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Abstract. The Navier-Stokes equations accurately describe turbulent flow, yet they do
not provide a tractable model. Typically, the range of scales of motion is so wide that
in the foreseeable future numerical simulations of turbulent flow have to resort to mod-
els accounting for the effects of the small scales of motion for which numerical resolu-
tion is not avaliable. At the crossroad of theory and numerical simulation new tractable
models for turbulence start to develop. Regularization models form an example thereof.
The regularization method basically alters the nonlinearity to control the convective ener-
getic exchanges. The first outstanding approach in this direction goes back to Leray. In
this paper, we consider regularization that preserve certain fundamental properties of (the
convective operator in) the Navier-Stokes equations exactly. More precisely, we discuss
regularizations that preserve the symmetry and conservation properties of the convective
operator. The underlying idea is to restrain the convective production of small scales in
an unconditional stable manner, meaning that the solution of the regularized system can-
not blow up in the energy norm. The numerical algorithm used to solve the governing
equations preserves the symmetry properties too and is therefore well-suited to test the
proposed simulation shortcut. The simulation shortcut is successfully tested for turbulent
natural convection in a differentially heated cavity.
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1 Introduction

Turbulent flow can be visualized as a cascade of energy from large to small scales of
motion. The energy introduced at the large scales is transferred to smaller and smaller
scales - nearly without viscous dissipation - until the scale becomes sufficiently small to
dissipate energy efficiently. The Navier-Stokes equations provide an appropriate model
for turbulent flow. In the absence of compressibility (∇ · u = 0), the equations are

∂tu + C(u, u) + D(u) + ∇p = 0, (1)

where u denotes the instantaneous fluid velocity field, and p stands for the pressure. The
linear term D(u) = −∆u/Re is dissipative; Re is the Reynolds number. The dissipative
operator D is the most effective at the smallest scales of motion. The nonlinear term
C(u, v) = (u · ∇)v transfers energy from the scales at which the flow is driven to the
smallest ones that survive dissipation. The entire range of scales of motion is to be resolved
when turbulence is computed directly from the Navier-Stokes equations. Consequently,
attempts at simulating turbulence directly are limited to “a milli-second over a postage
stamp” [1].

In most applications it suffices to have a good grasp of the large scales of motion.
Resolving only these primary features of the flow reduces the computational effort to a
feasible level. Therefore a coarse-grained description of turbulent flow is sought. In large-
eddy simulation (LES) the coarsened representation is based on scale separation. To that
end a spatial filter is introduced. Applying this filter to the Navier-Stokes equations yields
the following equation for the ‘large-eddies’,

∂tuǫ + C(uǫ, uǫ) + D(uǫ) + ∇pǫ = C(uǫ, uǫ) − C(uǫ, uǫ) ≈ M(uǫ), (2)

where the filtering operation is denoted by a bar; the width of the filter is given by ǫ. The
right-hand side in the equation above represents the effects of the residual scales on the
evolution of the filtered velocity field. This nonlinear term is to be modeled. Here the
model is denoted by M(uǫ). LES-models are often based on phenomenological arguments
that cannot be derived from the Navier-Stokes equations [2].

In the quest for a dynamically less complex mathematical formulation, we consider
smooth approximations (regularizations) of the nonlinearity:

∂tuǫ + C̃(uǫ, uǫ) + D(uǫ) + ∇pǫ = 0. (3)

The regularized system (3) should be more amenable to solve numerically, while the
leading modes of uǫ have to approximate the corresponding modes of the Navier-Stokes
solution u. The first outstanding approach in this direction goes back to Leray [3], who

took C̃(u, u) = C(ū, u) and proved that any filtering of the transport velocity is sufficient
to guarantee that the energy cascade stops at a certain scale of motion. Cheskidov et
al. [4] have showed that the complexity of the dynamics given by the 3D Leray model
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lies between that of the 2D and 3D Navier-Stokes equations. The Navier-Stokes-α-model
forms another example of regularization modeling [5]. In this model, the convective term

becomes C̃r(u, u) = Cr(u, ū), where Cr denotes the convective operator in rotational form:
Cr(u, v) = (∇× u) × v.

