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Abstract. Liquid crystals have been studied and their applications are many, for ex-
ample in display equipment electronics such as watches, computers and others. The use
of liquid crystals results from the fact that intermolecular forces are easily affected by
temperature, pressure and electromagnetic fields. The behavior of a molecule of nematic
liquid crystal in a flow depends strongly on whether the nematic liquid crystal is of the
tumbling or flow-aligning type. According to the Leslie-Erciksen theory, which assumes
a nematic liquid crystal with a single director, tumbling behavior occurs when the ratio
e = α3/α2 of the Leslie viscosities is positive. This means that the hydrodynamic torques
force the director to process indefinitely in the flow. When e = α3/α2 < 0, the nematic
liquid crystal becomes flow-aligned. This communication is concerned with the develop-
ment of a numerical method for simulating director orientation of tumbling nematic liquid
crystal for tumbling parameter e = 0.053 in channel flow subject to a finite magnetic field.
The dynamic equations of nematic liquid crystals are based on the Ericksen-Leslie dy-
namic theory. The governing equations are solved by a finite difference technique based
on the GENSMAC methodology [17, 19]. The resulting numerical method was verified by
comparing the numerical solutions of 2D-channel flow throughout mesh refinement. To
demonstrate the capabilities of the numerical method, the flow of a tumbling nematic liquid
crystal was simulated using the “Ericksen-Leslie dynamic theory”. Results are presented
for various values of the Ericksen numbers.
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1 INTRODUCTION

Nematic liquid crystals are rather attractive owing to the applications in high perfor-
mance optoelectronic products and their striking rheological properties. Nematic liquid
crystals are characterized by long range orientational order of the molecules, in other
words, the molecular orientation (alignment) in a nematic liquid crystal exhibits a pre-
ferred direction which can be represented by a unit vector n, called the director.

The constitutive theory for liquid crystals started with the works of Anzelius [1] and
Oseen [12] and culminated in the works of Leslie [9, 11] and Ericksen [5]. It has proven
successful in describing many of the peculiar features of nematic liquid crystals behavior.
This theory accounts for fluid anisotropy and elastic stresses resulting from spatial distor-
tion of the director, and has commonly been used in analyzing flow behavior of nematic
liquid crystals. The orientation of the director in flow of a nematic liquid crystal usually
plays the most important role in their mechanical and optical properties. Thus, the study
of the director orientation is the basis for many technological applications of nematic liq-
uid crystals. The behavior of nematic liquid crystals in a flow is basically of two distinct
kinds: flow-aligned, where the director is oriented at a fixed angle to the streamlines, and
tumbling, where the hydrodynamic torques force the director to process indefinitely in
the flow. Tumbling nematic liquid crystals are anisotropic, and the development of the
anisotropic texture in processing geometries is a relatively-unexplored area of particular
interest.

Several works investigating the flow of nematic liquid crystals exist in the literature
(e.g. [2, 3, 7, 8, 14]). For instance, Heuer [7] studied the steady flow of nematic liquid
crystals around an infinitely long cilinder, where, the director orientation was assumed to
be parallel to the main flow direction. Cruz et. al. [3] developed a finite difference method
for solving the dynamic Ericksen-Leslie equations in three-dimensions subject to a strong
magnetic field. If the field is sufficiently strong then the director will be fixed: this means
that the governing equation for the director may be neglected. To our knowledge, studies
using the full Ericksen-Leslie equations for two-dimensional developing flows of tumbling
nematic liquid crystals are extremely few.

In this paper we present a finite difference technique for solving the full Ericksen-Leslie
dynamic equations in 2D channel for tumbling flows of a nematic liquid crystal.

