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Abstract. Large-eddy simulation (LES) seeks to predict the dynamics of spacially filtered
turbulent flows. The very essence is that the LES-solution contains only scales of size
≥ ∆, where ∆ denotes the width of the spatial filter. This property enables us to perform
a LES when it is not feasible to compute the full, turbulent solution of the Navier-Stokes
equations. A large-eddy simulation based on an eddy-viscosity model differs from a Navier-
Stokes simulation only in the use of a modified viscosity; hence, the desired effect thereof
is a restriction of the dynamics. In the paper, we focus on the question: “when does eddy
viscosity restrict the dynamics to scales of size ≥ ∆?”. From this it is deduced that the
eddy viscosity νe has to depend on the invariants q and r of the filtered strain tensor. The
simplest model is then given by νe = c2 ∆2r+/q.
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1 Problem setting

The Navier-Stokes equations provide an appropriate model for turbulent flow. In the
absence of compressibility (∇ · u = 0), the equations are

∂tu+ (u · ∇)u+∇p− 2ν∇ · S(u) = 0, (1)

where u is the fluid velocity field, p stands for the pressure, ν denotes the viscosity, and
S(u) = 1

2

(
∇u+∇uT

)
is the symmetric part of the velocity gradient. Turbulent flow is

generally visualized as a cascade of kinetic energy from large to small scales of motion
(eddies). The energy introduced at the large-scale components of the flow is transferred
to smaller and smaller eddies until eddies become sufficiently small to dissipate energy
efficiently. The entire spectrum - ranging from the wavenumbers where energy is injected
to the dissipation range - is to be resolved when turbulence is computed directly from
Eq. (1). This is, however, not feasible in many cases (see e.g. Ref. [1]). Large-eddy
simulation (LES) can then be a practicable solution. LES seeks to predict the dynamics
of spacially filtered turbulent flows. Formally, a spatial operator u 7→ u is introduced
that maps the turbulent velocity field u to the velocity u of the large scales of motion.
Applying this operator to Eq. (1) yields

∂tu+ (u · ∇)u+∇p− 2ν∇ · S(u) = ∇ · (uuT − uuT ) (2)

provided u 7→ u commutes with differentiation. The right-hand side depends on both
u and u, due to the nonlinearity. Modeling the right-hand side in terms of u yields a
simplified representation of the large eddies. The most commonly used model in LES is
given by

∂tv + (v · ∇)v +∇p̃− 2ν∇ · S(v) = 2∇ · (νeS(v)) , (3)

where νe denotes the eddy viscosity. Here, the variable name is changed from u to v to
stress that the solution of Eq. (3) differs from that of Eq. (2), because the closure model
is not exact.

The classical Smagorinsky model reads

νe = C2
S∆2|S(v)| (4)

where CS is the Smagorinsky constant, ∆ is the characteristic length scale set by the
operator u 7→ u (i.e., the width of the filter) and |S(v)| =

√
2 tr (S(v)2). It may be noticed

that the precise definition of u is not of much significance in case the Smagorinsky model
is used, since Eq. (4) depends only on the characteristic length scale ∆ set by the map
u 7→ u, and not on the details of the mapping. Various value for the Smagorinsky constant
have been proposed, mainly ranging from CS = 0.1 to CS = 0.17, see [2], e.g. Instead of
adhering to a constant value, CS is also treated as a model coefficient which is determined
during the simulation, that is CS = CS(v). In the well-known dynamical procedure the
coefficient CS is computed with the help of the Jacobi identity (in least-square sense) [3].
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The solution v of (3) is composed of eddies of different size. The very essence of
large-eddy simulation is that v contains only eddies of size ≥ ∆, where ∆ is the smallest
characteristic length scale set by the filter u 7→ u. This property enables us to solve (3)
numerically when it is not feasible to compute the solution of (1). A simulation based
on Eq. (3) differs from a Navier-Stokes simulation only in the use of a modified viscosity;
hence, the desired effect thereof is a restriction of the dynamics. Strictly speaking, the
eddy viscosity is to be determined such that the corresponding solution v of Eq. (3) forms
the ‘best’ approximation of u. To that end, however, we have to rely on phenomeno-
logical arguments, because we do not know how to derive the ‘best’ eddy viscosity from
the Navier-Stokes equations. In the present approach we try not to make any specific
assumptions (about the spectrum, e.g.). Rather, we focus on the question: “when does
eddy viscosity damp subfilter scales sufficiently?” Therefore we view the eddy viscosity
as a function of v that is to be determined such that any length scales smaller than ∆
are damped sufficiently fast. Although the principle is quit apparent it turns out to be
nontrivial to obtain a sharp estimate of the minimum amount of eddy viscosity. The basic
problem is that the evolution of the subfilter scales is needed for that. To circumvent this
problem, we will make use of the Poincaré inequality.

