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Abstract. One-shot Newton methods based, fully or partially, on the computation of
the exact Hessian matrix in aerodynamic shape optimization problems are proposed and
compared. They start by computing the exact first- and second-order sensitivities of the
objective function with respect to the design variables, i.e. by solving the flow, adjoint and
direct differentiation equations, the one after the other. The continuous adjoint method,
for the problems governed by the Euler equations, is used. The combination of the direct
differentiation of the flow equations and the adjoint method is the most economical way
to compute the exact Hessian matrix. Based on both gradient and Hessian, the shape is
updated using the Newton equation. From this point on, the flow and adjoint equations
can be solved in a coupled manner along with either the direct differentiation equations
(exact Newton, by computing the exact Hessian anew) or the BFGS updating formula
(quasi-Newton, by approximating the Hessian matrix based on the gradient) and the shape
updating expression. These approaches will be referred to as “one-shot (exact) Newton
method” and “one-shot, exactly initialized, quasi-Newton method”, respectively. Both are
compared in terms of the required CPU cost with other optimization algorithms, including
their segregated variants. For the comparison, an application concerned with the inverse
design of an airfoil cascade is used.
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1 INTRODUCTION

In the field of aerodynamics, the adjoint approach, [1, 2, 3], is often used to support
shape optimization problems related to several configurations. By means of the adjoint
approach, the gradient of any functional with respect to the design variables can be
computed at CPU cost which does not depend on the number of optimization variables,
as opposed to other approaches (such as finite differences). A conventional optimization
algorithm based on the adjoint approach performs cycles, each of which comprises the
numerical solution of the flow and adjoint equations, the one after the other, followed by
the application of a shape updating formula, such as steepest descent. In each cycle, the
flow equations must reach a very low residual error, before initiating the solution of the
adjoint equations; in contrast, it is usually enough for the adjoint equations to run until
∼ 4 orders of magnitude drop in the residual.

As a more efficient alternative to their segregated solution, the flow, adjoint and shape
updating equations can be solved simultaneously. Such an algorithm has been proposed in
[4, 5], by making use of the multigrid strategy to solve the flow and adjoint equations, with
the design process embedded within the multigrid cycles. Similar approaches, based on
the simultaneous pseudo–time stepping technique, with the same pseudo–time step for the
ensemble of equations, can be found in [6, 7, 8]. Also, in [9], divided differences (instead
of the adjoint approach) have been used whereas a progressive algorithm updating the
design variables after partially converging the flow and, then, the adjoint equation, can
be found in [10, 11]. All the aforementioned papers rely on standard first-order descent
algorithms or quasi-second-order (i.e. quasi-Newton) ones, [6, 7, 8], using Hessian matrix
approximations.

None of the methods overviewed before requires the knowledge of the exact Hessian
matrix. A literature survey on the computation of the latter led to a seriously limited
number of relevant papers. In [12], the computation of second-order sensitivities of an
aerodynamic optimization function, using automatic differentiation, has been presented.
The Hessian matrix computation in structural optimization, [13], continuous approaches
for the Hessian computation in heat conduction problems, [14] and a different handling of
the same problem for variational data assimilation problems in meteorology, [15, 16, 17],
must be reported. The importance of exactly computing the Hessian matrix, focusing on
the influence of the condition number on the convergence of an optimization algorithm,
is discussed in [18].

In previous works by the present authors, [19], [20], [21], [22], four methods to compute
the exact Hessian, based on all possible ways of coupling direct differentiation and adjoint
approaches, have been presented. This classification can also be found in a few previous
papers, such as [12] and [14]. A noticeable contribution of [19], [20], [21] and [22] was
to develop both the continuous and discrete (with hand differentiation) approaches for
the Hessian matrix computation and apply them to the inverse design of 2D cascades
and ducts using the exact and/or quasi-Newton approach. The (inviscid or viscous) flow,
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adjoint and direct differentiation (if necessary) equations were all solved in a segregated
manner. Also, in [22], the combination of exact and quasi-Newton in a scheme in which the
exact Hessian matrix was computed once in the beginning, before switching permanently
to simpler Hessian updating formulas (such as BFGS, SR1, etc, [23]) proved to reduce
the CPU cost, even in problems with many design variables for which the computation of
the exact Hessian matrix within each and every cycle is not affordable.