2 GOVERNING EQUATIONS

We consider two-dimensional flow of a nematic liquid crystal. A magnetic field is
applied and we assume the one-constant approximation for the elastic constants. The
unitary director ni and velocity vi may take the forms

ni = (cosφ, sinφ, 0), φ = φ(x, y, t), (1)

vi = (u(x, y, t), v(x, y, t), 0), (2)
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where φ is the orientation angle of the director. The magnetic field potential (equal to
the negative of the magnetic energy) is

Ψ =
1

2
µ0∆χ(ni ·Hi)

2, H = H(cosφ0, sinφ0, 0), |H| = H <∞ (3)

where φ0 =constant. The related external generalised body force Gi is given by

Gi =
∂Ψ

∂ni

= µ0∆χ(ni ·Hi)Hi , (4)

where µ0 > 0 is the permability of free space and ∆χ > 0.
We shall use the usual Einstein summation convention where appropriate. A comma

indicates partial differentiation with respect to the variable it precedes; for example ni,j

denotes the partial derivative of the ith component of ni with respect to the jth variable.
The basic equations for simulating two-dimensional flows of a nematic liquid crystal

are the mass conservation equation, the elastic energy density, the linear and angular
momentum equations which can be written, respectively, in dimensionless form as (for
details see Cruz et al. [4])

u,x + v,y = 0 , (5)

wF =
1

2

1

Re

1

Er

[
(φ,x)

2 + (φ,y)
2
]
. (6)

ut + uu,x + vu,y = −p,x − wF,x +Rjnj,x +Gjnj,x +
1

Re
(Sxx,x + Sxy,y) , (7)

vt + uv,x + vv,y = −p,y − wF,y +Rjnj,y +Gjnj,y +
1

Re
(Syx,x + Syy,y) , (8)

φt + uφ,x + vφ,y =
1

Er γ1

[φ,xx + φ,yy]−
1

2
(u,y − v,x)

− 1

2

γ2

γ1

[(u,y + v,x) cos(2φ) + (v,y − u,x) sin(2φ)]− 1

2

Re

γ1

µ0∆χH
2 sin(2(φ0 − φ)) (9)

where Re = ρ U L
η

and Er = UL η
K

are the Reynolds and Ericksen numbers, respectively.
The terms Rjnj,x, Rjnj,y, Gjnj,x and Gjnj,y are given by

Rjnj,x =
1

Re
{−γ1φ,x

[
φ,t + uφ,x + vφ,y +

1

2
(u,y − v,x)

]
−1

2
[γ2φ,x cos(2φ)(u,y + v,x) + γ2φ,x sin(2φ)(u,x − v,y)]}, (10)

Rjnj,y =
1

Re
{−γ1φ,y

[
φ,t + uφ,x + vφ,y +

1

2
(u,y − v,x)

]
−1

2
[γ2φ,y cos(2φ)(u,y + v,x) + γ2φ,y sin(2φ)(u,x − v,y)]}, (11)
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Gjnj,x =
1

2
µ0∆χH

2φ,x sin(2(φ0 − φ)), (12)

Gjnj,y =
1

2
µ0∆χH

2φ,y sin(2(φ0 − φ)). (13)

In the momentum equations (7) and (8) the components of the stress tensor Sij are written
as (see Cruz et al. [4])

Sxx =
1

Re
[2u,x + Φxx] , Sxy =

1

Re
[ (u,y + v,x) + Φxy] (14)

Syx =
1

Re
[ (u,y + v,x) + Φyx] , Syy =

1

Re
[2 v,y + Φyy] . (15)

where the functions Φxx, · · · ,Φzz are called non-Newtonian stress tensor, hereafter, are
given by

Φxx = α1 cos2φ
[
u,x cos2φ+ v,y sin2φ+

1

2
(u,y + v,x) sin(2φ)

]
− (α2 + α3) sinφ cosφ

[
φt + uφ,x + vφ,y +

1

2
(u,y − v,x)

]
+ (α5 + α6)

[
u,x cos2φ+

1

2
sinφ cosφ(u,y + v,x)

]
, (16)

Φxy = α1 sinφ cosφ
[
u,x cos2φ+ v,y sin2φ+

1

2
(u,y + v,x) sin(2φ)

]
+ (α3 cos2φ− α2 sin2φ)

[
φt + uφ,x + vφ,y +

1

2
(u,y − v,x)

]
+

1

2
(α5 sin2φ+ α6 cos2φ)(u,y + v,x)

+ (α5u,x + α6v,y) sinφ cosφ , (17)

