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Abstract. The present work proposes direct numerical simulations of some rotating disk
flows using a pseudo-spectral method with collocation Chebyshev polynomials in the radial
and axial directions and Fourier approximation in the periodic azimuthal direction. When
using cylindrical coordinates to calculate the Navier-Stokes equations the singularity that
appears on the axis (r = 0), because of the terms 1/rn (n = 1, 2) is only apparent. To
avoid evaluating differential equation coefficients which are infinite the spectral grid must
exclude the origin. The interesting issue is how does one impose boundary conditions at
the origin?

With spectral methods, there are various ways to avoid this difficulty without prescribing
any pole conditions. In this work, we have developed a method which consists in discretiz-
ing the whole diameter −R ≤ r ≤ R with an even number of radial Gauss-Lobatto nodes.
In the azimuthal direction, the overlap in the discretization is avoided by introducing a
shift equal to π/2K (K the number of mesh points in that direction) for θ > π in the
Fourier transform.

Spectral convergence of the method is illustrated on an analytical solution. The ability of
our numerical method to investigate complex unsteady flows is illustrated for three rotating
flows where other reliable experimental and numerical results are available.
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1 INTRODUCTION

When simulating flows in cylindrical configurations such as pipe flows or rotating cav-
ity flows, the main difficulty arises from the singularities, which appear on the axis. More
generally, the singularities at the centerline of a cylindrical coordinate system are due to
the presence of terms 1/rn (n = 1, 2) in the Navier-Stokes equations governing the flow,
where r is the radial distance. In the same time, the flow field itself does not have any
singularity on the axis. For axisymmetric flows, symmetry conditions may be easily used
to remove these singularities. For non-axisymmetric flows, several numerical methods
have been proposed in the literature [2] to overcome the singularities of the equations
in cylindrical coordinates. These methods depend greatly on whether a pseudo-spectral,
finite-volume of finite-difference framework is used.

In the present paper, only methods developed in the framework of pseudo-spectral
methods are briefly presented. Huang and Sloan [7] used the eigenvalue of Bessel’s equa-
tion and Poisson equations on the unit disk to construct a pole condition from a smooth-
ness assumption and the differential equation itself. Shen [22] proposed spectral-Galerkin
methods to solve the Helmholtz equation written in cylindrical coordinates. As a solu-
tion to remove the singularity at the axis, all the velocity components are set to zero as
pole conditions. Lopez and Shen [8] simulated the axisymmetric flow in a cylinder using
a spectral-Galerkin method. They proposed on the axis a singular boundary condition,
which is approximated by using a smooth boundary condition. In the physical space, it
corresponds to set all variables to 0 at r = 0. In the 3D case, the pressure requires to be
single-valued at the pole [9]. The velocity is decomposed into a set of complex functions
(u+ = u + iv, u− = u − iv), with u, v and w the velocity components. u+, u− and w
are set to zero for all Fourier modes, for all modes strictly higher than one and for all
modes higher than one respectively. In pipe flows, O’Sullivan and Breuer [14] avoided the
singularity by using information in spectral space related to the serie expansions of the
velocity and pressure at r = 0 and by increasing the resolution near the axis. Orszag and
Patera [13] employed parity relations for the Chebyshev coefficients in the expansions to
remove the singularity of the cylindrical system. Zhang et al. [24] used Jacobi polynomials
as the expansion basis in the radial direction close to the axis and Legendre-Lagrangian
interpolants away and recast the governing equations in the spectral space so that the
singularities were removed.