To start, we consider an arbitrary part Ω∆ with diameter ∆ of the flow domain and
define the filtering operator u 7→ u by

u =
1

|Ω∆|

∫
Ω∆

u(x, t) dx

In other words, the filtered value of u is equal to the average value of u over Ω∆. This
filter is known as a box or top-hat filter. Furthermore, we suppose that Ω∆ is a periodic
box. The underlying reason for this assumption is that boundary terms resulting from
integration by parts (in the computations to come) vanish. In fact, we can generalize our
results to any set of boundary conditions for which the boundary terms vanish. Poincaré’s
inequality states that there exists a constant C∆, depending only on Ω∆, such that for
every function v in the Sobolev space W 1,2(Ω∆),∫

Ω∆

||v − v||2 dx ≤ C∆

∫
Ω∆

||∇v||2 dx (5)

The optimal constant C∆ - the Poincaré constant for the domain Ω∆ - is the inverse of
the smallest (non-zero) eigenvalue of the dissipative operator −∇2 on Ω∆ [4]. In Ref. [5]
it is shown that the Poincaré constant is given by C∆ = (∆/π)2 for convex domains Ω∆.

The residual field v′ = v− v contains eddies of size smaller than ∆. The eddy viscosity
must keep them from becoming dynamically significant. Poincaré’s inequality (5) shows
that the L2(Ω∆) norm of the residual field v′ is bounded by a constant (independent of v)
times the L2(Ω∆) norm of ∇v. Consequently, we can confine the dynamically significant
part of the motion to scales ≥ ∆ by damping the velocity gradient with the help of an
eddy viscosity. This will be worked out in Section 2. As a result the eddy viscosity has to
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depend on the invariants q and r of the filtered strain tensor S(v). The simplest model is
then given by νe = c2 ∆2r+/q (Section 3).

2 When does eddy viscosity counteract the production of sub-filter scales?

We view the eddy viscosity as a function of the velocity v that is to be determined such
that the dynamics stays confined to eddies of size ≥ ∆; in particularly, the smallest scales
of motion that dissipate the energy are to be of size ∆, or larger. To start, we consider
both the incompressible Navier-Stokes equations (1) and the LES-model given by Eq. (3)
on an arbitrary part Ω` of the flow domain, where Ω` has diameter ` ≥ ∆ and is supplied
with periodic boundary conditions. Initially, say at time t = 0, the Navier-Stokes solution
u is given by u(x, 0) = u0(x), for all x ∈ Ω`. The initial condition for the LES-model
reads v(x, 0) = u0(x). The initial conditions supply energy to the flow. This energy
cannot escape from Ω`, since we have applied periodic conditions. Hence, the energy is
to be dissipated within Ω`. According to the Navier-Stokes equations the evolution of
the energy E(t) =