In case an invertible filter is applied (the Gaussian filter, for instance), the regulariza-
tion (3) falls in with the LES-concept if the subgrid model M(uǫ) is taken such that

M(uǫ) = C(uǫ, uǫ) − C̃(uǫ, uǫ) (4)

Indeed under this condition, Eq. (3) is equivalent to (2): we can filter (3) first and there-
after compare the filtered version of (3) term-by-term with (2) to identify the closure

model M(uǫ). Eq. (4) relates the regularization C̃(uǫ, uǫ) one-to-one to the closure model
for any invertible filter. Hence, Eq. (3) is formally equivalent to a LES for any invertible
filter. The regularization (3) may also be seen in relationship to the approximate decon-
volution method (ADM) [6]. In ADM, the argument u in the bilinear operator C(u, u)

is replaced by ũ = F̃−1u ≈ u, where F̃−1 approximates the inverse of the filter Fu = u.
The approximately deconvolved velocity is then governed by

∂tũ + F̃−1FC(ũ, ũ) + D(ũ) + ∇p̃ = 0.

Taking ũ = uǫ, p̃ = pǫ and C̃(u, v) = F̃−1FC(u, v) yields Eq. (3). In this way, any direct
modification of the convective term in the Navier-Stokes equations is implicitly related to
an approximate deconvolution operator F̃−1.

The regularization method basically alters the nonlinearity to restrain the production
of small scales of motion, see e.g. [7]. In doing so, one can preserve certain fundamental
properties of the convective operator in the Navier-Stokes equations exactly. We propose
to preserve the symmetry properties that are intimately tied up with the conservation of
energy, enstrophy (in 2D) and helicity.

2 Symmetry and conservation properties

In terms of the usual scalar product (u, v) =
∫
Ω

u·vdx, the energy of a fluid occupying a
region Ω is given by |u|2 = (u, u). The evolution of the energy follows from differentiating
(u, u) with respect to time and rewriting ∂tu with the help of (1). In this way, we get
a convective contribution given by (C(u, u), u). The trilinear form (C(u, v), w) is skew-
symmetric with respect to v and w:

(C(u, v), w) = −(v, C(u, w)) (5)

provided
∫

∂Ω
(v ·w)(u ·n)ds = 0; e.g., if the normal velocity u ·n vanishes at the boundary

∂Ω, if v · w vanishes, or if periodic boundary conditions apply. The proof of (5) uses the
identity ∇ · (fu) = f∇ · u + ∇f · u, which holds for any (differentiable) scalar f and
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vector field u. Taking f = v ·w, ∇·u = 0 and applying Gauß’s Divergence Theorem gives
(C(u, v) · w) + (C(u, w) · v) = (∇f · u) = (∇ · (fu)) = 0, which proves (5).

Eq. (5) demonstrates that the convective contribution (C(u, u), u) cancels from the
energy equation. The pressure does not contribute. Thus after some algebra, the energy
equation reduces to

d

dt
1
2
|u|2 = − 1

Re
|∇u|2 = − 1

Re
|ω|2, (6)

where ω = ∇× u is the vorticity. This shows that the enstrophy |ω|2 determines the rate
of dissipation of energy. Taking the curl of the Navier-Stokes equations gives

∂tω + C(u, ω) + D(ω) = C(ω, u), (7)

Consequently, the enstrophy is governed by

d

dt
1
2
|ω|2 = − 1

Re
|∇ω|2 + (C(ω, u), ω). (8)

The trilinear term in (8) vanishes in two spatial dimensions; hence, the enstrophy is
conserved in 2D (if D = 0). This property is extensively used in the proof of the existence
and uniqueness of (weak and strong) solutions of the 2D Navier-Stokes equations. In
3D, however, (C(ω, u), ω) 6= 0 and the question of existence and uniqueness is still open.
At the present level of understanding, it cannot be excluded that the vorticity ω bursts
driving the energy to extreme small scales by the vortex stretching mechanism.

The evolution of the helicity (ω, u) follows from the inner product of Eq. (1) with the
vorticity ω and the inner product of Eq. (7) with the velocity u. Taking these inner
products results into the convective contribution (C(u, u), ω)+(C(u, ω), u)− (C(ω, u), u),
which vanishes as an immediate consequence of the skew symmetry (5). Thus, the helicity
is conserved (if D = 0).

