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Abstract. Large-span cable-stayed bridges are flexible structures susceptible to various
types of wind-induced vibrations such as buffeting. In this study, a time domain
buffeting analysis procedure is formulated and implemented by developing a toolbox
based on ANSYS Parametric Design Language (APDL). To illustrate the potential of
the toolbox, a real wind excited cable-stayed bridge built in China is taken as a case
study. A comparison with results obtained including buffeting loads modeled by a quasi-
steady approach is discussed. The results also show good agreement with those from
the frequency domain analysis.
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1 INTRODUCTION

In the design and analysis of cable-stayed bridgespdynamic effects play an
important role because of their high flexibilitpw structural damping and light weight.
Cable supported systems may be subjected to paltgntarge dynamic motions
induced by wind forces. There are several mechanafnmteraction between wind and
structure that produce structural vibrations; thechanisms that are important to the
bridge design are vortex shedding, galloping, élutind buffeting. Unlike galloping,
vortex shedding and flutter that can happen in domm flow without external
disturbance, buffeting is a type of irregular viioya motion induced by turbulent wind
in the bridge structure. The bridge response tdebinfy depends on the turbulence
intensity, shape of the structural elements andrabfrequencies. Buffeting does not
usually endanger the safety of the structure, lnt result in discomfort for the users
and lead to fatigue of structural elements.

In this study, a time domain buffeting analysis qaaure is formulated and
implemented by developing a toolbox based on AN$ABametric Design Language
(APDL). To illustrate the potential of the toolhoa real wind excited cable-stayed
bridge built in China, the Qingzhou Bridge, is takes a case study.

2 WIND FORCES FOR BUFFETING ANALYSIS
As it is assumed in classical airfoil theory, wiwdlocity at the points along the
bridge has three components: the mean wind velatityhe fluctuating paru(x,t) in

the along-wind direction and the fluctuating pw(Ix,t) in the vertical direction. Due to

the wind action, surface pressures arise on theoaowf the section. The resultant of
these pressures impose drag foixelift force L and momenM .

Normally, the total wind load is made up of theashg state wind loads, the buffeting
loads and the self-excited loads, and the goveratu@tions are given in a matrix form

by
MX +CX +KX =F_ +F, +F, (1)

in which M , C and K are mass, damping and stiffness matrices respBgtieis the
nodal displacement vector arfgl and F, respect buffeting forces and self-excited

forces respectivelyF, is the steady wind forcef, :% pu2B[c, C,_ BC,| ., in
which C,, C, andC,, are the coefficients of lift, drag and torsionadnmrent of bridge

deck, p is the air densityt) is the mean wind speed aldis the deck width.

2.1 Buffeting forces

Buffeting forces are caused by the fluctuating congmt of the wind velocity.
Buffeting forces of drag ID,), lift (L,), and torsional momentM,) per unit deck

length are commonly expressed as follows [1]

0,)= 2078 20t (k)0 ™))
L= 2 07820 ()4 s )] e
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1 uft . t
M,(0) =2 20°8( 26, ()24 4, ()40 29
where u and w are the along-wind and vertical fluctuations ofnai velocity
respectively;C,, C, andC,, are the coefficients of lift, drag and torsionatment of

bridge deck whileC,, C, andC,, are, respectively, the derivatives 6f, C, and
C, Wwith respect to wind inclinationy,, , Xows X Xow: Xwe @nd x,, are the

frequency-dependent aerodynamic admittance furetantransfer functions between
velocity fluctuations and buffeting forcek; = Ba /U is the reduced frequency; aad

is the circular frequency of wind turbulence. le ttase study presented in Section 4 all
the aerodynamic admittance functions are assumbd tmit. This assumption may lead
to overestimation of the bridge buffeting response.

