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Abstract. The rapid growth of supercomputers will probably make the use of Large eddy
simulations (LES) more accessible for industrial applications in a near future. It is then
important to develop accurate models able to represent as well as possible the turbulence
effects in very complex and wall-bounded flows. While the Smagorinsky model is known
for its extradissipation in near wall regions, other models with the appropriate near wall
behaviour are now available (e.g. WALE and Vreman model). Still, values of the constants
proposed by the authors are expected to be not universal notably in complex geometries.
In this study, a dynamic version of the WALE subgrid model has been developped based on
the Germano-identity. The dynamic WALE, the dynamic Smagorinsky and the WALE
models are first tested on the homogeneous isotropic turbulent (HIT) experiment of Comte-
Bellot and Corsin (CBC). Large eddy simulations of an isothermal turbulent channel flow
are then performed and results are compared with the DNS of Moser et al. at wall Reynolds
number Reτ 395 and 590. This last test illustrates how the dynamic procedure combined
with the WALE fails to correctly model the mean velocity. It leads to very high values of
the WALE constant near the wall and to an over prediction of the turbulent viscosity in the
buffer-layer. It is then shown in the paper that the dynamic procedure might degrade any
SGS model with the proper wall behaviour. Finally, a cure to this problem is proposed and
used to built an appropriate dynamic WALE model which proves accurate in the channel
flow and promising in an industrial like configuration.
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1 INTRODUCTION

One of the most challenging aspect of LES modelling is certainly near wall effects. For
industrial applications the knowledge of the latter is important for the optimisation of
the energy consumption (heating or cooling); it is then necessary to develop accurate LES
models able to represent as well as possible wall effects.
Since the Smagorinsky model1, many attempts have been done to meet the requirements
of modelling in presence of a solid wall. These requirements2 are the y3 asymptotic be-
haviour and the capability to represent laminar-to-turbulent transition. To this respect,
the use of damping function3 or of the Germano-identity4 to dynamically adapt the model
constant have been successfully used. This approach is most referred in the literature as
an optimisation method and is more suitable for complex geometries where the knowl-
edge of the distance to the wall is not straightforward. More recently the WALE model
developed by Nicoud and Ducros5 and the Vreman’s6 model have allowed to respect these
requirements without using any damping functions or dynamic procedure. Still the value
of the constant proposed by the authors is expected to vary depending on the flow and
the geometry.
The present paper is organized as follows: in section 2, the governing equations and the
different subgrid scales models are presented. In section 3, the models and their implemen-
tation are validated by considering the homogeneous isotropic turbulence configuration
of Comte et Bellot7. In section 4, results by considering an isothermal turbulent channel
computed with the different models are compared. The problem which arises when con-
sidering the WALE dynamic model based on the Germano-identity is also presented. A
cure to the previous problem is presented in section 5 and the results with the improved
dynamic WALE model are presented in the same section followed by a conclusion.

2 GOVERNING EQUATIONS AND SGS MODELS

The filtered compressible Navier-Stokes equations are solved in this study but their
incompressible counterpart are presented here for simplicity since only low Mach number
flows will be considered:

∂ūj

∂xj

= 0 (1)

∂ūi

∂t
+

∂(ūiūj)

∂xj

= −1

ρ̄

∂p̄

∂xi

+ ν
∂2ūi

∂xi∂xj

+
∂τ sgs

ij

∂xj

+ Si

where t is time, p the pressure, ρ the density, ν the kinematic viscosity, Si a source
term and τ sgs

ij the subgrid scale (SGS) tensor expressed as:

τ sgs
ij = ūiūj − uiuj (2)

An eddy viscosity approach has been chosen to model the SGS tensor which is then
expressed as :
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τ sgs
ij − 1

3
τ sgs
kk δij = 2νsgsS̄ij (3)

where S̄ij is the strain rate based on the filtered velocity ūi and νsgs the eddy viscosity.