3 Symmetry-preserving regularizations

Regularizations of particular interest conserve the energy, the enstrophy (in 2D) and
the helicity (in 3D) in the absence of viscous dissipation. The Leray model conserves the
energy, but not the enstrophy or helicity, whereas the Navier-Stokes-α model conserves
the enstrophy and helicity, yet not the energy. Since the invariance of energy, enstrophy
and helicity is intimately tied up with the symmetry properties of the convective operator
C (see Section 2), we aim to approximate C in such manner that the skew-symmetry given
by Eq. (5) is preserved. This criterion yields the following class of approximations

∂tuǫ + C̃n(uǫ, uǫ) + D(uǫ) + ∇pǫ = 0, (9)

(n = 2, 4, 6) in which the convective term is approximated according to:

C̃2(u, v) = C(u, v) (10)

C̃4(u, v) = C(u, v) + C(u, v′) + C(u′, v) (11)

C̃6(u, v) = C(u, v) + C(u, v′) + C(u′, v) + C(u′, v′) (12)
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where a prime indicates the residual of the filter, e.g. u′ = u− u. The difference between
C̃n(u, u) and C(u, u) is of the order ǫn (where n=2,4,6) for symmetric filters with filter
length ǫ. The nonlinear approximations (10)-(12) are constructed in such a manner that
the skew-symmetry (5) is preserved. That is, for any self-adjoint filter:

(C̃n(u, v), w) = −(v, C̃n(u, w)), (13)

with n = 2, 4, 6. Eq. (13) implies that the convective contribution to the energy equation
vanishes. Consequently, the evolution of the energy 1

2
|u2

ǫ | of any solution uǫ of (9)-(12) is
again given by Eq. (6) with u replaced by uǫ.

4 Nonlinear transport mechanism

To see how the above regularizations restrain the production of small scales of motion,
we take the curl of Eq. (9),

∂tωǫ + C̃n(uǫ, ωǫ) + D(ωǫ) = C̃n(ωǫ, uǫ).

This equation resembles the vorticity equation that follows from the Navier-Stokes equa-
tions: the only difference is that C is replaced by its regularization C̃n. The Navier-Stokes
equations yield the vortex-stretching term

C(ω, u) = Sω + Sω′ + S ′ω + S ′ω,

where S = 1
2
(∇u + ∇uT) is the deformation tensor. The regularized vortex stretching

terms become

C2(ω, u) = Sω

C4(ω, u) = Sω + Sω′ + S ′ω

C6(ω, u) = Sω + Sω′ + S ′ω + S ′ω′,

respectively. Qualitatively, vortex stretching leads to the production of smaller and
smaller scales, i.e., to a continuous, local increase of both S ′ and ω′. Consequently,
at the positions where vortex stretching occurs, the terms with S ′ and ω′ will eventually
amount considerably to C(ω, u). Since the regularizations Cn(ω, u) diminish these terms,
they counteract the production of smaller and smaller scales by means of vortex stretch-
ing and may eventually stop the continuation of the vortex stretching process. In this
way, the symmetry-preserving regularization method restrains the convective production
of smaller and smaller scales of motion by means of vortex stretching.

A detailed study of the triadic interactions shows that C̃n(u, u) approximates the local
interactions between large scales of motion (ǫ|k| < 1) up to n-th order. Hence, the triadic
interactions between large scales of motion are only slightly altered. All interactions
involving longer wavevectors (smaller scales of motion) are reduced. The amount by which
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the interactions between the wavevector-triple (k, p, q) are lessened depends on the length
of the legs of the triangle k = p + q. In case n = 4, for example, all triadic interactions
for which at least two legs are (much) longer than 1/ǫ are (strongly) attenuated, whereas
interactions for which at least two legs are (much) shorter than 1/ǫ are reduced to a small
degree only. For more details, see [8]

5 Mathematical basis

The symmetry-preserving regularizations (9)-(12) yield uniqueness and the expected
regularity properties: for all initial velocities in H = {u ∈ L2(Ω),∇ · u = 0} where the
spatial domain is given by Ω = (0, 2π)3 and periodic boundary conditions are enforced,
and ǫ > 0, Eq. (9), with Cn given by (10)-(12), has a unique C∞ solution. This solution
is bounded in L∞(0, T ; H)∩ L2(0, T ; V ), where the time t ∈ (0, T ), with T > 0 arbitrary,
and V = {u ∈ H1(Ω),∇ · u = 0}). One subsequence converges weakly in L2(0, T ; V ) to
a weak NS-solution as ǫ → 0. The proof is in fact a copy of Leray’s proof in [3]. So as
for Leray’s model, any filtering in Eqs. (10)-(12) is sufficient to guarantee that the energy
cascade stops at a certain scale of motion.