To easily avoid the pole problem, the Fourier components um(r, z) of any scalar func-
tion u(r, θ, z) of the cylindrical coordinates (r, θ, z) must satisfy the following condition:
um(r, z) = r|m|Um(r2, z), with Um a regular function of r and z. The first well condi-
tioned basis satisfaying these regularity conditions and providing spectral accuracy has
been proposed by Matsushima and Marcus [10] in the case of 2D Neumann boundary
value problems. Later, Auteri and Quartapelle [1] developed solvers for the 3D Helmholtz
equation in a finite cylinder based on Fourier series expansion in the tangential direction
and Legendre polynomials in the axial direction. To overcome the pole singularity, they
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proposed a new Jacobi polynomial basis. Serre and Pulicani [21] proposed a pseudospec-
tral method to solve the 3D Navier-Stokes equations inside a rotating cavity. The radial
dependence of the functions is approximated by a Chebyshev expansion between 0 and R
(the radius of the cavity) on a Gauss-Lobatto distribution. To avoid the polar problem,
they introduced a change of dependent variables: V = rβV∗ and P = rβP ∗, with β < 0,
which yields the conditions u∗ = v∗ = w∗ = p∗ = 0 on the axis. The same idea was
developed by Chen et al. [3] to solve the Poisson equation in cylindrical geometries. They
multiplied the equation by a factor r2 and made an adequate change of variables.

Here two different approaches are presented to treat the singularities at the rotation
axis using spectral methods. Both methods consist of mapping the domain (0, 2π)×(0, R)
into (0, π) × (−R,R) and using an odd number of mesh points in the radial direction as
prescribed by Mohseni and Colonius [11]. It ensures that no extra pole conditions have
to be specified at the axis. In the tangential direction, the first method uses the Fourier
basis contained in the former code [15], which leads to the resolution of the collocation
points twice. To avoid this overlap in the azimuthal direction, a shift is introduced for
θ > π as described by Heinrichs [6]. In both methods, a distribution of Gauss-Lobatto
points is used to avoid the clustering of nodes around the rotation axis, where the flow is
laminar in most of rotating disk applications.

The paper is divided as follows: the numerical approach including the innovative
method, which enables to overcome the singularity on the rotation axis, is presented
and validated against analytical solutions in section 2. Then, in section 3, it is applied to
some rotating disk flow configurations including the Von Kármán flow between exactly
counter-rotating disks, the vortex breakdown phenomenon in a cylindrical cavity and the
two first bifurcations in a rotor-stator cavity. Finally, some concluding remarks and future
views are provided.

2 NUMERICAL APPROACH

2.1 Geometrical configurations and flow control parameters

We consider in this work three different geometrical configurations that are sketched
in figure 1. Figure 1a shows the schematic model of the cylindrical Von Kármán configu-
ration. The motion is generated by counter-rotation of the top and bottom disks at the
same constant angular velocity Ω, the outer cylinder being stationary. Figures 1b and 1c
represent schematic views of two cylindrical rotor-stator cavities. The first one is used to
simulate the vortex breakdown phenomenon, whereas the second one is often encountered
in real rotating machineries.

In these three cases, the main flow depends on two non-dimensional parameters, the
rotational Reynolds number Re and the aspect ratio G of the cavity defined as:

Re =
ΩR2

ν
G =

D

H
(1)
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Figure 1: Schematic representations of the three considered configurations.

where D and H are respectively the diameter and the height of the cavity, Ω the rotation
rate of the rotating disk and ν the kinematic viscosity of the fluid.

The singularity at the junction of the stationary cylinder with the rotor is treated
appropriately, by employing a boundary layer function, vµ = e±(z−1)/µ, where µ is an
arbitrary shape parameter. It was shown for equivalent Reynolds numbers in Serre and
Bontoux [20] that this function with µ = 0.006 provides a reasonable representation of
the size of the gap that would be necessary in an experimental system, while retaining
spectral accuracy.

2.2 Mathematical modelling

The motion is governed by the incompressible three dimensional Navier-Stokes equa-
tions written in the velocity pressure formulation, together with the continuity equation
and appropriate boundary conditions. A cylindrical polar coordinate system (r, θ, z) is
used. The components of the velocity vector V are denoted u, v and w in the (r, θ, z)
directions respectively and P is the pressure. The scales for the dimensionless variables
of space, time and velocity are h, Ω−1 and ΩR respectively, with h the interdisk spacing,
R the outer radius of the rotating disk and Ω its rotation rate. The momentum and
continuity equations, in dimensionless form, become:

∂V

∂t
+ (V.∇)V = −∇P +

1

Re
∆V + F in D (2)

∇.V = 0 in D = D ∪ Γ (3)

where F represents a given body force. The appropriate boundary conditions of Dirichlet
type for the velocity vector write:

V = W on Γ = ∂D (4)

with the following operators in cylindrical coordinates:
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(∆V )r = ∇2u −
u

r2
−

2

r2

∂v

∂θ
(5)

(∆V )θ = ∇2v −
v

r2
−

2

r2

∂u

∂θ
(6)

(∆V )z = ∇2w (7)

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ
+

∂2

∂z2
(8)

2.3 Time discretization and space approximation

The numerical solution is based on a pseudo-spectral method with collocation Cheby-
shev polynomials in the radial r and axial z directions and Fourier collocation in the
periodic azimuthal direction θ. The dimensionless space variables (r, z) has been nor-
malized on [−1, 1], a requisite for the use of Chebyshev polynomials. The normalized
variables (r, z) satisfy the following relations r = rG and z = z. The calculation domain
is defined as D = (r, θ, z) ∈ [−1, 1] × [0, 2π[×[−1, 1].

Thus the solution ΨNMK = (u, v, w, P ) is obtained through the approximation:

ΨNMK (r, θ, z) =
K/2−1
∑

k=−K/2

N
∑

n=0

M
∑

m=0

Ψ̂nkmTn (r) Tm (z) eikθ (9)

where Tn and Tm are Chebyshev polynomials of degree n and m respectively, the number
of collocation points in the radial and axial directions are represented by N and M and
K define the cut-off frequency of the Fourier series. In the two non-periodic directions
the Gauss-Lobatto distribution of the collocation points is used:

ri = cos
(

iπ

N

)

for i ∈ [0, N ] (10)

zj = cos
(

jπ

M

)

for j ∈ [0,M ] (11)

With respect to the azimuthal direction θ, the distribution of points varies with the
method and as mentioned earlier in this paper we present two different approaches. The
first one uses a uniform distribution of points given by: θk = (2kπ)/K for k ∈ [0, K]. The
distribution of collocation points in the azimuthal direction for the second method as well
the main differences between the two approaches are described in the section 2.4.

The Navier-Stokes equations are discretized in time by using a semi-implicit scheme
that combines an implicit second order Euler scheme for the diffusive terms and the
explicit Adam-Bashforth scheme for the convective non-linear terms [23].
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When solving the incompressible Navier-Stokes equations, the main difficulties arise
from the absence of an evolution equation for the pressure, which only appears through
its gradient in the momentum equations, and from the treatment of the incompressibility
constraint. For incompressible flows, the pressure is not a thermodynamic variable since
it does nor satisfy a state equation. From a mathematical point of view, it is a kind of
Lagrange multiplier ensuring that the velocity field is divergence free at each time step.
This leads to a strong coupling between the pressure and the velocity field. In this paper
the solution method is based on an efficient projection scheme fully described in [16].

For the computation of the non-linear terms, the derivatives in each space direction
are calculated in the spectral space and the products are performed in the physical one
as described in [5]. The connection between the two spaces is made through the use of an
Fast Fourier Transform algorithm. For the diffusion terms the derivatives are performed
in physical space using a simple matrix multiplication. Finally, all the resulting Helmholtz
and Poisson problems are solved using a full diagonalization technique for each Fourier
mode. More details about the three-dimensional solver used can be found in [18].

2.4 Azimuthal mapping approach

This method consists also in the discretization of the whole diameter however in order
to avoid an overlap of collocation points the discrete angles θj are given by:

θj =

{

j 2π
K

if j = 1, ..., K
2
,

π + π
K

+
(

j − K
2

)

2π
K

if j = K
2

+ 1, ..., K.
(12)

For the derivatives in the azimuthal direction θ, the Fourier basis writes:

Φk (θj) =















sin (kθj) if k = 1, ..., K
2
− 1,

cos
(

K
2
θj

)

+ sin
(

K
2
θj

)

if k = K
2
,

cos
((

k − K
2
− 1

)

θj

)

if k = K
2

+ 1, ..., K.