∫
Ω`

1
2
||u||2dx is given by dE/dt = −ε with ε = ν

∫
Ω`
||∇u||2dx. The

dissipation rate of the LES-model becomes
∫

Ω`
(ν + νe)||∇v||2dx. In the absence of eddy

viscosity, i.e., νe = 0, this integral is much smaller than ε if v ≈ u. Indeed, the mapping
u 7→ u reduces the velocity gradient. Now suppose that the amount of eddy-viscosity
is taken too little. Then, ||∇v||2 will have (a tendency) to increase, because the energy
that is supplied to the flow has to be dissipated anyway. Since the norm of the velocity
gradient ||∇v|| provides a consistent characterization of the reciprocal of the time scale,
an increase of ||∇v|| implies that smaller time-scales are produced. Then, the eddies
of scale ` in the velocity field v are unstable and break up, transferring their energy to
smaller eddies. These smaller eddies undergo a similar break-up process, and transfer
their energy to smaller eddies, and so on till the energy can be dissipated effectively. So,
in conclusion, an increase of

∫
Ω`
||∇v||2dx indicates that scales with a length smaller than

` are produced. In a LES this causes no problem if ` > ∆. But, in order to confine the
dynamics to scales ≥ ∆ this process has to stop at the scale set by the filter. Therefore,
we determine the eddy viscosity from the requirement that

d

dt

∫
Ω∆

1
2
||∇v||2 dx = −ν

∫
Ω∆

||∇2v||2 dx (6)

This condition can also be derived in a more formal way by utilizing Poincaré’s inequality
(5). Poincaré’s inequality states that the L2(Ω∆) norm of the residual field v′ = v − v
is bounded by a constant C∆ (independent of v) times the L2(Ω∆) norm of ∇v. Conse-
quently, the dynamically significant part of the motion can be confined to scales ≥ ∆ by
damping the velocity gradient with the help of an eddy viscosity. To see how the evolution
of the L2(Ω∆) norm of ∇v is to be damped, we consider the residual field v′ first:

d

dt

∫
Ω∆

1
2
||v′||2 dx =

∫
Ω∆

T (v, v′) dx− νe
∫

Ω∆

||∇v′||2 dx− ν
∫

Ω∆

||∇v′||2 dx
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Here,
∫

Ω∆
T (v, v′) dx represents the energy transfer from v to v′. It goes without saying

that the energy of v′ has to decrease quickly, since Eq. (3) should not produce subfilter
scales. Ideally, the eddy viscosity is taken such that the first two terms in the right-hand
side above cancel each other out, that is

∫
Ω∆
T (v, v′) dx = νe

∫
Ω∆
||∇v′||2 dx. Then we

have
d

dt

∫
Ω∆

1
2
||v′||2 dx = −ν

∫
Ω∆

||∇v′||2 dx (7)

This equation shows that the evolution of the energy of v′ is not depending on v. Stated
otherwise, the energy of subfilter scales dissipates at a natural rate, without any forcing
mechanism involving scales larger than ∆. In this way, the scales < ∆ are separated from
scales ≥ ∆. With the help of the Poincaré inequality (5), we obtain from Eq. (7) that

d

dt

∫
Ω∆

1
2
||v′||2(x, t) dx ≤ −2ν/C∆

∫
Ω∆

1
2
||v′||2(x, t) dx

The Gronwall lemma leads then to∫
Ω∆

1
2
||v′||2(x, t) dx ≤ exp (−2νt/C∆)

∫
Ω∆

1
2
||v′||2(x, 0) dx

In other words, the energy of the subfilter scales decays at least as fast as exp (−2νt/C∆),
for any filter length ∆. Applying Poincaré’s inequality and Gronwalls lemma to Eq. (6)
results into the same rate of decay:∫

Ω∆

1
2
||v′||2(x, t) dx

(5)

≤ C∆

∫
Ω∆

1
2
||∇v||2(x, t) dx

(6)

≤ C∆ exp (−2νt/C∆)

∫
Ω∆

1
2
||∇v||2(x, 0) dx

The decay rate of individual subfilter scales of motion can be determined from the dissi-
pative operator −∇2 on Ω∆ in the space-periodic case with vanishing space average. This
positive, self-adjoint operator possesses a sequence of positive eigenvalues µn. We can
order them such that 0 < µ1 ≤ µ2 ≤ µ3 ≤ · · · The first eigenvalue, µ1, equals 1/C∆. The
eigenfunctions en form an orthogonal basis; hence we can write, v′(x, t) =