2.2 Self-excited forces

The self-excited loads are caused by interactidwéden the wind motion and the
structure. Self-excited loads are traditionally mxgsed in the form of indicial functions
as suggested by Scanlan [2]. However, Lin [3] abergd that there are some
redundancies in the classical formulations. Basethe assumption that the self-excited
loads are generated by linear mechanism, Lin stiggemother simple mathematical
model for self-excited forces for investigationtbé aerodynamic stability of long-span
suspension bridges. The self-excited loads areeegpd in terms of convolution
integrals between bridge deck motion and impulspaese functions, which is shown
to be equivalent to the classical indicial functtgpe representation. Lin's model can be
summarized as:

D.(1) =D, (t)+D,t)= [ fo,lt-7)plt)dr+[ f,,(t-7)alt)ar, (3.0)
L® =L 0)+L0)= [ f,t-htr+[ f,(-r)al)dr, (3.0)
Me®) =M, (0)+M,0)=[ f,t-0)hl)dr+[ f,,t-ralldr. @0

where fo,(t), foo(t), fa(t), fu(t), fu.(t) and f,,(t) are response functions due to
unit impulse displacement , h and p. From these equations, it is seen that the
aerodynamic coupling of the modes is inducedhyt), L, (t) andM,(t).

Applying the Fourier transform to equations (3) @inein comparing it with Scanlan's
model in terms of aerodynamic derivatives, theti@aship between transfer functions
and aerodynamic derivatives can be obtained as:

Fue(@) = pB'a?|A +iA ], Fylw)= pB%?|A, +iA ], (4.a,b)
Fra (@)= pB%?|H; +”"§], Fun (@) = pB?a7|H;, +iH, |, (4.c,d)
Foo (@)= 0B°?|P; +iP; ] Fon () = 0B?e?|P; +iP, | (4.e.0)

whereA’;andH’; (i=1,2,3,4) are non-dimensional flutter derivagvebtained by wind
tunnel tests on a cross-section of the deck.

As for the introduction of the aerodynamic admit&functions, the definition of the
self-excited forces on a deck section owes itsiortg the studies made earlier on
airfoils and thin-plates. Theodorsen [4], applythg potential flow theory, determined
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analytically the self-excited forces acting on athirfoil undergoing crosswind and
torsional complex sinusoidal motions. Followingstapproach, Scanlan and Tomko [5]
defined the lift and the moment acting on a bridgek section undergoing crosswind
and torsional motions, as functions of suitablyirkdd coefficients, called flutter
derivatives. In the case of bridge deck sectiorfsichvhave to be considered as bluff
bodies, the flutter derivatives have to be deteettiexperimentally by wind tunnel tests
or by Computational Fluid Dynamics. Only six fluttderivatives @& ,H,, i=1,2,3 )
appeared in the original Scanlan and Tomko [5] tdation. With increasing spans, the
importance of flutter derivatives associated witk motion in the alongwind direction

was emphasized [6] and the complete set of thelut8if derivatives & ,H,P",
i=1,...,6) is considered in recent works [7].

From classical air foil theory, the transfer funos may be reasonably approximated
by rational functions, specifically for transfemfttions of first order linear filters. The
transfer functions can, therefore, be expressed as:

1 — . B 2mr 4 1277
Fn(n) ZEIOU Cpp t1 FTCZLh + kz_;,ckl_h 0 27| (5.a)
- n[dkLh +Inj
1 _—2 B2 2 i277
Fla(M=-mBU |Cyp+i=—Cy, + ZCkLa — , (5.b)
n k=3 U 2T
dia B +l Y
_ . i
Fyn (N) :lpBU i Cown i E2_”(:2Mh + zCth IE” : (5.0)
2 un k=3 u .2m
N dyn B +i N
_ 4 -
Fua (N) =1,0|32U i Cimg ti EZ_ZTCzMa + zCkMa Iiﬂ . (5.d)
2 un k=3 Uu .2m
N dia B +l "y
Comparing equations (4) with equations (5), thédluderivatives can be obtained as
. 1 4, Cudy /K
Hl(K):_2 KCih + —(_)Lhk “;"( 2) , (6.a)
oK)=~ oy + S Cum (6.5)
4 K 2 Lhl k:31+dLhk26/K2> ' '
4
H;(K)= iz KCyiop + CL"deZ" w KZ) ) (6.c)
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4
H.(K)= L+ 6.d
() [ él+dLak (1/K2)J o9
AI (K) - 1 KC + 2 Cththk (1/ K) (66)
K2 1+ dy 2 K?))
. 1 4 C
K)=—|Cuu t+ Mo , 6.
A&t( ) Kz Mh1 kz::gl_'_thkz(l/Kz)] (6.)
. 1 2 Cro Ao 1/ K)
K)=—| KCy,,, + Mak = Mak , 6.
Az( ) K 2 Ma2 ;14‘de(2(1/|<2)} (6.9)
. 1 4 C
K)=—| Cy., + Mak . 6.h
A3( ) KZ[ Mal él_i_dMakz(l/Kz)\J ( )