(13)

The corresponding transformation matrix in spectral space is defined as follows:

Tθ = (Φk (θj)) , j, k = 1, ..., K (14)

The second derivative in Fourier space is given by:

D̂2
θ =







−diag (k2) if k = 1, ..., K
2
,

−diag
(

(

k − K
2
− 1

)2
)

if k = K
2

+ 1, ..., K.
(15)
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The first and second derivatives in physical space, represented by D1θ and D2θ respectively,
can be expressed by:

D1θ = DθT
−1
θ (16)

D2θ = TθD̂
2
θT

−1
θ (17)

Dθ =
(

Φ
′

k (θj)
)

(18)

Figure 2 illustrates the discrete angles θj represented by Equation (12). The details
about this approach are described in [6].

r

q

q /2j,   j=0,...,K

q /2+1,...,Kj,   j=K

Figure 2: Discrete angles θj , described by Equation (12).

2.5 Validation and comparison of both methods

2.5.1 Validation against an analytical solution

In this section we present the results concerning the validation of both methods. First
the accuracy of the methods was checked on the exact steady solution defined in D =
[−1, 1] × [0, 2π[×[−1, 1] by:

ue (Y, θ, Z) =
1

2π
(sin (πY ))2 sin (2πZ) cos (θ) (19)

ve (Y, θ, Z) = −
1

2π
(sin (πY ))2 sin (2πZ) sin (θ) (20)

we (Y, θ, Z) = −
1

2πG
(sin (2πY )) sin (πZ)2 cos (θ) (21)

pe (Y, θ, Z) = [cos (πY ) + cos (πZ)] cos (θ) (22)

The velocity field Ve is divergence free and satisfies homogeneous Dirichlet bound-
ary conditions. The space accuracy of the methods was evaluated by computing the L2
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discrete errors at the inner collocation points Er for Ψ = (u, v, w, P ). The steady so-
lution is assumed to be obtained when the residual Res(Ψ) = max|Ψn

NKM(ri, θk, zj) −
Ψn−1

NKM(ri, θk, zj)|/δt reaches 10−10. The values of the error for the radial velocity compo-
nent u at the inner collocation points are represented in figure 3. An exponential decay
with the number of mesh points is obtained, which is characteristic of spectral methods.
The same behaviour was obtained for the errors Er(v), Er(w) and Er(P ).
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lo
g

 10
(E

r(
u

))


N=M=K

 Er(u) method 1
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Figure 3: Evolution of the error, Er(u), for the radial velocity component u versus the polynomial degrees
N = M = K.

2.5.2 Comparisons of the two methods for a laminar rotor-stator flows

In order to compare the computational cost of both methods, the same simulations
have been performed considering the case represented in figure 1(c) for the following set
of parameters: G = 10.26 and Re = 20000. The same time step δt = 10−3 has been used.

The values of the time required by one iteration, the memory used and the real calcu-
lation time of each simulation are presented in table 1 for both methods. The first one
that uses the uniform collocation points distribution given by θk = (2kπ)/K for k ∈ [0, K]
is referenced in table 1 as method 1 and was carried out with a grid of 126 × 16 × 64
points in the radial, azimuthal and axial directions respectively. In the case referenced
as method 2, the simulation was made considering the distribution of points described
in the section 2.4 with 8 collocation points in the azimuthal direction, keeping the same
number of points in the other two directions. Regarding table 1, it is clear that the older
approach referenced as method 1 is about 3.4 times more time consuming than the new
method referenced as method 2, for almost the same memory size required.
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Method Total user time (s) Memory Size (Mb) Averaged time per iteration (s)
1 5071 144 0.253
2 2327 128 0.116

Table 1: Calculation time and memory size required for both methods in the case of a rotor-stator cavity
at G = 10.26 and Re = 20000.

3 RESULTS

All the results presented below have been obtained using the method 2 described in
section 2.4. It has been compared to other reliable data available in the literature in three
cases:

• two axisymmetric flows in rotating cavities:

– the laminar flow between two counter-rotating disks known as the Von Kármán
swirling flow [12],

– the vortex breakdown phenomenon in a stationary cylinder driven by a rotating
top disk [18, 19, 20].

• the non axisymmetric flow in a rotor-stator cavity at a transitional Reynolds number
[17, 15].

3.1 Von Kármán swirling flow between counter-rotating disks

Figure 4: Velocity contours for G = 1 and Re = 300 at θ = π: (a) u, (b) v and (c) w.

