solutions of the LES and of the reduced model. This is confirmed by the numerical
solution, as shown in Figure 5, where the absolute velocity at the mesh node next to
(12, 10, 0.15) is plotted for both cases. Despite the obvious differences, the extrema and
the qualitative appearance of the plots are similar.

0 5 10 15 20 25 30
0

0.5

1

1.5

t

|u
|

Figure 5: Absolute velocity computed with the updated POD-Galerkin model (solid line) compared to
snapshot samples (dots) at the node next to (12,10,0.15).

For the presented test case, the reduced model is stable even for long integration times.
In Figure 6 the result of the time integration over a time interval of 1000 time units is
presented. As the solution leaves the time interval where the snapshots have been taken,
an increase of the amplitude is visible. A reason for this may be that the POD using 400
snapshots is not fully converged, so more snapshots must be taken into account to get a
more realistic long term behavior.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

t

|u
|

Figure 6: Result of the time integration of the updated reduced model at the same location as in Figure 5,
but for a longer time interval. After the snapshot time interval the amplitude increases, but the long
term behavior is stable.

The evolution of the drag and lift coefficients is shown in Figure 7. There is some phase
error, but otherwise the results of the reduced model are qualitatively consistent with the
results of the LES.
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Figure 7: Drag and lift coefficients for the test case with Re = 3900. The dots correspond to the values
of every fifth snapshot of the large-eddy simulation, the solid lines correspond to the reduced model.

Using the snapshots and the solution of the reduced model in the time interval where
the snapshots have been taken, we compute the total kinetic energy spectral density of
the velocity fluctuations. Figure 8 shows the average spectral density taken over all mesh
nodes within the box 12 ≤ x1 ≤ 13, 9.5 ≤ x2 ≤ 10.5 and 0.5 ≤ x3 ≤ 2.5. For low
frequencies the spectra match very well. The peak of the energy spectrum indicates the
Strouhal frequency. For the POD the peak is broader than for the LES and somewhat
shifted towards lower frequencies. Above 4 times the Strouhal frequency the spectra
diverge and the POD spectrum decreases sharply as a result of the truncation.
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1

10
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f

E

 

 

LES
POD

Figure 8: Total kinetic energy spectra of the velocity fluctuations in the cylinder wake for the test case
with Re = 3900. In the low and medium frequency range the results of the updated POD-Galerkin model
are comparable to the original LES; at higher frequencies the truncation of the POD leads to an energy
decrease.

Finally, since a major purpose of the reduced modeling is the saving of computing
time, we present some timings of the reduced LES model with updated coefficients. Us-
ing the same hardware as for the Re = 100 test case, the LES took 429 180 s in total,
while building the reduced model took 921 s (including the computation of the POD, of
the model coefficients and of the data necessary for the model updates) and the time
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integration took 4118 s of wall clock time. Because of the larger number of modes and
of the additional work due to the model updates, the computing time is increased with
respect to the test case with Re = 100. Still, the reduced model is much faster than the
LES.

4 DISCUSSION

We have presented a reduced POD-Galerkin model of the Smagorinsky LES equations,
taking the subgrid-scale model into account by updating the coefficients during the time
integration. We have validated this model with a test case of the flow around a circular
cylinder at Re = 3900. Although the solution of the reduced model does not exactly
correspond to the original LES, the energy spectrum is reproduced well for low and
medium frequencies and the drag and lift coefficients are captured reasonably. Even
for long integration times, the numerical solution remains stable.

The results were obtained by using the same mesh-dependent filter width and the
same Smagorinsky constant in the LES and in the reduced model. If there is a large
gap between the LES filter width and the smallest scales present in the POD, then the
damping introduced by updating the coefficients might be insufficient to stabilize the
reduced model effectively. Therefore, the current model formulation requires the POD to
be sufficiently fine or, conversely, the LES to be sufficiently rough in order to introduce
enough dissipation. To make the model more robust, it might be possible to calibrate the
Smagorinsky constant or the filter width with respect to the snapshots.

Using the example of the Smagorinsky model we have shown that, although compu-
tationally more demanding, it is possible to introduce an LES subgrid-scale model into
a POD-Galerkin model. Further research has to reveal how other turbulence models
perform in the context of reduced-order modeling and whether there are other ways to
extend the standard Navier-Stokes based POD-Galerkin models using knowledge about
the method with which the snapshots were obtained.
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