∑
n v
′
n(t)en(x),

and associate a scale of motion with a term of the sum. Since the dissipative condition
(7) holds for any residual field v′, we obtain that the behavior of the n-th scale is given
by

v′n(t) ∼ exp (−νµnt) (8)

where n = 1, 2, ... This holds for any n if and only if Eq. (7) holds for any v′. In Ω∆ the
velocity can be written as v = v + v′, where v is constant (the average of v over Ω∆) and
v′ is periodic with vanishing average. Consequently, ∇v = ∇(v + v′) = ∇v′. Therefore,
Eq. (8) holds for every n if and only if Eq. (6) holds for any v with ∇v = 0 in Ω∆. So,
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in conclusion, we can impose Condition (6) on the decay rate of the L2(Ω∆) norm of ∇v,
and thus keep the subfilter component v′ under control. The (minimum) amount of eddy
viscosity needed to satisfy the dissipative condition (6) can be derived by taking the L2

innerproduct of Eq. (3) with ∇2v. Integration by parts yields

d

dt

∫
Ω∆

1
2
||∇v||2 dx =

∫
Ω∆

(
(v · ∇)v · ∇2v − (ν + νe) ||∇2v||2

)
dx (9)

where νe is assumed to be constant in Ω∆. As remarked before, the boundary terms that
result from the integration by parts vanish because Ω∆ is a periodic box. By comparing
Eq. (6) with Eq. (9) we get

νe

∫
Ω∆

||∇2v||2 dx =

∫
Ω∆

(v · ∇)v · ∇2v dx (10)

In Ref. [8] (page 791-792) it is shown that, for a periodic box, the convective term in the
right-hand side of (10) is equal to 4

∫
Ω∆
r(v) dx, where

r(v) = −1
3
tr(S3(v))

is an invariant of the rate of strain tensor S(v). It may be remarked here that the
calculations in Ref. [8] are done for the 3D Euler equations; yet one can add the viscous
term to each step of the calculations in Ref. [8]. The other invariant of S(v),

q(v) = 1
2
tr(S2(v)),

has the property that 4
∫

Ω∆
q(v) dx =

∫
Ω∆
||∇ × v||2 dx. See again Ref. [8] for instance.

Since ∇2v = −∇× ω with ω = ∇× v, it follows that Eq. (10) is equivalent to

νe

∫
Ω∆

q(ω) dx =

∫
Ω∆

r(v) dx (11)

So, in conclusion, the eddy-viscous damping in Eq. (9) counteracts the nonlinear pro-
duction in Eq. (9) if the eddy viscosity is taken according to Eq. (11). A noticeable
difference between this result and the standard Smagorinsky model (4) with CS constant
is that the standard model depends only on the invariant q (read: not on r). Notice that
|S(v)| =

√
2tr(S2) =

√
4q(v). The role of the invariant r(v) can be explained with the

help of the vorticity ω. By taking the curl of Eq. (3) we find the vorticity equation and
from that we obtain that the enstrophy is governed by

d

dt

∫
Ω∆

1
2
||ω||2 dx =

∫
Ω∆

ω · Sω dx− (ν + νe)

∫
Ω∆

||∇ω||2 dx
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In the right-hand side we recognize the vortex stretching term that can produce smaller
scales of motion and the dissipative term that should counteract the production of smaller
scales at the scale ∆. Now, Eq (11) leads to

νe

∫
Ω∆

||∇ω||2 dx = νe

∫
Ω∆

4 q(ω) dx
(11)
=

∫
Ω∆

4 r(v) dx =

∫
Ω∆

ω · Sω dx

Notice that the latter equality shows that r(v) is a measure for the vortex stretching
[8]. Thus, Eq. (11) can also be interpreted as follows: the eddy viscosity is taken such
that the corresponding damping of the enstrophy, νe

∫
Ω∆
||∇ω||2 dx, equals the production

by means of the vortex stretching mechanism,
∫

Ω∆
ω · Sω dx. In other words, the eddy

viscosity prevents the intensification of vorticity at the scale ∆ set by the map u 7→ u.