The present results are first compared to the DNS results of Nore et al. [12] in the
case of the Von Kármán swirling flow between exact counter-rotating disks for G = 1 and
Re = 300. As shown in figure 1(a)a, the motion is generated by the counter-rotation of
the upper and lower disks at the same constant angular velocity.

Figure 4 represents the velocity contours at θ = π. The number of collocation points
used in the radial, azimuthal and axial directions was 64 × 8 × 64 respectively with a
time step equal to 10−2. The basic flow is laminar and axisymmetric. In a (r, z) plane,
it consists of a dominant shear layer at mid-plane z = 0 as it can be seen from the iso-
contours of the axial velocity w. There are secondary recirculations due to the Ekman
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pumping close to the disks as shown from the iso-contours of u. The tangential velocity
component is negligible outside the very thin boundary layers formed on each disk. These
symmetries confirm the previous DNS results of Nore et al. [12] for the same parameters.

Authors max(u) max(v) max(w)
Nore et al [12] 0.13 1 0.11

present simulation 0.1329 1 0.105

Table 2: Maximum absolute values of u, v and w for G = 1 and Re = 300.

To go in further details, the present results are compared of the DNS results of Nore
et al. [12] in terms of the maximum of all velocity components. It is noteworthy that
the results of [12] have been obtained using Fourier approximations in all directions.
The comparisons are summarized in table 2. An excellent agreement is observed with a
maximum relative difference for the maximum of w equal to 4.5%.

3.2 Vortex breakdown phenomenon in a cylinder with a rotating top disk

Vortex breakdown and transition to time-dependent regimes are investigated in a sta-
tionary cylinder with a rotating top disk (Fig.1(b)). Two simulations were carried out.
The first calculation for Re = 1850 and G = 1 was performed using a 126× 8× 126 mesh
grid in the radial, azimuthal and axial directions respectively with a time step equal to
10−2. The second simulation was done using the same time step and grid arrangement
but for G = 0.8 and Re = 2750.

Figure 5: Velocity contours at Re = 1850: (a) u, (b) v and (c) w at θ = π.

In the first case, the basic flow is laminar and axisymmetric. A steady solution is
reached after a dimensionless time equal to 75 to be compared to the value 300 obtained
by Serre [18]. Figure 5 presents the iso-contours of the velocity components in a (r, z)
plane. The iso-surface of the axial velocity (iso-w = 0) is shown in figure (6(a)). It clearly
highlights the presence of an axisymmetric vortex breakdown along the rotation axis with
two bubbles, which confirms previous experimental and numerical results (see table 3).
The reader can refer to the PhD thesis of Serre [18] for a large review on the vortex
breakdown in a tank. The axial distribution of the axial velocity w, close to the rotation
axis at r = 0.00469, is given additionaly in figure 6b.
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Figure 6: Axial velocity at Re = 1850 and G = 1: (a) iso-contours at different axial positions with the
iso-values w = 0; (b) axial profile of w along the rotation axis.

In the table 3 we present the comparison of the characteristic lengths of the vortex
breakdown with the experimental data available and with the results obtained by Serre
et al [20] in a cylinder of aspect ratio G = 1. All the characteristic lengths presented in
table 3 are schematically represented in figure 7. The present results are found in quite
good agreement with the previous ones for the bubble characteristics, even if the method
is not optimized to simulate flow phenomenon close to the axis, where the grid is coarser.

e

l

s

Stator

Figure 7: Schematic representation of the bubble characteristic lengths.

Concerning the case for Re = 2750 and G = 0.8, the flow gets unsteady as shown in
figure 8, confirming the results described in [18]. Figure 9 presents the time evolutions
of the axial velocity w at 4 axial positions located along the rotation axis (r = 0.004) as
shown in figure 8. From these profiles, we can deduce the time period of oscillations of
the two bubbles. In the present case, the time period is 36.2 to be compared to the value
24.5 obtained by Serre [18].
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Re l/H s/H e/H
experimental [25] 1854

bubble 1 0.21 0.16 0.113
bubble 2 0.52 0.07 0.019

Serre et al [20] 1850
bubble 1 0.208 0.179 0.120
bubble 2 0.482 0.080 0.025

present simulation 1850
bubble 1 0.2061 0.1796 0.0816
bubble 2 0.4824 0.0753 0.0272

Table 3: Comparison of the characteristic lengths of the vortex breakdown in a cylinder of aspect ratio
G=1.