Fifty years after Kolmogorov’s landmark papers on the cascade-concept [9]-[10], Foias
et al. [11] proved Kolmogorov’s results in a mathematically rigorous manner. They
proved that the solution (existence is assumed) of the NS-equation - on a periodic box in
dimension three - actual has a range of scales with wavenumber κ for which the rate at
which energy is transferred (from scales > κ to those < κ) is independent of κ. In this
range the energy behaves like κ−5/3. The proofs by Foias et al. are also applicable to the
regularized system (9), because the regularization preserves symmetry and conservation
properties of the nonlinearity. In this way it can be shown that the solution of the
regularized system - on a periodic box in dimension three - actual has a range of scales
with wavenumber k for which the rate at which energy is transferred (from scales > k to
those < k) is independent of k [12]. In this so-called inertial subrange the energy behaves
like k−5/3. Compared to Navier-Stokes, the inertial subrange is shortened yielding a more
amenable problem to solve numerically.

6 Numerical simulation method

The discretization of Eq. (9) is important, since modelling errors and discretization
errors are mixed together if results computed with the help of (9) are compared with
reference data. The approximations Cn of C are constructed such that the symmetry
property given by Eq. (5) is preserved. Of course, the same should hold for the spatial
discretization of Cn. Therefore, we have developed a discretization scheme that preserves
the skew-symmetry of the convective term. For more details the reader is referred to [13].
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7 Results for a turbulent DHC at Ra = 1010

The performance of the C4-approximation has been tested for a turbulent differentially
heated cavity (DHC) by direct comparison with the DNS reference results [14, 15, 16].
The coordinate system used here is: x1 for the periodic direction and x2 (horizontal) and
x3 (vertical) for the two wall-normal directions (see Figure 1, left). Ra is the Rayleigh
number based on the cavity height, (gβ∆TL3

3)/(να) and Pr = ν/α. To account for the
density variations, the Boussinesq approximation is used. Furthermore, the cavity is filled
with air (Pr = 0.71), and its height aspect ratio, L3/L2, is equal to 4. For further details
about this configuration the reader is referred to [14, 15, 16]

T=T C

Cold wall

g

x3

x1
x2

L3

Adiabatic

Adiabatic

Hot wall

HT=T

L1

L2

Figure 1: Differentially heated cavity schema. Right: Several instantaneous temperature fields.

Averages over the three statistically invariant transformations (time, x1-direction and
central point symmetry around the center of the cavity) have been carried out. The
standard averaging notation, 〈·〉, is used here. Statistical values have been obtained for a
time interval corresponding to ≈ 500 time units of simulation. As initial test, two very
coarse meshes (see Table 1) have been used to solve the DHC-problem at Ra = 1010.

7.1 Mean fields

The corresponding vertical temperature profile at mid-width is displayed in Figure 2.
At first sight we can observe a significant improvement for the smoothed solutions. At
the top and bottom areas, where the flow is more turbulent, some discrepancies regarding
the reference solution are still observed for both meshes. The fairly good prediction at
the cavity core even for the coarsest mesh is especially relevant. Actually, an accurate
prediction of thermal stratification of this configuration is a challenge for turbulence
modeling. In Figure 3 (top), we can see that without smoothing (ǫ = 0), the thermal
stratification is clearly under predicted, especially for the coarsest mesh.

Let us focus now on the vertical boundary layer. It remains laminar in its upstream
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Figure 2: Averaged vertical temperature profile at mid-width.

part up to the point where the Tollmien-Schlichting waves travelling downstream grow up
enough to disrupt the boundary layer (see Figure 1, right). Its high sensitivity to external
disturbances makes it difficult to predict. The corresponding temperature and vertical
velocity profiles at the cavity mid-height plane, x3 = 0.5, are displayed in Figure 3. As
expected, we can observe a strong relation between 〈T 〉 and 〈u3〉. Consequently, both are
to be predicted well. The solutions corresponding to ǫ = 0 (labeled ’No Model’) have a
vertical boundary layer that is too thick, whereas with the C4-smoothing, results for the
two coarse meshes agree very well with the DNS reference solution.

7.2 Heat transfer

The total Nusselt numbers are shown in Table 1. The reference value Nu = 101.94
has been obtained from our DNS simulation [15, 16] with ǫ = 0. We see that both
C4 simulations, RM1 and RM2 , predict fairly well the reference value. Moreover, in
Figure 5, we observe that the heat transfer is also well captured for all randomly generated
meshes whereas the solutions obtained without smoothing (ǫ = 0) are incomparably worse.
Results of the distribution of Nusselt number in the hot wall are shown in Figure 4.
A change in the shape is observed at nearly x3 = 0.2 for the non-smoothed results,
indicating a much too early transition toward turbulence. In contrast, the C4 results are
able to capture well most of the profile except for the most upstream part where the heat
transfer is slightly under predicted.