Φyx = α1 sinφ cosφ
[
u,x cos2φ+ v,y sin2φ+

1

2
(u,y + v,x) sin(2φ)

]
+ (α2 cos2φ− α3 sin2φ)

[
φt + uφ,x + vφ,y +

1

2
(u,y − v,x)

]
+

1

2
(α5 cos2φ+ α6 sin2φ)(u,y + v,x)

+ (α5v,y + α6u,x) sinφ cosφ , (18)

Φyy = α1 sin2φ
[
u,x cos2φ+ v,y sin2φ+

1

2
(u,y + v,x) sin(2φ)

]
+ (α2 + α3) sinφ cosφ

[
φt + uφ,x + vφ,y +

1

2
(u,y − v,x)

]
+ (α5 + α6)

[
v,y sin2φ+

1

2
sinφ cosφ(u,y + v,x)

]
. (19)

4



Pedro A. Cruz, Murilo F. Tomé

In equations above, the viscosities α1, . . . , α6 have been scaled by the factor η. Thus, the
equations of motion (7) and (8) can be written in the form

ut + uu,x + vu,y = −p,x − wF,x +Rjnj,x +Gjnj,x

+
1

Re
[u,xx + u,yy + Φxx,x + Φxy,y] , (20)

vt + uv,x + vv,y = −p,y − wF,y +Rjnj,y +Gjnj,y

+
1

Re
[v,xx + v,yy + Φyx,x + Φyy,y] . (21)

Equations (5), (20), (21) and (9) form the complete set of dynamic equations and must
be solved subject to suitable boundary conditions in order to find solutions for φ, p, u
and v.

2.1 Boundary Conditions

In order to solve equations (5), (20), (21) and (9) it is necessary to impose boundary
conditions for the velocity field on mesh boundaries. For rigid boundaries we employ
the no-slip condition (ui = 0) while at fluid entrances (inflows) the normal velocity is
specified by uν = Uinf and the tangential velocities are set to zero, namely, uµ = 0, where
ν denotes normal direction to the boundary and µ denotes tangential directions. At fluid
exits (outflows) the Neumann condition ui,ν = 0 is adopted.

The director is strongly anchored on rigid boundaries (walls). In other words, the
anchoring angle is set according to the orientation of the rigid boundary. Details of this
anchoring angle will be given in the section dealing with the numerical results.

The choice of the angle of the director at fluid entrances (inflows) is φ = 0, and at fluid
exits (outflows) we set φ,ν = 0.

3 NUMERICAL PROCEDURE

The momentum equations (20)-(21), the mass conservation equation (5) and the an-
gular momentum equation (9) are solved by a methodology based on the GENSMAC
algorithm introduced by Tomé et al. [19] as follows.

Assume that, at time tn, the velocity field ui(xk, tn) and the orientation angle of the
director φ(xk, tn) are known and that suitable boundary conditions are provided. In order
to calculate the velocity field ui(xk, tn+1), the pressure p(xk, tn+1) and the non-Newtonian
tensor Φij(xk, tn+1), the orientation angle of the director φ(xk, tn+1) we proceed in the
following manner:

Step 1: Using the values of ui(xk, tn) and φ(xk, tn), solve Eq. (6) for wF (xk, tn) and calcu-
late Φij(xk, tn) from equations (16)-(19) and Rjnj,i(xk, tn), Gjnj,i(xk, tn) using equations
(10)-(13), respectively.
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Step 2: Calculate a intermediate velocity field ũi(xk, tn+1) by

∂ũi

∂t
= −(uj ui),j −wF,i +Rjnj,i +Gjnj,i +

1

Re

[
(ui,j),j +Φij,j

]
(22)

with ũi(xk, tn) = ui(xk, tn) using the same boundary conditions for the velocity ui(xk, tn).
This equation is solved by an explicit finite difference method. It can be shown that ũi

possesses the correct vorticity at time tn+1 (see Tomé et al. [18]).