In this paper, efficient optimization methods which: (a) require the computation of the
Hessian matrix, at least once and (b) employ the one-shot solution scheme are proposed.
They will be compared with steepest descent, exact and quasi-Newton methods, in which
all equations are solved in a segregated manner. For the computation of the Hessian
matrix, the direct differentiation of the flow equations with respect to the design variables
and the continuous adjoint method are used. Without loss in generality, the applications
shown correspond to inviscid flows.

2 HESSIAN-BASED ONE-SHOT OPTIMIZATION METHODS

Based on the literature, [7, 8], a conventional one-shot approach for the minimization
of the objective function F makes use of the simultaneous solution of the flow and adjoint
(AV) equations, including the design variables b update at the end of each iteration.
Steepest descent or any quasi-Newton algorithm with Hessian matrix approximations
can be employed. For instance, according to the BFGS quasi-Newton method (Broyden,
Fletcher, Goldfarb, Shanno, [23]),

bκ+1
i = bκ

i + Δbκ
i , Δbκ

i = −Bκ
ij (∇F )κ

j (1)

where Bκ is the current (i.e. at the κ-th cycle) approximation to the inverse of ∇2F ,
given by the equation

Bκ
ij =

[
δil − sκ−1

i rκ−1
l

rκ−1
n sκ−1

n

]
Bκ−1

lm

[
δmj −

rκ−1
m sκ−1

j

rκ−1
n sκ−1

n

]
+

sκ−1
i sκ−1

j

rκ−1
n sκ−1

n

(2)

where sκ−1
i =bκ

i−bκ−1
i , rκ−1

i =(∇F )κ
i−(∇F )κ−1

i and δij is the Kronecker symbol. In its starting
phase, a one-shot algorithm requires the convergence of the flow and AV equations once.
This is carried out in a segregated manner, before updating the design variables for the
first time. From this point on, the simultaneous solution (one iteration at a time) of the
flow, AV and update equations is carried out. Such an algorithm is schematically shown
below:
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where ∇2F is computed via BFGS in both the segregated (left part) and one-shot (right
part) phases; according to the abbreviations introduced in the Results section, this will
be referred to as the OQN method.

Based on the above, one of the herein proposed algorithms (abbreviated to OEN; see
the Results section) can be formed by the following steps:

1. At the starting phase, compute ∇F and ∇2F , by solving the flow, AV and direct
differentiation (DD) equations, one after the other (segregated DD-AV approach;
see section 3).

2. Update the design variables b using the Newton equation.

3. Iteratively perform one iteration of the flow, AV and DD equations and compute
the gradient and Hessian matrix (one-shot DD-AV approach). Return to step 2.

A second algorithm, also proposed and tested (abbreviation: OEQN) in this paper,
includes the following steps:

1. At the starting phase, compute ∇F and ∇2F , as in the previous algorithm.

2. Update b using the Newton equation, as in the previous algorithm.

3. Perform one iteration of the solution of the flow and AV equations, by approximating
the Hessian matrix using BFGS. Return to step 2.

The previous flowchart can readily be adapted to both new algorithms. It suffices to
complete the methods used for the computation of ∇2F (two boxes). The ∇2F compu-
tation “box” in the segregated part of the flowchart must be marked with DD − AV for
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both algorithms and the similar “box” in the one-shot part with DD −AV (for OEN) or
BFGS (for OEQN).

3 COMPUTATION OF THE EXACT HESSIAN: THE DD-AV METHOD

In this paper, the development of the continuous adjoint approach makes use of the
Euler equations for compressible flows,

∂Un

∂t
+

∂fnk

∂xk

= 0 (3)

as state equations, where 1 ≤ n ≤ Λ for either 2D (where Λ = 4) or 3D (Λ = 5). The
summation convention applies where repeated indices appear. The conservative flow
variables Un and the inviscid fluxes fnk are given by⎡

⎣ U1

Uq

UΛ

⎤
⎦ =

⎡
⎣ ρ

ρuq−1

E

⎤
⎦ ,

⎡
⎣ f1k

fqk

fΛk

⎤
⎦ =

⎡
⎣ ρuk

ρukuq−1+pδk,q−1

uk(E + p)

⎤
⎦ (4)

(2≤ q ≤Λ−1, 1≤ k ≤Λ−2). In eq. 4, ρ, p, uk and E = ρe+ 1
2
ρu2

k, stand for the density,
pressure, velocity components and total energy per unit volume, respectively.