In Table 1, the maximum and the minimum values of the local Nusselt number are also
shown. These two quantities are of interest because they occur in two clearly different
parts of the vertical boundary layers. Maximum values occur in the upstream part of the
boundary layer where it is still almost laminar whereas minimum values are observed at
the most downstream part of the boundary layer where it has become fully turbulent. For
both coarse grids, the significant improvements are achieved for the regularized solutions.
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Figure 3: Averaged temperature (top) and vertical velocity (bottom) profiles at the horizontal mid-height
plane.

DNS RM1 RM2
Mesh 128×190×462 16 × 34 × 80 8 × 17 × 40

No model C4 No model C4

Nu 101.94 121.93 100.81 128.14 102.17
Numax 454.86 437.78 451.12 342.02 459.59
Numin 8.50 10.92 10.18 27.77 7.03

Table 1: The overall, the maximum and the minimum of the averaged Nusselt number.

7.3 Grid (in)dependence analysis

A reliable modeling of turbulence at (very) coarse grids is a great challenge. The
coarser the grid, more convincing model quality is perceived. However, it might happen
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that the solution is strongly dependent on meshing parameters and thus some particular
combinations could ’accidentally’ provide good results. An example of this behavior has
been observed in [17] for a turbulent channel flow. In order to elucidate this point, the
same DHC problem has been solved on a series of 50 randomly generated meshes: with
(N1, N2, N3)-values limited by those given by meshes RM1 and RM2 (see Table 1), i.e.,
8 ≤ N1 ≤ 16, 17 ≤ N2 ≤ 34, and 40 ≤ N3 ≤ 80. The concentration parameters are
kept equal to those used for the DNS simulation [14]. Note than some of the numerical
experiments displayed in Figure 5 correspond to highly skewed grids. Results for the
overall Nusselt and the centerline stratification values are displayed in Figure 5 (top). At
first sight, we can observe that the C4 modeling predicts results well irrespective of the
meshing whereas very poor and dispersed results are obtained when the model is switched
off. The fairly good prediction of the stratification (note the dispersion obtained without
model!) is especially important. Results for the maximum vertical velocity and the wall
shear stress scaled at the horizontal mid-height plane, x3 = 0.5, display essentially the
same (see Figure 5, bottom).

8 Performance at higher (and lower) Rayleigh numbers

The performance of the C4-regularization has also been tested at higher (and lower)
Ra. This study covers a relatively wide range, 6.4× 108 ≤ Ra ≤ 1011, from weak to fully
developed turbulence. Within this range DNS results for five different configurations (at
Ra = 6.4 × 108, 2 × 109, 1010, 3 × 1010 and 1011, respectively) are available [15, 16]. The
meshes used to carry out these simulations have been generated keeping the same number
of points in the boundary layer as in the coarse mesh RM1 for Ra = 1010. In this way, the
meshes1 for Ra = 3× 1010 and 1011 become 10× 19× 46 with γ2 = 2.26 and 12× 26× 62
with γ2 = 2.28, respectively.

1Note that the grid stretching near the vertical walls has also been slightly increased with the Ra.
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Figure 5: Top: the overall Nusselt number and the centerline stratification. Bottom: the maximum
vertical velocity and the wall shear stress scaled by Ra

−1/4 at the horizontal mid-height plane. Results
have been obtained for 50 randomly generated grids.

8.1 Boundary layer

For the sake of brevity, in this section we focus only on the highest Ra, i.e. 1011. In
Figure 6, the temperature and the vertical velocity profiles at the horizontal mid-height
plane, x3 = 0.5, are displayed. Again, the C4 method and non-smoothed results (ǫ = 0)
obtained using a mesh that it is twice finer in each direction are compared with DNS
data. All plots depict essentially the same: the C4 method is able to capture well the flow
structure of the vertical boundary layer even for the coarsest meshes whereas the results
of the non-smoothed simulations differ largely from the reference solution.
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Figure 6: Averaged temperature (top) and vertical velocity (bottom) profiles at the horizontal mid-height
plane at Ra = 1011.