Step 3: Solve the Poisson equation

ψ,ii(xk, tn+1) = ũi,i(xk, tn+1) (23)

subject to the boundary conditions (see Tomé and McKee [17]): ψ,ν = 0 on rigid bound-
aries and inflows and ψ = 0 on outflows.

Step 4: Calculate the final velocity field

ui(xk, tn+1) = ũi(xk, tn+1)− ψ,i(xk, tn+1) . (24)

Step 5: Determine the pressure field p(xk, tn+1) (see Tomé et al. [18])

p(xk, tn+1) =
ψ(xk, tn+1)

δt
. (25)

Step 6: Calculate the angle of the director φ(xk, tn+1) from equation (9). This equation
is solved by an explicit finite difference method.

Step 7: Calculate the components of the non-Newtonian tensor Φij(xk, tn+1) from equa-
tions (16)–(19).

4 FINITE DIFFERENCE APPROXIMATION

The equations contained in the numerical procedure outlined in the previous section
will be solved by the finite difference method. A staggered grid is employed in this work.
This was first introduced by Harlow and Welch [6] and it is commonly used with marker
and cell methods because it locally guarantees conservation of mass and momentum while
remaining computationally relatively simple.

For two-dimensional flows the velocities u and v are located at the faces of a cell while
the variables (φ, Φ, p) are positioned at the centre of the cell. Figure 1 illustrates a typical
two-dimensional cell of dimensions δx× δy.

For this type of grid the components of the non-Newtonian tensor Φi,j, the pressure p,
the density of elastic energy (6) and the angular momentum equation (9) are calculated
at the centre of the computational cell (iδx, jδy) while the velocity components u and v
are calculated at the faces ((i+ 1

2
)δx, jδy) and (iδx, (j + 1

2
)δy), respectively.
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Figure 1: Typical two-dimensional staggered cell.

The time derivative in the momentum conservation equations (20)-(21) and in the
angular momentum equation (9) are discretised by the explicit Euler method while the
spatial derivatives are second order approximated. For lack of space, the finite difference
equations involved will not be presented here; they can be found in Cruz et al. [4].

5 ADAPTIVE TIME-STEPPING

The explicit computation of the momentum equation can often result in a computa-
tionally inefficient code. To remedy this to some extent a time step is chosen, at each
time point tn, to be as large as possible while maintaining the stability of the scheme.
Firstly, a particle of fluid, on each time step, cannot travel a distance greater than the
spatial grid size. This implies the following restrictions

δtx ≤
δx

|u|max

, (26)

δty ≤
δy

|v|max

, (27)

where |u|max and |v|max are the maximum modulus of the velocities in the directions x
and y repectively.

The explicit discretisation of the momentum conservation equations also imposes a
restriction on the stability. A von Neumann analysis of the equivalent linearised equation
provides

δtvisc ≤
Re

2

(
1

(δx)2
+

1

(δy)2

)−1

. (28)

The time step is chosen to be

δt = min{δtx, δty, δtvisc}.
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The implementation of these restrictions to determine the allowable maximum temporal
step is based on the ideas of Tomé and McKee [17].

6 VERIFICATION RESULTS

The numerical method presented in section 3 was implemented into a computer code
to study two-dimensional flows and the spatial development of director orientation of
tumbling nematic liquid crystals.

We simulated the flow of tumbling nematic liquid crystal 8CB (4-n-octyl-4’-cyano
biphenyl) at 37oC. We considered a 2D-channel with width L and length C = 10L (see
figure 2). The boundary conditions for the velocity field were those specified in Sec. 2.1 .
At the fluid entrance, a fully developed flow given by

u(y) = −4
U

L

(
y − L

2

)2
+ U (29)

was imposed.

Figure 2: Definition of the domain for the simulation of the flow in a two-dimensional channel. The red
arrows represent the boundary conditions used for the calculation of the angle φ by means of Eq. (9).