In inverse design problems, the objective function to be minimized is the integral of
the deviation of the pressure distribution p(S) from a given target distribution ptar(S)
along the solid walls Sw. Thus,

F =
1

2

∫
Sw

(p−ptar)
2dS (5)

The first- and second-order sensitivities of F with respect to the design variables bi (geo-
metrical quantities which, based on Bezier polynomials, Splines, etc, control the aerody-
namic shape) are

δF

δbi
=

∫
Sw

(p−ptar)
δp

δbi
dS +

1

2
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(p−ptar)
2 δ(dS)

δbi
(6)
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δbj

dS+
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(p−ptar)
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dS+
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δbiδbj

(7)

which both depend on the first- and second-order sensitivities of the flow variables.
In the direct differentiation-adjoint variable (DD-AV, or merely “direct-adjoint”, [22])

approach, the first-order sensitivities are derived by solving the differentiated flow equa-
tions

δ

δbi

(
∂fnk

∂xk

)
=0 ⇒ ∂

∂bi

(
∂fnk

∂xk

)
=0 ⇒ ∂

∂bi

(
Anmk

∂Um

∂xk

)
=0 (8)
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where Anmk = ∂fnk

∂Um
. For eq. 8 to be exact, the interior grid point coordinates must not

be affected by variations in bi. Similarly, the boundary conditions for eq. 8 are derived
from the differentiation of the boundary conditions imposed to the flow variables. For
instance, along the wall boundaries, where uknk =0 (no-penetration condition),

δ(uknk)

δbi

= 0 ⇒ ∂uk

∂bi

nk = −∂uk

∂xl

δxl

δbi

nk − uk
δnk

δbi

(9)

where δxl

δbi
and δnk

δbi
depend on the shape parameterization and may even lead to closed

form expressions. The computation of the second-order sensitivities of the flow variables
is avoided by means of the adjoint approach. By introducing the adjoint variables Ψn,
the second-order sensitivities of F are equal to those of Faug, where

δ2Faug

δbiδbj
=

δ2F

δbiδbj
+

∫
Ω
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∂2

∂bi∂bj

(
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dΩ + Gij (10)

where
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S
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δ(nldS)
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(11)

Proving eqs. 10 and 11 is beyond the scope of this paper. ∂
∂xk

and ∂2

∂bi∂bj
can be inter-

changed, yielding∫
Ω

Ψn
∂2

∂bi∂bj

(
∂fnk

∂xk

)
dΩ =

∫
Ω

Ψn
∂

∂xk

(
∂2fnk

∂bi∂bj

)
dΩ (12)

Through integration by parts,∫
Ω

Ψn
∂

∂xk

(
∂2fnk
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)
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∫
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Ω

Ψn
∂

∂xk

(
∂2fnk

∂bi∂bj

)
dΩ = −

∫
Ω

(
Anmk

∂Ψn

∂xk

)
∂2Um

∂bi∂bj
dΩ+

∫
Ω

∂Anmk

∂bj

∂Um

∂bi

∂Ψn

∂xk
dΩ

+
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since

∂2fnk

∂bi∂bj
= Anmk
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+
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where Anmk = ∂fnk

∂Ul
and ∂Anmk

∂Ul

∂Um

∂bi

∂Ul

∂bj
= ∂Anmk

∂Ul

∂Ul

∂bi

∂Um

∂bj
. Note that S = Sw ∪ SI,O, where

SI,O denotes the inlet-outlet boundary of the flow domain.

The relation between the partial ( ∂2

∂bi∂bj
) and total ( δ2

δbiδbj
) second-order sensitivities of

F is

∂2fnk

∂bi∂bj

=
δ2fnk

δbiδbj

− ∂2fnk

∂bi∂xl

δxl

δbj

− ∂2fnk

∂bj∂xl

δxl

δbi
− ∂2fnk

∂xl∂xm

δxl

δbi

δxm

δbj
− ∂fnk

∂xl

δ2xl

δbiδbj
(15)

Along the boundary S (either Sw or SI,O), the following condition

δ2fnk

δbiδbj
nk =

δ2 (fnknk)

δbiδbj
− δfnk

δbi

δnk

δbj
− δfnk

δbj

δnk

δbi
− fnk

δ2nk

δbiδbj
(16)

is valid. Note also that along Sw in specific, the no–penetration condition gives

δ2 (fnknk)