2.1 WALE model5:

Like the Vreman’s model6, the WALE model5 does not generate SGS activity for pure
shear flows and was built to recover the right asymptotic behaviour near solid walls and
the eddy viscosity is expressed as follows:

νsgs = C2
w∆̄2 ¯|OP | (4)

where Cw = 0.5 , ∆̄ is the filter size and ŌP an operator defined as follows:

¯|OP | =
(Sd

ijS
d
ij)

3/2

(S̄ijS̄ij)5/2 + (Sd
ijS

d
ij)

5/4
(5)

where Sd
ij is the symmetric traceless part of the square of the strain rate, expressed as:

Sd
ij = S̄ikS̄kj + Ω̄ikΩ̄kj −

1

3
δij[S̄mnS̄mn + Ω̄mnΩ̄mn], (6)

where Ω̄ij is the rotation rate based on the filtered velocity ūi

2.2 Dynamic WALE model

To develop the dynamic WALE model, a second test filter ∆̂ bigger than the initial
filter ∆̄ is first considered, the Navier-Stokes equations filtered at the test filter level are
then expressed as follows:

∂ ˆ̄ui

∂t
+

∂(ˆ̄ui ˆ̄uj)

∂xj

=
1

ˆ̄ρ

∂ˆ̄p

∂xi

+ ν
∂2 ˆ̄ui

∂xi∂xj

+
∂T sgs

ij

∂xj

, (7)

where T sgs
ij is the sgs tensor at the test filter level. Using the Germano-identity, we

have the following relationship between T sgs
ij and τ sgs

ij :

T sgs
ij − τ̂ sgs

ij = Lij (8)

Lij is the Leonard term expressed as:

Lij = ̂̄uiūj − ̂̄uî̄uj (9)

The WALE eddy viscosity model is used for the SGS tensors at the two level so that
equation Eq.(8) becomes:
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C2
w∆̂2 ˆ̄|OP | ˆ̄Sij − ̂(C2

w∆̄2|ŌP |S̄ij) = Lij (10)

If Cw is assumed constant over a distance at least equal to the testfilter width, its
dynamic value can be expressed as follows using the least square method of Lilly8:

C2
w =

1

2

< LijM
w
ij >+

< Mw
ij M

w
ij >

(11)

with

Mw
ij = ∆̂2 ˆ̄|OP | ˆ̄Sij − ̂(∆̄2|ŌP |S̄ij) (12)

The superscript + in the expression Eq.(11) denotes a positive clipping of all negative
values to zero and the sign <> is a stabilisation method that consists in a local volume
averaging. In contrary to what is often done for the dynamic Smagorinsky4 model and
recently for the WALE model9, the stabilisation is not performed over homogeneous di-
rections but locally; it is then well adapted to complex geometries.

2.3 Dynamic Smagorinsky model4

The dynamic Smagorinsky constant was calculated with the same consideration as for
the dynamic WALE constant. The only difference is the operator |ŌP | in the expression
of M s

ij :

M s
ij = ∆̂2 ˆ| ¯OP s| ˆ̄Sij − ̂(∆̄2|ŌP

s|S̄ij) (13)

with |ŌP
s| the second invariant of the strain rate based on the filtered velocity ūi

expressed as :

|ŌP
s| =

√
2S̄ijS̄ij (14)

and the dynamic Smagorinsky constant is expressed as :

C2
s =

1

2

< LijM
s
ij >+

< M s
ijM

s
ij >

(15)

The WALE5 , the dynamic WALE and the dynamic Smagorinsky4 models will be
denoted respectively as WA, WAD and SMD.
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2.4 Numerical solver

The calculations were carried out with AVBP, the CFD solver developed at CERFACS.
This parallel solver offers the capability to handle unstructured and structured grids in
order to solve the 3D compressible reacting Navier-Stokes equations with a cell-vertex
formulation. A centered Galerkin finite element method with a three step Runge-Kutta
temporal method has been used. The numerical solver is fourth order accurate in space
and third order in time. The efficiency of the numerical method used and the AVBP code
has already been successfully tested in the past years by Colin and Rudgyard10, Moreau
et al.11 and recently by Cabrit and Nicoud12.

3 HOMOGENEOUS ISOTROPIC TURBULENCE

The SGS models are first tested on the HIT experiment of Comte-Bellot and Corsin7.
This experiment has already been widely 4,13,14,15 used either to validate purely eddy-
viscosity models or to find their constant values. The characteristics of the CBC experi-
ment are summarised in table.1.

t∗ = Uot
M

urms(cm.s−1) ε(cm2.s−3) η(cm) λ(cm) Rλ

42 22.2 4740 0.029 0.484 71.6
98 12.8 633 0.048 0.764 65.3
171 8.95 174 0.066 1.02 60.7

Table 1: Characteristics of the HIT of CBC where Uo = 10m/s is the convective velocity, ε is the kinetic
energy dissipation, η is the kolmogorv scale, M = 5.08cm is the grid size, λ the Taylor micro scale and
Rλ the Reynolds number based on λ.