In the above equationg is the reduced frequency and is define& asaué. The

unknown parameteS,, , d, Claus dis s Cu s e » Cua @nd d,, , Can be
obtained from least-squares fitting of equations (6
By taking the inverse Fourier transform of the sfen functions, the time domain

expression of impulse response functions can bairedt. Substituting these impulse
response functions into equation (5) yields

1 _— hit B ht
La(0) = pBU z(cm M, 8, M0 0+ Lh4<t)j 2)
1 B
L,()= EPBU (ClLaa(t) T= 0 Coadt)+L,s(t)+L,, (t)j (7.b)
1 _,— hit) B h(t
My (0= pB70 [c g + 2o T Mg (1) + My, (t)J, (70)
1 =2 B .
M, ()= E'OB U | Cuaa(t) +602Maa(t) +M5(t) + M, (1) (7.d)
in which, for k=3, 4:
ey _dml
Li (1) = Crikc jLBT)e g )dT , (8.a)
t ‘ dLakU(t 7
Lac(t) =Cpy [a(r)e dr, (8.b)
My (t) = Cye J'LBT)G s ¢ )dT, (8.c)
t dMgku(t 9
Mg (1) = Coia [ a(r)e dr, ©.d)
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Regarding the motion history parts, it can be dbahthe items involve convolution
integrals of velocities. These series integralskmsummarized as:

I = J'_t; exd(— du/ B)(t]- - r)]5(r)dr 9)

It can be seen that for calculating their values,ittegrall ; must be evaluated at every
time stept;, which is quite time consuming. Besides, the nmothstory for all
elements must be stored, thus occupying a largegpotean memory. To tackle these
difficulties, a recursive algorithm for evaluatitige integral is derived as follows [8]:

|, =exf(-dU/B)t; —t, )l o +exd(-d U /Bt -t )JAd, (10)

From the above equation, it can be seen that tilyjtiantities involving ;, and 9,

at timet;_, need to be stored for evaluating

Equation (7) can thus be further written in the natorm as the function of the
modal coordinates of the bridge.

F,=CX+KX+F, (11)
The elements of matrice€_, K, Ifge in Equation (11) can be respectively given by:
0O O 0
Ko = % A*B 0 C,, BCy, | (12.a)
0 BCy, BzClMa
0 0 0
C,= % PAJZB/U|O C,, BC,, |, (12.b)
0 BCu, BZCZMG
0
Fe =1 Ligl)+ Loat)+ Lost) + Lout) - (12.0)

Mia(t)+ M (£)+ M o5 (t)+ M., (1)

3 DYNAMIC MODEL FOR BUFFETING ANALYSIS

The equations of motion for a bridge in turbuldaiM can be expressed as:

MX +CX +KX =F_ +F, +F, (13)
where
C=C-C_,, K=K-K_

The effect of aeroelastic stiffness and dampinglEmmodel byMatrix27 in ANSYS.
Matrix27 represents an arbitrary element whose geometryndefined but whose
elastic kinematic response can be specified binest, damping or mass coefficients in
matrix form. The matrix is assumed to relate twalew) each with six degrees of
freedom per node. Note that oMatrix27 element can only model,, or K. To
simulate both the aeroelastic stiffness and dameifegt of bridge in buffeting analysis,
an integrated finite element model can be developbith consists of a particular
structural elemeng and two fictitiousMatrix27 elements. As shown in Fig. 1, a pair of
Matrix27 elements is attached to each elene@fitthe bridge to simulate the aeroelastic
forces acting on two nodes. The tWMatrix27 elements are separately plotted in the
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figure for clarity. Elemenel is employed to model aerodynamic stiffness anthefa
€2 is used to model aerodynamic damping. Elemerd$ ande2 share the same nodes,

i andj. The elemental aeroelastic stiffness makix and aeroelastic damping matrix
C;, for the elementk, respectively, and their expressions in the forimcansistent
formulation are given in the Appendix.

/ \

el €
Fig. 1 Finite element model formulatedANSYSto account for self-excited forces

4 CASE STUDY
4.1 Bridge description and main parameters

In this section the time domain procedure is useahtalyse the buffeting response of
Qingzhou Bridge. This is a cable-stayed bridge .(B)gwith a composite-deck system
consisting of five spans with an overall lengthl@B86.34m (41.13m + 250m + 605m +
250m + 40.21m). The two diamond-shaped towers é&reeinforced concrete. The
height of the towers is 175.5m with 145.5m aboehkihdge deck. The clear navigation
Is 43m.

521 21 car
2 1C] ar

|/ 250 L 605 . 250 I

Fig. 2 Elevation of Qingzhou Bridge (Unit: m).

The composite-deck system (Fig. 3) of the bridge dra open-section consisting of
two main I-type steel girders, steel floor beamd a6cm thickness concrete slab. The
slender steel girder is 2.45m high and its maxinpliate thickness reaches 80mm. The
ratio of girder height to span length is about 2/20ne steel stringer is designed in the
middle of the cross-section. There are in total el floor beams with a spacing of
4.5m. The precast concrete slab is connected tetted girders and floor beams by
shear studs.

stay cable ,stay cable
4  middle stringer slab E\’f
% 2 Ty 2% Ho1%
0
= =
o =]
L
/ / ‘
steel girder / | floor beam / - | steel girder

[ I
Fig. 3 Typical cross-section of composite deck ofg2hou Bridge . (Unit: m)
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A three-dimensional finite-element model of thedge was established and the
natural frequencies and mode shapes were complthiectalculated natural frequencies
and mode shapes were verified through comparistim twe measured results, and the

details can be found in ref. [9] and [10].

The steady aerodynamic parameters of the sectio aind attack angle are
C, =1365, C, =1.116, C,, =0.042, C,, =1116, C, =-0.179, C/ = 414. Six
flutter derivatives (Appendix 2) obtained from wihahnel test (aBtate Key Laboratory
for Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China) are
shown in Fig. 4, as well as the fitting curves exgjvely.
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Fig. 4 Six flutter derivatives obtained from winthhel tests
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The relationships betweesy,, A,, H, andH, are given by [11,12]:

A, =-kA,, H, =—kH, (14)
From least-squares fitting of equations (6), thaidial function coefficient€, , d, .
Claor Aioes Cuncr dune» Cuac@ndd,,, , can be obtained. Due to the lack of wind tunnel

test results on lateral flutter derivatives, only the vertical and rotational motions of
the bridge deck are taken into account in the satran of self-excited forces.

4.2  Simulation of wind velocity

The wind velocity field on the bridge deck is asganto be composed of 87 wind
velocity waves at 87 different points distributédrey the deck of the bridge. According
to the Chinese code, the following longitudinal arettical wind power spectra are
adopted:

a) Along wind direction - Davenport spectrum:

_ et
n(1+ N )4/3

wheren is the frequency of turbulence windis the roughness factor of groundl,, is

s,(n)=uf (15)

the mean velocity at a height of 10m a;ndlzoolz.