δbiδbj
= Nn

δ2p

δbiδbj
+

δ2Nn

δbiδbj
p +

δNn

δbi

δp

δbj
+

δNn

δbj

δp

δbi
(17)

where (N1, N2, N3, N4, N5) = (0, pn1, pn2, pn3, 0)dS. By appropriately rearranging its
terms, eq. 13 becomes∫

Ω

Ψn
∂

∂xk

(
∂2fnk

∂bi∂bj

)
dΩ =−

∫
Ω

(
Anmk

∂Ψn

∂xk

)
∂2Um

∂bi∂bj
dΩ+

∫
Ω

∂Anmk

∂bj

∂Um

∂bi

∂Ψn

∂xk
dΩ

+

∫
SI,O

Ψn
δ2fnk

δbiδbj
nkdS +

∫
Sw

Ψn+1nn
δ2p

δbiδbj
dS +

∫
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(Ψk+1p − Ψnfnk)
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δbiδbj
dS

+

∫
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(
Ψk+1

δp

δbi

− Ψn
δfnk

δbi

)
δnk

δbj

dS +

∫
Sw

(
Ψk+1

δp

δbj

− Ψn
δfnk

δbj

)
δnk

δbi

dS

−
∫

Sw

Ψn

(
∂2fnk

∂bi∂xl

δxl

δbj
+

∂2fnk

∂bj∂xl

δxl

δbi
+

∂2fnk

∂xl∂xm

δxl

δbi

δxm

δbj
+

∂fnk

∂xl

δ2xl

δbiδbj

)
nkdS (18)

Note that, along SI,O, the nodal coordinates remain invarian so, there, ∂Φ
∂bi

= δΦ
δbi

for any
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Φ. Combining eqs. 7 and 18, we get

δ2Faug

δbiδbj
=

∫
Sw

δp

δbi

δp

δbj
dS +

∫
Sw

(p−ptar)
δ2p

δbiδbj
dS︸ ︷︷ ︸

SWCR

+

∫
Sw

(p−ptar)
δp

δbi

δ(dS)

δbj

+

∫
Sw

(p−ptar)
δp

δbj

δ(dS)

δbi
+

1

2

∫
Sw

(p−ptar)
2 δ2(dS)

δbiδbj

−
∫

Ω

(
Anmk

∂Ψn

∂xk

)
∂2Um

∂bi∂bj
dΩ︸ ︷︷ ︸

FAE

+

∫
Ω

∂Anmk

∂bj
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∂bi

∂Ψn

∂xk
dΩ +

∫
SI,O

Ψn
δ2fnk

δbiδbj
nkdS︸ ︷︷ ︸

IOBC

+

∫
Sw

Ψn+1nn
δ2p

δbiδbj
dS︸ ︷︷ ︸

SWCR

+

∫
Sw

(Ψk+1p − Ψnfnk)
δ2nk

δbiδbj
dS

+

∫
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(
Ψk+1

δp

δbi
− Ψn

δfnk

δbi

)
δnk

δbj
dS +

∫
Sw

(
Ψk+1

δp

δbj
− Ψn

δfnk

δbj

)
δnk

δbi
dS

−
∫

Sw

ΨnAnqknk

(
∂2Uq

∂bi∂xl

δxl

δbj

+
∂2Uq

∂bj∂xl

δxl

δbi

)
dS

−
∫

Sw

Ψn

(
∂2fnk

∂bi∂xl

δxl

δbj

+
∂2fnk

∂bj∂xl

δxl

δbi

+
∂2fnk

∂xl∂xm

δxl

δbi

δxm

δbj

+
∂fnk

∂xl

δ2xl

δbiδbj

)
nkdS+Gij (19)

Integrals marked with FAE, SWCR and IOBC are eliminated by satisfying the field
adjoint equation and its boundary conditions along Sw and SI,O. The field adjoint equation
(in which a the pseudo-time term has been added) is given by

∂Ψn

∂t
−Amnk

∂Ψm

∂xk
=0 (20)

the boundary conditions along the wall read

p−ptar + Ψr+1nr = 0 (21)

and the inlet and outlet boundaries are derived from

δ2Un

δbiδbj

(AnmΨm)=0 (22)

Note that, [22], the same equations (field equations and boundary conditions) would be
solved to compute first-order sensitivities using the adjoint approach.
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The remaining terms in eq. 19 yield an expression for δ2Faug

δbiδbj
, which is as follows

δ2Faug

δbiδbj
=

∫
Sw

δp

δbi

δp

δbj
dS+

∫
Sw

(p−ptar)
δp

δbi

δ(dS)