Boundary conditions for the angle φ
The boundary conditions for the angle φ were specified as follows:

1. Along the horizontal walls, the anchoring angle was set to zero, implying parallel
alignment to the walls.

2. At the channel entry, we employed φ = 0◦ at x = 0 and 0 ≤ y ≤ L (see Fig. 2);

3. At the exit plane we assumed φ,x = 0.

To simulate this problem, the following input data specifying the flow were employed:

• Width of the entry of plane: L = 0.001m;

• Velocity scale: U = 0.0001ms−1;
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The physical parameters, specifying the tumbling nematic liquid crystal 8CB at 37oC
are given in Tables 1 and 2. With these data we obtain Re = 0.015 and Er = 5.
To demonstrate the convergence of the numerical method presented in this paper, we
simulated channel flow using four embedded meshes until steady state was achieved. The
meshes employed were:

• M0: δx = δy = 0.0002m (50× 5 cells)

• M1: δx = δy = 0.0001m (100× 10 cells)

• M2: δx = δy = 0.00005m (200× 20 cells)

• M3: δx = δy = 0.000025m (400× 40 cells)

An analytic solution for this problem has not yet been found so that we compared the
solutions obtained on meshes M0, M1 and M2 to the solution obtained on the finer mesh
M3 which we refer here as Exact.

Figures 3 and 4 display the numerical and the Exact values of u(y), Φxx, Φxy, Φyx and
Φyy at the mid section of the channel (x = 5). We can see that there is a good agreement
between the solutions. Moreover, Figs. 3 and 4 show that as the mesh is refined the
numerical solutions tend to the Exact solution. These results suggest that the numerical
method presented in this work is convergent.

To show quantitatively that convergence is achieved, the relative error of the numerical
solution (SolNum) was calculated on the three meshes by the formula

E(SolNum) =

√√√√√√
∑
ij

(Exact− SolNum)2

∑
ij
Exact2

. (30)

The values of the relative errors obtained on the grids M0, M1 and M2 are displayed in
Table 3. It is noted in Table 3 that the errors decrease as the grid is refined which shows
that the numerical method is convergent.

Table 1: Leslie viscosities for the tumbling nematic liquid crystal at 8CB given in SI units.

Leslie viscosities α1 α2 α3 α4 α5 α6

8CB near 37oC 0.0000 -0.0588 0.0031 0.0140 0.0792 0.0235

7 NUMERICAL INVESTIGATION OF TUMBLING BEHAVIOR OF NE-
MATIC LIQUID CRYSTAL FLOW WITH THE TUMBLING PARAM-
ETER (e = 0.053)

In this section we present numerical results from the simulation of the flow of a
tumbling-type nematic liquid crystal in a two-dimensional channel (see Fig. 2). The
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Table 2: Physical parameters for the tumbling nematic phases of 8CB given in SI units. The abbreviations
used are: magnetic anisotropy (∆χ (unitless)) (see [15]), density (ρ) (see [15]), permeability of free space
(µ0), magnetic field (H) and elastic constant (K).

Phys. parameters ∆χ ρ µ0 H K

Values 1.43× 10−6 1020 kg m−3 12.566× 10−7H m−1 1
4π 103A m−1 1.4× 10−10 N

Table 3: Relative errors obtained on meshes M0, M1 and M2.

Quantities U Φxx Φxy Φyx Φyy

Rel. error (M0) 9.7870× 10−3 3.5430× 10−1 8.4453× 10−2 4.2274× 10−2 1.8262× 10−1

Rel. error (M1) 7.8150× 10−3 6.6565× 10−2 6.6950× 10−3 8.3780× 10−3 5.8730× 10−2

Rel. error (M2) 2.7540× 10−3 2.0174× 10−2 2.3060× 10−3 3.0270× 10−3 1.8237× 10−2

Figure 3: Numerical simulation of channel flow: Re = 0.015 and Er = 5. Comparison between the Exact
and the numerical solutions at the x = 5. Velocity field.
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(a) (b)

(c) (d)

Figure 4: Numerical simulation of channel flow: Re = 0.015 and Er = 5. Comparison between the Exact
and the numerical solutions at the x = 5. (a) Φxx, (b) Φyy, (c) Φxy, (d) Φyx.

boundary conditions employed on the inflow, channel walls and on the outflow were the
same conditions used in the previous section.