3 An eddy-viscosity model

The dissipative term in Eq. (11) can be bounded from below with the help of Poincaré’s
inequality:∫

Ω∆

q(ω) dx =

∫
Ω∆

1
4
||∇ω||2 dx ≥ 1

C∆

∫
Ω∆

1
4
||ω||2 dx =

1

C∆

∫
Ω∆

q(v) dx

where the equality-sign holds if ω is fully aligned with the first eigenfunction, e1, of the
dissipative operator −∇2 on Ω∆. So, in conclusion, the eddy-viscous term in Eq. (11)
dominates the nonlinear, convective term if

νe

∫
Ω∆

q(ω) dx ≥ νe
C∆

∫
Ω∆

q(v) dx ≥
∫

Ω∆

r(v) dx (12)

The latter condition ensures that subfilter scales are dynamically insignificant, meaning
that their energy is bounded by (5) where the upper bound evolves according to

d

dt

∫
Ω∆

1
2
||∇v||2 dx ≤ −ν

∫
Ω∆

||∇2v||2 dx

Since this condition is stronger than (6), we can conclude that the energy of the scales of
size ≤ ∆ decays at least as fast as exp (−2νt/C∆), for any filter length ∆, if the eddy-
viscosity is taken such that (12) holds. Now, the question is: does the minimal amount
of eddy viscosity satisfying (12), i.e.,

νe = C∆

∫
Ω∆
r(v) dx∫

Ω∆
q(v) dx

, (13)

adequately model the subfilter contributions to the evolution of the filtered velocity?
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Here, it may be noted that Eq. (13) relates the eddy viscosity to q(v), r(v) and C∆:

νe = νe(C∆, q, r)

where C∆ = (∆2/π)2. A dimensional analysis shows that the general form of an eddy
viscosity model depending on ∆, r and q is

νe = ∆2√q
∑
n

cn

(
r/
√
q3
)n

where cn denotes a dimensionless constant. Thus, in terms of a non-constant coefficient,
we have

C2
S = C2

S

(
r/
√
q3
)

The latter relation can be characterized further by imposing (exact) properties of the
filtered Navier-Stokes equations. The reversibility property, for example, limits C2

S to odd
functions of r/

√
q3. Consequently, we have C2

S(0) = 0.

3.1 Modeling consistency

Applying a box filter to a solution u of the Navier-Stokes equations (1) yields the field
u. This filtered field is, by construction, a solution to the filtered Navier-Stokes equation
(2). By substituting u into Eq. (3) we can get an idea about the consistency of the eddy-
viscosity model. Notice that all data comes from the Navier-Stokes equations: we take
v = u in Eq. (3) and compare the result with Eq. (2). This is also called a priori testing.
In this way, we see that the approximation

(uuT − uuT )tr ≈ 2 νe S(u)

causes the difference between Eq. (2) and Eq. (3) with v = u. Here, we use the notation
(A)tr = A− 1

3
tr(A)I. Notice that we can focus on the traceless part because the trace of

uuT − uuT can be incorporated into the pressure; hence need not be modeled. The series
expansion (up to terms of the order ∆4) of the left-hand side in the approximation above
reads

(uuT − uuT )tr = −∆2

12
(∇u∇uT )tr +O(∆4)

The leading term is known as the gradient model [9]. Unfortunately, the gradient model
cannot be used as a stand-alone LES model, since it produces a finite time blow-up of
the kinetic energy [10]-[11]. In other words, the gradient model can produce length-scales
smaller than ∆. However, we can project both the eddy-viscosity model given by Eq. (13)
and gradient model onto S(v), and study the differences between the models under this
projection:

C∆
r

q

∫
Ω∆

2S(v) : S(v) dx
?
= −∆2

12

∫
Ω∆

∇v∇vT : S(v) dx (14)
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exact

gradient

eddy-viscosity models

(uu
T − u

u
T )tr

−
1
12

∆
2 (∇v∇

v
T )tr

Figure 1: Some LES-models in the space of trace-less 3x3 tensors.