The experimental validation consists in initialising in a computation with a velocity
field whose spectrum matches the first spectum at time t∗ = 42 and comparing the ex-
perimental and the spectra at times t∗ = 98 and t∗ = 171. The reference length and the
reference velocity are respectively Lref = LB

2π
and Uref =

√
3/2urms(t∗ = 42). LB = 11M

is the length of the computation box. The simulations are performed over a 613 mesh.
Since the experimental evolution of the kinetic energy is not available, the results will be
compared with the data of the EQDNM simulations of Park and Mahesh16.

Figure 1 shows the evolution of the spectra predicted by the static WALE model5 and
the dynamic WALE described in section 2.2 compared with the experiment.

The first spectrum corresponds to the initialisation at time t∗ = 42. As expected, the
spectra obtained with WALE5 and the dynamic WALE models are very similar at the
following time and in good agreement with the experiment for wavelengths smaller than
K < Kc

2
. In fact, for greater wavelengths the energy is under predicted. But those wave-

lengths are resolved with least than 4 points. The discrepancies observed are probably due
to numerical errors rather than SGS model limitations. Nevertheless, the global energy
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Figure 1: Three spectra at 3 times t∗ = 42, 98, 171: � Experiment of CBC; — WAD; R WA

prediction will not be affected since the under resolved wavelengths represent only 1% of
the maximum energy. On figure 2, the spectra predicted by the dynamic Smagorinsky4

and WALE5 models are compared. The spectra are very similar at the different time and
also in good agreement with the measurements.
The underprediction of the energy spectrum for K > Kc

2
is also observed for the dy-

namic Smagorinsky4 model, supporting the fact that this issue is due to limitations of the
numerical method at very high wavelengths.

Figure 2: Three spectra at 3 times t∗ = 42, 98, 171: � Experiment of CBC; — WAD; ··· SMD
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The temporal evolution of the resolved kinetic energy is also well predicted by the
different models as shown in figure 3. The energy is normalised with the initial kinetic
energy at time t∗ = 42. The simulations are in good agreement with the experiment data
and with the EDQNM simulations, the dynamic Smagorinsky4 slightly underpredicts the
resolved energy but still, remains in good agreement with the EDQNM results.

Figure 3: Temporal evolution of the resolved kinetic energy: � EDQNM; — WAD; R WA; ··· SMD

Figure 4: Temporal evolution of the dynamic constants: — WAD; ··· SMD

The temporal evolution of the dynamic constants is shown in figure 4. The dynamic
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WALE constant converges to 0.55 a value closed to the one proposed by Nicoud and
Ducros5. In the same way, the dynamic Smagorinsky constant converges to 0.2 that is
closed to the canonical value, Cs = 0.2 performed by Clark et al.17 for a HIT.

4 TURBULENT CHANNEL

4.1 Numerical set up

The periodic turbulent channel configuration is appropriate for testing the near wall
behaviour of SGS models. It consists in a flow between two parallel planes (as shown in
figure 5) which is driven by a source term imposed dynamically to reach a target bulk
velocity:

Figure 5: Turbulent channel

Sx =
ρUbulk − 1

V

∫ ∫ ∫
ρuxdV

τrelax

(16)

V is the volume of the computational domain and τrelax is a relaxation time whose
expression is:

τrelax =
1

5

h

uτ

, (17)

where utau is the friction velocity and h the channel half height. The reference data for
this case are the DNS of Moser at al.18. The characteristics of the mesh for the friction
Reynolds case Reτ = 395 are summarised in table 2. They were chosen in order to meet
the requirement of the minimum turbulent channel dimensions advised by Jimenez and
Moin19.
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Reτ nx × ny × nz
Lx

h
Lz

h
∆x+ ∆z+ ∆y+

w ∆y+
c

395 31 ∗ 139 ∗ 51 3.5 1.3 46 10 1 17

Table 2: Characteristics of the mesh

4.2 Results

The friction Reynolds number, the friction coefficient and the error on this coefficient
compared to the Petukhov20 correlation as obtained with the different models are sum-
marised in the table 3.

Case Reτ = 395 Cf % Error
WA 413 6.55 ∗ 10−3 9.9
SMD 396 6.03 ∗ 10−3 1.2
WAD 387 5.75 ∗ 10−3 −3.6

SVS WAD 396 6.03 ∗ 10−3 1.2

Table 3: Comparison of the different friction values

The main results is that the WALE model5 over estimates the friction velocity while
the dynamic WALE model slightly under estimates the friction velocity. However the
dynamic Smagorinsky4 model is in good agreement with the correlation and the expected
friction velocity.