The physical parameters specific to the tumbling nematic liquid crystal 8CB (4-n-octyl-
4’-cyano biphenyl) at 37C◦ employed to simulate this problem are presented in Tables 1
and 2. The remaining input parameters were:

• Mesh: 200× 20 cells (δx = δy = 0.00005)m;

• Width of the channel (length scale): L = 0.001m;

• Length of the channel: C1 = 0.01m;

• Velocity scale: U = 0.0001ms−1;
The Reynolds and Ericksen numbers were calculated using the viscosity η so that we

had Re = 0.015 and Er = 5. The behavior of a molecule of nematic liquid crystal in a flow
depends strongly on whether the nematic liquid crystal is of the tumbling or flow-aligning
type.

To observe the effects of elasticity, viscosity and the effects of the director orientation
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on the flow, we simulated this problem until steady state was reached. We used channel
with length C1 = 0.01m: this distance was sufficient to reach the equilibrium angle of
the development of director orientation. Channel flow was simulated for Re = 0.015,
e = 0.053 and Er = 1, 2, 3, · · · , 100 until t = 200. Figure 5 displays the isolines velocity u
at time t = 200 for Re = 0.015 and Er = 5 with the boundary conditions for the director
as specified in (see Fig. 2). We can see in Fig. 5 that the isolines of velocity u are parallel
indicating that steady state has been reached.

Figure 5: Numerical simulation of the flow of a tumbling-type nematic liquid crystal in a two-dimensional
channel with Re = 0.015, Er = 5 and e = 0.053. Isolines of velocity u.

7.1 Maximum angle and spatial development orientation of director

We present the maximum orientation angle of the director in a fully-developed flow.
The torque, due to viscosity of the nematic liquid crystal, that acts on the director induces
rotation when e > 0. In the absence of a counter-torque the director would continue to
rotate and an equilibrium orientation of the director could not be found.

The anchoring angle was set to zero along the walls, this condition induces an elastic
torque because of director distortion, so there will be a maximum angle for developed
flow inside the channel. In order to investigate the effect of the Ericksen number Er on
the orientation angle of the director, the relation between the maximum orientation angle
and Er obtained in the simulations when the Ericksen number was varied from 1 to 100
is shown in Fig. 6. We can see in Fig. 6 that the orientation angle of the director shows
discontinuity at Er ≈ 5 and Er ≈ 48, with regions of possible multiplicity.

To study the two-dimensional spatial development of director orientation on the flow
and to investigate the effect of this orientation on the velocity field, the evolution of the
director orientation for Er = 15, 40, 100 is shown in Fig. 7 while the velocity profiles are
shown in Figs. 8, 9, 10.

We can see in Fig. 7 that for Er = 15, the director rotated nearly 160◦ to reach the
maximum angle shown in Fig. 6. The maximum angle of the director for Er = 40 is
nearly 180◦, and the development of the evolution of director orientation is similar to that
for Er = 15, except that the position at which the director starts to rotate is shifted
upstream. For Er = 100, the director rotated nearly 367◦ and the development of the
evolution of director orientation starts to rotate further upstream. We can conclude that
as we increased the Ericksen number the director profile became very complex in the
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Figure 6: Maximum orientation angle of the director as a function of Ericksen number for fully-developed
channel flow.

channel. Moreover, we can also see that there is a boundary layer that becomes thinner
as the Ericksen number is increased.

The solutions obtained for the velocity field at selected points in the channel for Erick-
sen numbers Er = 15, 40 and 100 are shown in Figs. 8-10. We observe that the velocity
profile u in the direction of the main flow becomes wavelike (Figs. 8 and 10). For Er = 15
we can observe the appearance of the vertical component of velocity v (see Fig. 9) near
position x = 2.05. In this position the director begins to rotate in the flow as can be seen
in Fig. 7(a). We can conclude that the effect the evolution of director orientation affected
strongly the velocity field.

(a)

(b)

(c)

Figure 7: Spatial evolution of the director orientation between parallel plates with e = 0.053 : a) Er = 15;
(b)Er = 40; (c)Er = 100.
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Figure 8: Velocity profiles u for e = 0.053 and Er = 15.