δbj
+

∫
Sw

(p−ptar)
δp

δbj

δ(dS)

δbi

+
1

2

∫
Sw

(p−ptar)
2 δ2(dS)

δbiδbj
+

∫
Sw

(Ψk+1p − Ψnfnk)
δ2nk

δbiδbj
dS

+

∫
Sw

(
Ψk+1

δp

δbi
− Ψn

δfnk

δbi

)
δnk

δbj
dS +

∫
Sw

(
Ψk+1

δp

δbj
− Ψn

δfnk

δbj

)
δnk

δbi
dS

+

∫
Ω

∂Anmk

∂bj

∂Um

∂bi

∂Ψn

∂xk
dΩ

−
∫

Sw

Ψn

(
∂2fnk

∂bi∂xl

δxl

δbj
+

∂2fnk

∂bj∂xl

δxl

δbi
+

∂2fnk

∂xl∂xm

δxl

δbi

δxm

δbj
+

∂fnk

∂xl

δ2xl

δbiδbj

)
nkdS+Gij(23)

Regarding the CPU cost of the methods examined in this paper, particularly those based
on the computation of the exact Hessian matrix, we have to distinguish segregated from
one-shot variants. It is evident that the starting (segregated) phase of the OEN or OEQN
variants is identical to the first cycle of the SEN one. One SEN cycle costs as many as
2+N EFS; this is the sum of one EFS for solving the state equations, another EFS for the
adjoint equations and N EFS for solving the N DD equations. A detailed quantitative
comparison of the cost of the examined methods can be made based on the figures of
this paper. Note that one “CPU time unit” (as marked on the abscissa axis of most of
them) corresponds to the CPU cost of performing one iteration of the iterative scheme
used to solve the flow (or adjoint or DD) equations. Therefore, one EFS corresponds to
a number of “CPU time units”, determined, among other, by the grid size or the case
under examination.

4 APPLICATIONS-DISCUSSION

To assess the developed methods and the corresponding programmed software, they
have all been used to solve the same problem, namely the inverse design of a cascade
airfoil at inviscid flow conditions. The same problem is examined twice, with 6 and 12
design variables. Let us first list the eight methods-variants used and their abbreviations:

SSD: The Segregated Steepest Descent method, based on the AV approach to compute
the gradient of F . Within each optimization cycle, the flow and adjoint equations
are solved (adequately converged) in a segregated manner.

OSD: The One-shot Steepest Descent method, in which the flow, adjoint and geometry
updating equations are solved simultaneously.

SQN: The Segregated Quasi-Newton method based on the BFGS updating formula for
approximating ∇2F and the adjoint method for computing ∇F . The flow and
adjoint equations are solved in a segregated manner.
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OQN: The One-shot Quasi-Newton (i.e. BFGS) method, in which the flow, adjoint and
geometry updating equations are solved simultaneously.

SEN: The Segregated Exact-Newton method, based on the computation of the exact
Hessian matrix within each Newton step afresh. The flow, adjoint and DD equations
are solved in a segregated manner.

OEN: The One-shot Exact-Newton method, in which the flow, adjoint and DD equations
are solved simultaneously.

SEQN: The Segregated Exact-Quasi Newton method, which relies on the exact Newton
method for the first cycle and, then, switches to the inexpensive BFGS for any
subsequent cycle.

OEQN: The One-shot Exact-Quasi Newton method, in which, in the first phase, the
flow, adjoint and DD equations are solved in a segregated manner and, then, the
flow, adjoints equations and b updating (based on BFGS) formula are solved simul-
taneously.

The eight variants are compared in terms of the number of optimization cycles and, in
specific, the CPU time units required to reach the optimal solution. One time unit corre-
sponds to the CPU time of a single iteration of the flow, adjoint or direct-differentiation
equations. A reasonable assumption is made that all of them have the same cost.
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Figure 1: Inverse design of a cascade airfoil with 6 design variables. Left: first-order derivatives of F
computed using AV, DD and FD. Right: Hessian matrix (∇2F ) element values computed using the
continuous DD-AV approach and FD; the first 6 values correspond to the first row of the Hessian and so
forth.