Figure 6: Mean velocity in the channel: � DNS Moser et al.18 Reτ = 395 — WAD; R WA; ··· SMD

Mean velocity profiles in wall units are displayed in figure 6 which shows that the
dynamic Smagorinsky computation is in good agreement with the DNS data of Moser et
al.18 with a slight overprediction of the mean velocity in the buffer-layer. The dynamic
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WALE model does not improve the WALE5 model and its velocity profile is not better than
the dynamic Smagorinsky4 model. The mean velocity is clearly overestimated from the
buffer-layer to the centre of the channel. This is due to the overestimation of the viscosity
as depicted in figure 7 due to high value of the constant near the wall as shown in figure
8. The WALE computations are in good agreement with the DNS but it is certainly
due to the overprediction of the friction veolicty as shown in table 3. Considering the
eddy viscosity, figure 7 shows that the dynamic Smagorinsky model4 does not have a y+3

asymptotic behaviour in contrary to what was obtained by Germano et al.3. This is due
to the stabilisation method that is not performed over the homogeneous directions, as
already mentionned in section 2.
The cubic asymptotic behaviour is better retrieved by the WALE5 and the dynamic WALE
models because they are built with the spatial operator of Eq.5. However, the eddy
viscosity from WALE is substantially smaller than the values obtained by both dynamic
models in the turbulent region (y+ > 30). On the other hand, the dynamic WALE
produces too large eddy-viscosity in the buffer-layer (5 < y+ < 30). These behaviours are
better understand by considering the profiles of the model constant, as depicted in figure
7. It strongly decreases in the near wall region for the dynamic Smagorinsky4 model since
the dynamic procedure is required to damp the eddy viscosity, if the Smagorinsky1 model
is used. The opposite is observed for the dynamic WALE model for which the model
constant is 40 times larger than the value proposed by Nicoud and Ducros5 (10 against
0.25). Note that even in the core region, the dynamic procedure generates a constant
which is approximatively 3 times larger than its static counter part. This situation is
different from what is observed for the dynamic Smagorinsky4 model; in this case the
dynamic constant (0.182) in the core region is close to the classical model constant as
shown in figure 8.

The dynamic version of the WALE model leads to very high value of the constant near
the wall and to a bad prediction of the mean velocity. It rises the question of the effective-
ness of the Germano-identity when developping a dynamic version of a model that has a
right asymptotic behaviour. This was already observed by Park et al.21 in their attempt to
develop a dynamic version of the Vreman’s model6 based on the Germano-identity. They
observed a low correlation between the SGS tensor predicted by the dynamic model with
the true SGS tensor specially near the wall. They then developed a global dynamic model
improved by You and Moin22 where a global equilibrium instead of the local equilibrium
was assumed. The final constant was homogeneous in space but time dependent. The
main drawback of such a global dynamic procedure is that it relies on the SGS model to
ensure that the spatial variations in the eddy viscosity are properly obtained. Notably,
one could expect that νsgs goes to zero with the appropriate y+3 behaviour near solid
wall and at the same time vanishes in region of pure rotation. However, it can be easily
demonstrated that the latter condition is not met for both the Vreman’s6 nor the WALE5

models. It is then still necessary to investigate if a local version of those dynamic models
can be developed. This is discussed in the next section.
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Figure 7: Mean viscosity in the channel: — WAD; R WA; ··· SMD

Figure 8: Square of the constant in the channel: — WAD; ··· SMD; – · – SVS WAD

5 MODIFIED DYNAMIC WALE MODEL

5.1 Theoretical study

The behaviour of the eddy viscosity and the constant in the channel shown respectively
in figure 7 and 8 point out that the main problem of the model is near the wall. In fact for
Y + > 30 the eddy viscosity predicted by the dynamic WALE and Smagorinsky4 models
are almost similar but the high values of the constant near the wall have an impact on
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the viscosity in the buffer-layer.
In order to better understand this behaviour, we have first carried out a theoretical study
of the asymptotic behaviour of the numerator and denominator of expression (11).