The integral in the right-hand side equals −4
∫

Ω∆
r(v) dx; details of the computation of

the integral can be found in Ref. [8] on page 791-792. This shows that r(v) provides
a measure of the alignment of the gradient model and S(v). By definition we have
S(v) : S(v) = 2q(v). Consequently, we obtain from Eq. (14) that C∆ ≈ ∆2/12. This value
is in fair agreement with the Poincaré constant, C∆ = ∆2/π2; yet, it is a slightly lower.
The overall situation is sketched in Fig. 3.1. The horizontal axis in this figure represents
all possible eddy-viscosity models; the axis is parameterized by the eddy viscosity. The
shaded part of the horizontal axis in Fig. 3.1 depicts the subset of eddy viscosities that
satisfy Eq. (12). The projection of the gradient model onto the horizontal axis falls outside
the shaded area; hence it cannot be guaranteed that this projection damps subfilter scales
adequately. This seems to reflect that the gradient model produces subfilter scales in
some cases. The model given by Eq. (13) forms the best approximation of the projection
of the gradient model provided the eddy viscosity model is restricted by Eq. (12). This
justifies to take the minimal value that satisfies (12), i.e., to take the eddy viscosity as in
Eq. (13).

3.2 Properties

Since vortex stretching is absent in laminar flows, we have r = 0 in any laminar flow.
Hence, Eq. (13) yields νe = 0 in any laminar (part of the) flow. Here it may be remarked
that the Smagorinsky model (4) predicts a nonvanishing eddy viscosity in regions where
the flow is laminar. Furthermore, we have r = 0 in any two-dimensional flow. Therefore,
Eq. (13) leads to νe = 0 for any two-dimensional flow. In this manner, Eq. (13) recognizes
the salient differences of 2D and 3D turbulence. Another shortcoming of the Smagorinsky
model (4) is that the eddy viscosity does not vanish at no-slip walls. The near-wall
behavior of the invariants r(v) and q(v) is given by r ∝ y3 and q ∝ y0, respectively, where
y denotes the distance to the wall. Thus (13) results into an eddy viscosity that vanishes
at the wall (as it should): νe ∝ y3. In homogeneous, isotropic turbulence, the invariants
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r(v) and q(v) scale with the Reynolds number Re like r ∝ Re3/2 and q ∝ Re1, respectively.
Hence, the quotient of r and q scales like r/q ∝ Re3/2/Re = Re1/2. Therefore νe/ν ∝ Re3/2

for fixed ∆. Additionally, we obtain that νe + ν → ν if ν ∝ Re−1 ∝ ∆2r/q ∝ ∆2Re1/2,
that is if ∆ ∝ Re−3/4. This shows that the eddy viscosity given by Eq. (13) vanishes
as ∆ is of the order of Re−3/4, i.e., if ∆ approaches the smallest (Kolmogorov) scale in
homogeneous, isotropic turbulence.

3.3 A qr-model

To compute the eddy viscosity νe according to Eq. (13), we need know how q and r
vary within Ω∆. Here, we cannot simply take q(v) = q(v), because the relation between q
and v is nonlinear. On the other hand, however, we do not want to compute v′ explicitly.
In a finite volume approximation, for instance, we resolve only v if the grid size is taken
equal to ∆, cf. [12]. To express the eddy viscosity in terms of v, we have to apply
an approximate deconvolution method that recovers some of the information lost in the
filtering process. To recover an approximation for v′ we consider the series expansion of
v around v. Ignoring terms that are of the order ∆4, we get the approximation

v′ ≈ − 1
24

∆2 ∇2v (15)

In homogeneous, isotropic turbulence we have r ∝ Re3/2 and q ∝ Re1/2; hence the ratio of

r and q3/2 scales like Re0. This scaling law suggests to take r(v)/q(v)
3/2
≈ r(v)/q(v)3/2.