10
b) Vertical direction - Panofsky spectrum:

3362

U(z)

nCx 5/3
n1+100 %
[ U(Z)J
kv

where U, =———, z, =H, -z,/kand H, is the mean height of building around

lg(z zdj
z,
the bridge.
The mean wind speed at the deck level is taken6a3nds, and the sampling
frequency and duration used in the simulation afdvspeed are, respectively, 10 Hz

and 409.6s. Fig. 5 shows the simulated time-hegoof horizontal and vertical
fluctuating wind speeds, respectively, at the neduflthe main-span of the bridge.

S,(z.n)=u.? (16)

15
10+ B
5| 4
O} i
5 i

-10+ -

Horizontal wind velocity v(t)(m/s)

15 I I I I I I I I
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Fig.5 Simulated wind velocities at middle of theimapan: (a) horizontal fluctuating wind velocity
u(t); (b) vertical fluctuating wind velocitwv(t)

Vertical wind velocity w(t)(m/s)
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1
200

1
250 300
Time (s)
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4.3 Buffeting responses of the Qingzhou Bridge

Displayed in Figures 6(a-c) are the response tirsily of the vertical, lateral and
Figures 7(a,b) plot the cspe of vertical and lateral
displacements at the mid-span. The identified damtifrequencies are in accordance

torsional displacement.

350

400

450

with the F'vertical and 1 transversal bending modes, respectively.

Twist angle (rad)

Fig. 6 Dynamic displacement responses of bridgridtspan: (a) vertical displacement response;
(b) lateral displacement response; (c) torsiorsgdldcement response
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Fig. 7 Spectra of vertical (a) and lateral dispraeats (b) at mid-span

o

o

Figures 8(a,b) show the distributions of the maximuertical deflections and the
lateral displacements of the bridge deck alongsjtan. It is seen that the fluctuating
wind components have stronger influence on therdhtdisplacement than on the
vertical deflection.
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Fig. 8 Maximum vertical (a) and lateral (b) dism@atents along the span

The results (Case 3) can be now compared with ks &rom other two cases: Case
1 - without considering self-excited forces; Case sklf-excited forces evaluated by
guasi-steady theory [13]. Fig. 9 shows the RMS atigal displacement responses at
mid span obtained in Case 1 and Case 2 comparithgte result without considering
self-excited forces, at mean wind velocitlés=34,38,4246m/s. It is shown that the

results obtained considering self-excited forcessamaller than those obtained without
considering self-excited forces. The reason is thataeroelastic damping has often a

11
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mitigating effect caused by positive aerodynamimplizg at lower wind velocities. The
results obtained in case 3 are about 7% smallerithease 2.

Zaset
Case2

= M ——— Ccase3

E oAgr
i

0zr

=
T 047
5
L oasf

o

= o1sf
&

CREYS
i
2 aaaf
=

k]
= ondzp

oA r

04 . . . . . . . .
30 3z e el 38 40 42 a4 48 48
U {mis)

Fig. 9 Variation of RMS of vertical displacementaid span

Ref. [14] presents a frequency domain buffetindyammsin the context of the design
of Qingzhou Bridge. The vertical buffeting respoasenid span is given as 0.23m.

5 CONCLUSIONS

A framework has been presented in this paper tesiigate the buffeting response of
large-span bridges. Computer simulation technigque® used to generate wind forces
and self-excited forces, based on measured aerpuynaoefficients and flutter
derivatives.A toolbox was developed based AINSYS Parametric Design Language
(APDL) and used to perform a case study. The reshibwed that the formulation
presented in this paper could predict the buffetiegponse of large-span bridges, and
led to results inferior to the ones obtained bysitséeady approach. The comparison
with the results of frequency domain analysis shalss reasonable agreement.
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Ke =
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hc:Ll:CLhZ; kc:LmLaZEB; ic:Ll:CMhZ; mc:LmMazEB; ec:Ll:([:LhZ'
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