Considering a filtered incompressible velocity field ū1, ū2, ū3 the asymptotic behaviour
of the different components of the velocity are expressed as :

ū1 = ay + by2 + O(y3)

ū2 = cy2 + O(y3)

ū3 = dy + ey2 + O(y3) (18)

where a, b, c, d and e depend on x, z and time. We only consider the components that
are most important near the wall. Then Mw

ij and Lij will be simplified to Mw
12 and L12

and we have the following behaviour:

Mw
12 = ∆̂2 ˆ|ŌP | ˆ̄S12 − ̂(∆̄2|ŌP |S̄12)

L12 = ̂̄u1ū2 − ̂̄u1̂̄u2 (19)

From the expression 18, we have:

S12 = a + O(y)

ū1ū2 = acy3 + O(y4) (20)

and the operator |ŌP | that is based on the WALE model5 has a y3 behaviour.

|ŌP | = fy3 + O(y4) (21)

With the relation Eq.20 and Eq.21 the terms Lij and Mij have the following behaviour:

Mw
12 = ∆̂2fay3 − ̂(∆̄2fay3) + O(y4)

L12 = âcy3 − âyĉy2 + O(y4) (22)

Then near the wall, the dynamic constant converges to the following expression:

Cw =
< âcy3 − âyĉy2 >

< ∆̂2fay3 − ̂(∆̄2fay3) >
+ O(y) (23)

This relation shows that the dynamic constant formally behaves like y0 near the wall.
However, the leading order term in Eq.23 is the ratio of two very small quantities (behaving
like y+3) whose numerical assessment strongly depends on the details of the test filter
application and stabilisation procedure. This situation is obviously ill-posed numerically
and can lead to very large value of the dynamic constant, as observed in fig 8. Note
that the situation is drastically different when the dynamic procedure is applied to the
Smagorinsky1 model. In this case, the spatial operator |ŌP | behaves like y0 and the
denominator of Eq.23 also. A model with a proper asymptotic behaviour seems to be
more sensitive to the choice of the filters and the stabilisation, specially near the wall.
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5.2 Proposed solution

The analysis conducted in section 5.1 suggests that the SGS models that have the
correct behaviour near the wall could be very sensitive to the filtering procedure and the
stabilisation method. This could be a real drawback to the development of any dynamic
version based on the Germano-identity for those models. Since the laminar viscosity is
dominant in the vicinity of the wall, there is no need, if one considers a SGS model with
the proper wall behaviour, to adapt its constant dynamically in the near wall region.
Still, it remains necessary to evaluate the constant in fully developed turbulent parts of
the flow.
A simple way to achieve this is to identify the ”near wall region”. In other words, to
have a sensor able to detect the presence of the wall without a priori knowledge of the
geometry which can be arbitrary complex. Such a sensor is not unique. Here we propose
to make use of an invariant similar to the one involved in the WALE model5 (see Eq.5)
More precisely, we have selected the following dimensionless parameter:

SV S =
(Sd

ijS
d
ij)

3/2

(Sd
ijS

d
ij)

3/2 + (SijSij)3
(24)

which has the following properties :

� the SV S behaves like y+3 since it shares the same numerator than the WALE
operator (Eq.5),

� the SV S = 0 for pure shear flows for the same reason,

� the SV S = 1 for pure rotating flows since Sij = 0 in this case

This last property indicates that SVS is bounded by 0−1, its lower value corresponding
to pure shear flows, its larger value corresponding to pure rotating flows. This also justifies
the acronym SVS (Shear and Vortex Sensor) we have chosen for this sensor.

Figure 9 shows the SVS in the channel as a function of y+ for the Reτ = 395.
It illustrates that this quantity can be used to divide the simulated geometry into two

zones: a zone far from the wall where the model constant should be estimated dynamically
using the Germano-identity and a zone close to the wall where the constant should be
fixed to 0.5, suggested by Nicoud and Ducros5. The value 0.09 is considered here as the
value below which the SVS behaves nearly y+3 and was thus chosen as threshold value
(see figure 9).
The modified dynamic WALE model is then expressed as follows:

if SV S > 0.09

C2
wsvs =

1

2

< LijM
w
ij >+

< Mw
ij M

w
ij >

(25)
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Figure 9: SVS in the channel at Reτ = 395

and if SV S < 0.09

C2
wsvs = 0.25 (26)

5.3 Results of the dynamic WALE with SVS at Reτ = 395

The modified model has been validated on the HIT of Comte-Bellot and Corsin7 and
the results are similar to those obtained with the normal dynamic WALE model. We will
then only focus on results obtained in the turbulent channel.
Results of the friction value obtained with the SVS dynamic WALE (see table 3) show
that the model has improved the prediction of the the static WALE model5 and are sim-
ilar to those obtained with the dynamic Smagorinsky model4.