8.2 Heat transfer

The heat flux as a function of Rayleigh number is investigated in this section. In the
last decades significant efforts, both numerical and experimentally, have been directed at
investigating the mechanisms and detailed scaling behavior on turbulent Rayleigh-Bénard
(RB) problems. Classical theory predicts that Nu ∼ Raξ with ξ = 1/3. Alternative
scaling theories, encouraged by experimental observations, lead to ξ = 2/7 [18]. Finally,
an asymptotic regime, the so-called Kraichnan regime, with ξ = 1/2 is presumed to exist
at very high Ra. Experimentally, power-law dependencies of heat flux with exponents
between 1/4 and 1/3 have been measured [19]. Regarding the Kraichnan regime, and
despite the great efforts devoted, no clear evidence has been observed yet [20]. On the
other hand, there is still controversy whether a simple power-law Nu ∼ Raξ is adequate
[19]. Comparatively, the DHC problem has received much less attention from the scientific
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community. Nevertheless, both configurations share similar heat transfer scaling [21] and
most of the ideas applied to RB configuration can be easily applied to the DHC problem.
In [16] we found that Nu ≈ 0.182Ra0.275 was the power-law scaling that fitted best our
DNS results in the range Ra = 109 − 1011. Actually, this exponent cannot be considered
’near’ 1/3; rather, it is closer to the 2/7 ≈ 0.286 proposed by alternatives theories of
turbulent natural convection flows [18].
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Figure 7: Overall Nusselt number for 6.4 × 108 ≤ Ra ≤ 1011 (top) and for Ra up to 1017 (bottom).

8.2.1 Comparison with DNS results

Results for the overall Nusselt number corresponding to 56 simulations within the whole
range of Rayleigh numbers studied by DNS, i.e., 6.4 × 108 ≤ Ra ≤ 1011, are displayed
in Figure 7 (top). At first sight, we observe again a fairly good agreement with the DNS
results (solid dots) and the correlation obtained from the DNS data. It must be noted
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that the Nu-Ra dependence obtained with the C4 is smooth suggesting again that the
proposed model is performing well ’independently’ of Ra and meshing parameters that
may suddenly change for two consecutive points in the graph.

8.2.2 Nu-number correlation with Ra up to 1017

Since performing computations with the C4 approximation is rather cheap simulations
at very high Ra have also been performed. Following the aforesaid criteria to keep the
number of point at the vertical boundary layer constant leads to a 68 × 142 × 334 mesh
with γ2 = 3.48 for Ra = 1017. Of course, for the range 1011 < Ra ≤ 1017 there is no
DNS (or experimental) data to compare with. Anyhow, it is interesting to see that results
displayed in Figure 7 (bottom) show a good agreement with a 2/7 power-law scaling of
Nusselt (Nu increases approximately from 102 to 104, that is 2 orders of magnitude, when
Ra is increased 7 orders, from 1010 to 1017). This scaling law, predicted by alternatives
theories [18] of turbulent natural convection, has also been experimentally measured for
RB configurations [20].

9 Concluding remarks

The C4-regularization of the nonlinear convective term has been considered as a sim-
ulation shortcut. The symmetries and conservation properties of the original convective
term are exactly preserved. Doing so, the production of smaller and smaller scales of
motion is restrained in an unconditionally stable manner. The numerical algorithm to
solve the governing equations is also fully-conservative and is therefore well-suited to test
the proposed simulation method.

An air-filled DHC with height aspect ratio 4 has been used as test case for the C4-
regularization. This is a challenging configuration for turbulence modeling since areas with
completely different regimes coexist and interplay. Direct comparison with DNS reference
results within a relatively wide range of Rayleigh numbers, 6.4 × 108 ≤ Ra ≤ 1011, has
shown that the method is able to capture the general pattern of the flow correctly even
for very coarse meshes. The robustness of the method has been tested by performing
simulations for a series of randomly generated grids. Even for highly skewed grids, all the
results obtained with the C4 method were clustered around the DNS reference solution.
Finally, to study the heat transfer scaling, simulations at higher Ra up to 1017 have also
been computed. A fairly good agreement with a 2/7 power-law scaling of Nusselt has
been measured for the whole range, i.e.1011 ≤ Ra ≤ 1017. This scaling law, also predicted
by alternatives theories of turbulent natural convection, has also been experimentally
measured for RB configurations.

We can conclude that these results illustrate the great potential of the C4 smoothing
method as a simulation shortcut. Nevertheless, more simulations for a wide variety of
cases and meshes will be necessary to confirm these preliminary conclusions.
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