The case examined is concerned with the inverse design of a symmetric cascade airfoil,
based on a given pressure distribution along Sw. The flow conditions are: inlet flow angle
α1 =35o and isentropic exit Mach number M2,is =0.4. The airfoil contour is parameterized
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Figure 2: Inverse design of a cascade airfoil with 6 design variables: Comparison of the optimal and
target wall pressure coefficient distributions and the corresponding airfoil contours (not in scale). The
reference shape is the one used to create the target pressure distribution.

using two Bézier polynomials, with 3 degrees of freedom per airfoil side, leading to 6 design
variables in total.

First-order sensitivities computed using the AV approach, DD and finite differences
(FD) are compared in fig. 1, left. The corresponding values are almost identical, proving

(among other) the ability to accurately compute the flow variable sensitivities
δUj

δbi
(should

this be required by the method in use). The comparison of the Hessian matrix values
computed using the DD–AV approach and FD (with two ε values; ε stands for the FD
step) is shown in fig. 1, right. The comparison is excellent. The use of FD with two ε
values (ε=10−5 and 10−6) guarantees that ε–independent results are obtained.
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Figure 3: Inverse design of a cascade airfoil with 6 design variables: Reduction rates of the objective
function value using the four segregated variants (SSD, SQN, SEN and SEQN) in terms of the number of
optimization cycles (left) and the CPU cost (right). Each cycle comprises the convergence of the flow, AV
and DD (if necessary) equations and the update of the shape. In each new cycle, the iterative solution
of each set of equations starts from the converged solution of the previous cycle.
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Figure 4: Inverse design of a cascade airfoil with 6 design variables: Reduction rates of F using the four
one-shot variants (OSD, OQN, OEN and OEQN) in terms of the number of optimization cycles (left)
and CPU cost (right).

The initial and optimal pressure distributions along the airfoil sides are shown in fig. 2
together with the target pressure one and the corresponding airfoil contours. The optimal
solution shown is the one obtained by the OEN method; nevertheless, all but the SSD
variants converged to almost the same distributions.
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Figure 5: Inverse design of a cascade airfoil with 6 design variables: Comparison of the convergence
histories of segregated (as in fig. 3) and one-shot variants (as in fig. 4).

Fig. 3 illustrates the convergence histories of the four segregated variants. In each
optimization cycle, the flow, AV and DD equations (the latter is needed by the SEN
method or the starting phase of SEQN) are fully converged. From fig. 3 (left), it can be
deduced that both SEN and SEQN reduced the F value by almost 15 orders of magnitude

12



Dimitrios I. Papadimitriou and Kyriakos C. Giannakoglou

-15

-10

-5

 0

 5

 10

 0  500  1000  1500  2000  2500

lo
g1

0(
F

,R
es

id
ua

ls
)

CPU time units

Flow Equations (Segregated)
AV Equations (Segregated)
DD Equations (Segregated)

Functional (One-Shot)
Flow Equations (One-Shot)

AV Equations (One-Shot)

-15

-10

-5

 0

 5

 2150  2200  2250  2300  2350  2400  2450  2500

lo
g1

0(
F

,R
es

id
ua

ls
)

CPU time units

Functional (One-Shot)
Flow Equations (One-Shot)

AV Equations (One-Shot)

Figure 6: Inverse design of a cascade airfoil with 6 design variables: Reduction rates of the residuals of
the flow, adjoint and DD equations solved separately during the first phase of the OEQN variant and the
convergence histories of the flow and adjoint equation residuals as well as F during the second (one-shot)
phase. A close-up view of the second phase curves is also shown (right).

within the first 8 cycles. However, in terms of CPU cost, SEQN noticeably outperforms
SEN, requiring about half of its CPU cost to converge. Despite the low cost per cycle of
SQN (it comprises the solution of the flow and adjoint equations only) which is by far the
most efficient gradient based method, its overall convergence rate is even worse than that
of SEN. Also, its convergence curve is oscillatory.
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Figure 7: Inverse design of a cascade airfoil with 6 design variables: Reduction rates of the residuals of
the flow, AV and DD equations solved separately during the first optimization cycle and the simultaneous
reduction rates of flow, adjoint and DD residuals and the functional value during the one-shot part of
the OEQN algorithm.
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Figure 8: Inverse design of a cascade airfoil with 12 design variables: Reduction rates of the objective
function value using the four segregated variants (SSD, SQN, SEN and SEQN), in terms of the number
of optimization cycles (left) and CPU cost (right).