Figure 10 compares the mean velocity predicted by the modified dynamic WALE, the
dynamic Smagorinsky4 and the WALE5 models. The mean velocity obtained with SVS
dynamic WALE is in good agreement with the experiment. Figure 11 indicates that the
viscosity in the channel is no longer affected by the high values near the wall. This is also
illustrated in fig 8.

The figure 8 compared the prediction of the square of the dynamic WALE constant
obtained with the normal and the modified dynamic WALE model. The introduction of
the SVS helps to controlling the value of the constant near the wall while keeping the
dynamic computation of the constant in the core region of the channel. This combination
leads to a better results than the WALE model5.
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Figure 10: Mean velocity in the channel at Reτ = 395: � DNS Moser et al.17 Reτ = 395; ··· SMD; – · –
SVS WAD

Figure 11: Eddy viscosity in the channel at Reτ = 395: ··· SMD; – · – SVS WAD

5.4 Results of the dynamic WALE with SVS at Reτ = 590

In an attempt to assess the adaptability of the procedure, we have kept the same
mesh to compute the Reτ = 590 channel flow, also computed by Moser et al.18 The
characteristics of the mesh in wall units are summarised in the table 4.
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Reτ nx × ny × nz
Lx

h
Lz

h
∆x+ ∆z+ ∆y+

w ∆y+
c

590 31 ∗ 139 ∗ 51 3.5 1.3 65 14 1.4 24

Table 4: Characteristics of the mesh for the case Reτ = 590

Figure 12 shows the mean velocity in channel obtained with the modified dynamic
WALE model. The velocity is slightly overestimated in the centre of the channel probably
due to the resolution but results are still in good agreement with the DNS.

Figure 12: Mean velocity in the channel at Reτ = 590: � DNS Moser et al.17 ; — SVS WAD

Figure 13 shows the rms velocity. Although the maximum of the axial velocity is over-
estimated, the location of the maximum is reasonably well predicted by the simulations.
The poor resolution of the mesh in the streamwise and spanwise directions is certainly
the main cause of the discrepancies observed in figure 13.

The eddy viscosity is represented in figure 14. Even at this high wall Reynolds number
the near wall behaviour of the model is preserved.
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Figure 13: Root mean square of velocity in the channel at Reτ = 590: � DNS Moser et al.18; — SVS
WAD

Figure 14: Sgs viscosity in the channel at Reτ = 590

The dynamic constants of the SVS WALE model are represented in figure 15 for the
two friction Reynolds numbers. The constants clearly adapt their value to the flow in the
turbulent part of the channel while the SVS keeps the same behavior (see figure 16). The
only difference is due to the y+ resolution that increased from the low to the high friction
Reynolds number case when using the same mesh.

It is worth nothing that even by adding high level of artificial viscosity during the
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Figure 15: Constants of the SVS WAD for the two friction Reynolds number: – · – Reτ = 395; · – –
Reτ = 590

Figure 16: SVS for the two friction Reynolds number: – · – Reτ = 395; · – – Reτ = 590

runs, no satisfying results were obtained with the dynamic Smagorinsky model4. This
is probably due to the fact that no averaging on homogeneous directions as discussed in
section 2. This indicates that the SVS dynamic WALE model has greater potential than
the dynamic Smagorinsky model4 for complex/high Reynolds configurations while leading
to equivalent results in simple/moderate Reynolds situations.
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6 CONCLUSIONS

A dynamic version of the WALE model5 with a Shear and Vortex Sensor has been
proposed. The model was succefully implemented and tested on the HIT experiment of
CBC7. The model gives equivalent results than the dynamic Smagorinsky model4 at low
friction Reynolds number and better results at high Reynolds number in an isothermal
turbulent channel configuation. In contrary to the dynamic Smagorinsky constant, the
dynamic WALE constant does not need to be averaged over homogeneous direction and
is then more suitable for very complex flows and geometries. In order to avoid highest
values of the viscosity in the laminar zone of the boundary layer due to the use of the
Germano-identity and the small value of the WALE operator near the wall, the SVS has
been introduced to divide the flow in two regions. A first one, close to the wall where the
constant keeps the value advised by Nicoud and Ducros5 and a second one corresponding
to the fully developped parts of the flow where the constant is dynamically evaluated and
can adapt to the mesh resolution and the turbulent flow level. The resulting viscosity
still has the proper y+3 behavior near the wall. The SVS dynamic WALE model seems
promising for modelling turbulent flow in very complex geometries without important
additional CPU cost and control strategies with equivalent or even better results than the
dynamic Smagorinsky model4 and static constant SGS models.
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