(a) t=1850 (b) t=1863.5 (c) t=1868 (d) t=1877

Figure 8: Iso-surfaces of w = 0 and iso-contours of w in a (r, z) plane for Re = 2750 and G = 0.8.

3.3 Batchelor rotor-stator flows at a transitional Reynolds number

To show the capability of the new method 2 to compute non-axisymmetric flows, some
computations have been performed in a rotor-stator cavity (Fig. 1(c)) of large aspect ratio
G = 10.26 at a transitional Reynolds number Re = 25000. For this set of parameters,
the flow exhibits a Batchelor flow structure with separated boundary layers [17, 15]. The
results have been obtained using 126×64×64 collocation points in radial, azimuthal and
axial directions respectively with a time step equal to 10−3.

Schouveiler et al. [17] have shown experimentally that the flow remains laminar until
the appearance of circular rolls (CR) in the stator boundary layers for Re ≥ 10500. These
patterns coexist in the experiments with spiral rolls, denoted SR1, for Re ≥ 20000. These
spirals are located at the periphery of the cavity, also along the stator side. Poncet et
al. [15] performed DNS results in an annular cavity and obtained only the spiral patterns
for this range of parameters, the circular rolls being observed only in a transient state.
In the present case, the cavity is cylindrical and both patterns are observed. 17 spiral
arms coexist with 3 circular rolls, which is in good agreement with experimental results
of Schouveiler et al. [17]. These authors obtained 18 spirals together with 3 circular rolls.
The mode 18 is besides the most unstable. This weak discrepancy on the number of
spiral arms can be explained by the fact that this instability is an Eckhaus instability.
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Figure 9: Time evolutions of the axial velocity w at different axial positions along the axis for Re = 2750
and G = 0.8.

Figure 10: Axial velocity in a (r, θ) plane in the stator boundary layer for G = 10.26 and Re = 25000.

Thus, the number of arms is very sensitive to the time history of the flow and to the
perturbations, which have been introduced experimentally or numerically. The circular
rolls, which propagate towards the center with a negative radial velocity, are bounded by
the spirals at r = 0.534R. The 17 spiral arms roll up in the sense of rotation of the rotor
and form thus a positive angle with the tangential direction equal to ε = 25◦, which fully
matches with the experimental value.

4 CONCLUSIONS

We have developed two methods to take into account the axis singularities, which
appear when one uses cylindrical coordinates. Both consist of mapping the domain
(0, 2π) × (0, R) into (0, π) × (−R,R) and using an odd number of mesh points in the
radial direction. It ensures that no extra pole conditions have to be specified at the axis.
In the tangential direction, the first method uses the Fourier basis contained in the for-
mer code, which leads to the resolution of the collocation points twice. To avoid this
overlap in the azimuthal direction, a shift is introduced for θ > π. Both methods have
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been validated against an analytical solution, while preserving the spectral accuracy of
the initial method. Then, they have been compared for a real flow arrangement. The
second method appeared to be less time consuming, while also saving memory size.

The second method has been used to simulate three different configurations for which
reliable numerical or experimental data were available: the Von Kármán flow between
counter-rotating disks [12], the vortex breakdown phenomenon [18, 19, 20] and the two
first bifurcations in a rotor-stator cavity [17, 15]. For these three cases, the main char-
acteristics of the mean flows and the instabilities have been favorably compared with the
previous works, showing the capability of the new method to predict with accuracy both
axisymmetric and non-axisymmetric flows.

The code has been recently extended for the simulation of turbulent flows using a “no-
model” approach. Some calculations are in progress in the rotor-stator cavity considered
by Craft et al. [4] to highlight the presence of 3D large scale vortices embedded in the
turbulent flow. The new method is particularly well adapted to simulate such flows as
the patterns are located far from the rotation axis, where the grid is coarser.
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