Thus Eq. (13) leads to

νe ≈ C∆
r(v)

q(v)3/2

(
q(v)

q(v)

)1/2√
q(v)

Furthermore with the help of Eq. (15) it can be shown that

q(v) = 1
4
||∇v||2

(15)
≈ 1

4
||∇(v − 1

24
∆2∇2v)||2

≤ 1
4
(1 + 1

24
∆2/C∆)2||∇v||2 = (1 + 1

24
π2)2 q(v)

So by taking q(v) ≈ q(v) we obtain νe = c2∆2 r(v)/q(v) where the constant c2 is given
by 1

π2 + 1
24
≈ 0.143. Since the eddy viscosity is determined such that the solution v of

Eq. (3) is restricted to scales of size ≥ ∆, we can avoid the explicit application of the
filter here by taking r(v)/q(v) ≈ r(v)/q(v). Actually, this approximation forms the basis
of finite-volume methods. Then the eddy-viscosity model becomes

νe = c2∆2 r(v)

q(v)
(16)

This expression is invariant under rotation of coordinate axis, since it depends on the
invariants of S(v). The qr-model (16) can be put into the standard notation (4) by
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introducing the relation

C2
S =

c2 r

2
√
q3

(17)

where again c2 = 1
π2 + 1

24
.

In homogeneous, isotropic turbulence we have C2
S ∝ r/

√
q3 ∝ Re0, i.e., the Smagorin-

sky coefficient is (in lowest order) independent of the Reynolds number Re. So, if we
average Eq. (17) over the homogeneous directions we obtain an approximately constant
coefficient C2

S that is valid for a wide range of Reynolds numbers (in case of homogeneous,
isotropic turbulence). This partially agrees with Smagorinsky’s reasoning, in which C2

S is
taken constant (once again: provided that r ∝ Re3/2 and q ∝ Re1/2).

The three roots of the characteristic polynomial of S(v) must be real-valued because
S(v) is symmetric. This requirement leads to the constraint 27r2 ≤ 4q3. Hence, Eq. (16)
yields an eddy viscosity in the range

− c
2∆2

3
√

3
|S| ≤ νe ≤

c2∆2

3
√

3
|S|

Consequently, the largest value of the Smagorinsky coefficient CS is equal to c
271/4 ≈ 0.17.

Remarkably this maximum value is identical to Lilly’s value, CS = 0.17 [7], which implies
that the standard Smargorinsky model (4) with CS = 0.17 satisfies (12). Stated differently,
the standard model with CS = 0.17 stops the production of scales < ∆. Interestingly, the
value CS = 0.17 has been found too large in many numerical experiments. In turbulent
shear flow, for instance, the value of the coefficient CS is often reduced to the relatively
low value CS = 0.1 to give the standard model a fair change for success.

3.4 Backscatter

The qr-model given by Eq. (16) predicts a negative eddy viscosity in case r < 0. In
that case, energy is transferred from the smallest scale ∆ to larger scales (backscatter).
This does not contradict with the energy cascade concept: at certain times and positions
backscatter occurs, indeed, but the average transfer is from large scales to smaller ones.
Eddy-viscosity models are intrinsically not very suited to represent backscatter, since
backscatter is often anisotropic and negative values of the eddy viscosity are to be limited
in order to keep the problem well posed. That is, we have to impose the condition
ν + νe ≥ αν, with α > 0, to ensure that (3) is well posed.

Taking α = 1 leads to a purely dissipative model:

C2
S =

c2 r+

2
√
q3

(18)

where r+ = max{0, r}. In other words, we set the eddy viscosity νe equal to zero if
r < 0. Notice that Condition (12) is trivially satisfied by taking νe = 0 in case r < 0.