Figure 9: Velocity profiles v for e = 0.053 and Er = 15.
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(a) (b)

Figure 10: Velocity profiles u for e = 0.053 and Er = 40 (a) and 100 (b).

Figure 11 shows the behaviours of the orientation angle of director as a function of
x, for Er = 15, 40 and 100, respectively. We can observe the transient behaviours of
the orientation angle of the director. At Er = 15, there was a single rotation, and the
maximum angle of the director was quickly reached. For Er = 40, the result is similar
to that at Er = 15, except that the position at which the director started to rotate was
shifted upstream, but the maximum angle of the director was rapidly reached. However,
for Er = 100, the director presented a first rotation near the channel entrance (x = 0.5)
and there was a second rotation nearly x = 3.9 before equilibrium was achieved.

Figure 12 displays the behaviours of the director angle profiles as a function of y,
for Er = 15, 40 and 100, respectively. The maximum angle of the director was in the
range y ∈ [0.77, 0.87]. The difference of the director angle between the upper wall and the
centerline of the channel at position x = 9.95 and y = 0.975 was found to be approximately
51◦ when Er = 15, 71◦ for Er = 40 and 131◦ for Er = 100. Therefore, as the Ericksen
number was increased the difference of the director angle between the upper wall and
centerline of the channel also increased.

8 CONCLUSIONS

This paper employed the numerical method developed by Cruz et. al. [4] to investigate
the director orientation of tumbling nematic liquid crystal in channel flow under the effect
of a magnetic field. The verification of the method was performed through the simulation
of the flow in a 2D channel using four embeeding meshes M0, M1, M2, M3. We compared
the solutions on meshes M0, M1 and M2 to the solution obtained on the finer mesh M3
(which we called Exact). Good agreement between the solutions obtained on the coarser
meshes and the Exact solution.
The flow in a 2D channel was simulated for the tumbling parameter e = 0.053 for Ericksen
number varying between 1 and 100 and interesting effects were obtained. The results from
the simulations showed that in a fully developed flow, the development of distribuition
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(a) (b)

(c)

Figure 11: Orientation angle of the director at y = 0.55, 0.75, 0.85 and 0.95 as a function of x for e = 0.053
and: (a)Er = 15, (b) Er = 40 and (c) Er = 100.
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Figure 12: Orientation angle of the director at x = 0.15, 2.05, 5.05 and 9.95 as a function of y for e = 0.053:
(a) Er = 15, (b) Er = 40 and (c) Er = 100.
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director was governed by the number of director rotations necessary to reach the equi-
librium angle. Another result was that, the maximum orientation angle of the director
contains discontinuous jump between branches, with regions of possible multiplicity. The
results also showed that the effect the evolution of director orientation affected strongly
the velocity field. We observed that the velocity profile in the direction of the main flow
became wavelike.
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[4] P. A. Cruz, M. F. Tomé, I. W. Stewart and S. McKee, Numerical solution of
the Ericksen-Leslie dynamic equations for two-dimensional nematic liquid crystal
flows.submitted J. Rheology (2010).

[5] J.L. Ericksen, Conservation Laws for Liquid Crystals, Trans. Soc. Rheol., 5 (1961),
23–34.

[6] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous in-
compressible flow of fluid with free surface. Phys. Fluids, 8 (1965), 2182–2189.

[7] H. Heuer and H. Kneppe and F. Schneider, Flow of a Nematic Liquid Crystal Around
a Cylinder, Mol. Cryst. Liq. Cryst., 200 (1991), 51-70.

[8] J.T. Jenkins, Flows of Nematic Liquid Crystals, Ann. Rev. Fluid Mech., 10 (1978),
197-219.

[9] F.M. Leslie, Some Constitutive Equations for Anisotropic Fluids, Q. Jl. Mech. Appl.
Math. (1966), 19, 357–370.

[10] F.M. Leslie, Some Constitutive Equations for Liquid Crystals, Arch. Rat. Mech. Anal.
(1968), 28, 265–283.

18



Pedro A. Cruz, Murilo F. Tomé
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