11



Roel Verstappen

In this way, we get a solution v depending on the molecular viscosity ν, i.e., on the
Reynolds number Re. Furthermore, it may be remarked that r < 0 implies that λ2 < 0.
An infinitesimal fluid volume is then stretched in one direction and compressed in the
other two directions (linear stretching), whereas r > 0 corresponds to stretching in two
directions and compression in one (planar stretching). In other words, the dissipative
model given by Eq. (18) damps only planar stretching.

Of course, we may include backscatter. The amount of backscatter can be controlled
with the help of the parameter α. Accordingly, the eddy viscosity is to be limited such
that νe ≥ (α − 1)ν with 0 < α ≤ 1. However, care needs to be taken, because the
clipping procedure (in particularly, the choice of α) is just an ad hoc approach to include
backscatter in an originally dissipative model.

3.5 First results

In summary, the qr-model given by Eq. (16) has the following properties: (a) ve = 0
in any laminar flow; (b) ve = 0 in any 2D flow; (c) ve ∝ y3 near a wall y = 0; (d)
ve → 0 if ∆ ∝ Re−3/4; (e) CS ≤ 0.17. It goes without saying that the performance
of the eddy-viscosity model (16) has to be investigated for many cases. As a first step
it was tested (without backscatter, that is with CS given by Eq. (18)) for turbulent
channel flow by means of a comparison with direct numerical simulations. This flow
forms a prototype for near-wall turbulence: virtually every LES has been tested for it.
The results are compared to the DNS data of Moser et al. [13] at Reτ = 590. In fact,
we should compare the LES-solution v to the filtered DNS-solution u. Yet, since the
filtered DNS-solution is not presented in Ref. [13] we will compare v directly to u. The
dimensions of the channel are taken identical to those of the DNS of Moser et al. The
computational grid used for the large-eddy simulation consists of 643 points. The DNS
was performed on a 384x257x384 grid, i.e., the DNS uses about 144 times more grid points
than the present LES. The LES-results were obtained with an incompressible code that
uses a fourth-order, symmetry-preserving, finite-volume discretization. Details about the
numerics can be found in Ref. [14]. The width of the filter is the only LES-parameter
that need be specified. On a uniform grid with spacing dx, dy and dz we can simply
take ∆ = dx = dy = dz. On a nonuniform grid we use the Poincaré constant C∆

to specify ∆. Analytically, the Poincaré constant is equal to the inverse of the smallest
(non-zero) eigenvalue of the dissipative operator −∇2 on Ω∆. Since this eigenvalue cannot
be represented on the grid, we replace it by the largest, representable eigenvalue, which
is given by 4/dx2 + 4/dy2 + 4/dz2. In this way, we get

∆2 =
3

1/dx2 + 1/dy2 + 1/dz2

where the constant in the numerator is chosen such that ∆ = dx = dy = dz on a
uniform grid. It may be stressed that this definition differs from the usual expression
∆ = (dx dy dz)1/3, if the grid is (strongly) nonuniform. Further it may be emphasized
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Figure 2: The upper figure shows the mean velocity (in wall coordinates) obtained with the help of the
643 LES and the DNS by Moser et al. The lower figure displays the root-mean-square of the fluctuating
velocities. The boxes and circles represent LES data; every symbol corresponds to data in a grid point.

that the eddy-viscosity model (16) is essentially not more complicated to implement in a
LES-code than the standard Smagorinsky model (with CS constant). Indeed, the qr-model
is expressed in terms of the invariants of the rate-of-strain tensor and does not involve
explicit filtering. The invariant q = 1

4
|S|2 is to be computed in any case; the computation

of r is just as difficult. Unlike the standard Smagorinsky model (even with the relatively
low value CS = 0.1), the present model showed an appropriate behavior. As can be seen
in Figure 2 both the mean velocity and the root-mean-square of the fluctuating velocity
are in good agreement with the DNS.
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