The convergence rates of the four one-shot variants, shown in fig. 4, lead to the same
conclusions. The superiority of OEN and, especially, that of OEQN is obvious. From
the number of cycles required to converge, it is concluded that there are good reasons to
compute the exact Hessian. So, for instance, OQN fails to converge to the global optimum
and performs slightly better than OSD. However, from the same figure (right) it becomes
clear that the best trade-off is to compute the exact Hessian in the first cycle and, then,
update it using the non-costly BFGS formula. Similar to their segregated variants, the
high CPU cost for computing the Hessian is compensated by the efficient second-order
search direction information obtained by solving the Newton equation. The proposed
OEQN variant profits from the use of an “almost accurate” Hessian matrix (since BFGS
is initiated with the exact Hessian, instead of an arbitrary matrix) and the economy
achieved if this is to be computed only once.
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Figure 9: Inverse design of a cascade airfoil with 12 design variables: Reduction rates of the objective
function value using the four one-shot variants (OSD, OQN, OEN and OEQN), in terms of the number
of optimization cycles (left) and CPU cost (right).
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The methods presented separately in figs. 3 and 4 are compared with each other in
fig. 5. Note that each one-shot variant is quite faster than the corresponding segregated
scheme. This conclusion can also be drawn from the comparison of the SSD and OSD
convergence plots which, however, are not included in fig. 5, to keep it as readable as
possible. It can easily be concluded that the most efficient method is OEQN. Within no
more than eight times the cost of solving the flow equations, OEQN reduces F by 12
orders of magnitude!
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Figure 10: Inverse design of a cascade airfoil with 12 design variables: Comparison of the convergence
histories of segregated (fig. 8) and one-shot variants (fig. 9).

The analysis of the optimization cycles required for the convergence of the most efficient
variant (OEQN) is shown in fig. 6. In this figure (left), the first three curves, from left
to right, show the convergence rates of the residuals of the flow, AV and DD equations,
solved separately (the one after the other) during the first phase. These ∼2150 CPU time
units correspond to the first, almost horizontal part of the curve marked with SEQN, in
fig. 5. The next three curves correspond to the simultaneous solution of the flow and
AV equations and the Newton update formula. It is obvious that the greater part of
the required CPU cost is associated with the first cycle, due to the solution of the DD
equations.

A similar analysis of the convergence history of the OEN variant is shown in fig. 7.
The only difference is that the solution of the DD equations during the one-shot (second)
phase increases the total CPU cost.

The same case was also examined using 12 (instead of 6) design variables. Figs. 8, 9
and 10 show the same plots as before and can be used to rank sort the proposed variants
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in terms of computational cost. It is encouraging that, even if the number of design
variables is twice as many as in the previous case, the same conclusions can be drawn.
The superiority of the OEQN approach is evident. The gain from approximately updating
(BFGS) the Hessian matrix in all but the first cycle, instead of re-computing it exactly,
is obviously higher, since twice as many DD equations must now be solved. It can also
be seen that SQN has difficulties in sufficiently lowering the value of F whereas SEN has
stable but costly convergence rates. A compromise between these two approaches gave
practically birth to the SEQN approach, which outperforms both of them. Compared to
SEQN, its one-shot variant (OEQN) is capable of further reducing the CPU cost.

5 CONCLUSIONS

This paper presented and tested two one-shot optimization algorithms, namely (a)
the Newton method with the exactly computed Hessian matrix in each cycle and (b) the
exactly initialized, quasi-Newton approach. Six other variants have also been programmed
and tested. Numerical experiments on the solution of a cascade airfoil inverse design
problem showed that:

• In aerodynamic optimization, the use of second-order sensitivities is desirable, since
it dramatically reduces the number of required optimization cycles. However, with
many design variables, the CPU cost per cycle of the exact Newton method, be-
ing proportional to their number, becomes almost prohibitive and, certainly, much
higher than that of pure gradient-based methods.

• This problem can be overcome by means of a hybrid approach in which the exact
Hessian is computed only once in the beginning and, from this point on, this is
merely updated using approximate formulas, such as BFGS. Numerical tests have
shown that this approach outperforms both exact and quasi-Newton methods, irre-
spective of the number of design variables.

• A further noticeable improvement is achieved by applying a one-shot algorithm in
which the state and optimization equations are solved simultaneously. In all cases,
the one-shot method outperforms its conventional counterpart.

• The use of the one-shot, exactly initialized, quasi-Newton algorithm reduces dra-
matically the total CPU cost. The cost for reducing the inverse design functional
value by almost ten orders of magnitude (being much more than what engineers
desire in real-world applications) was found to be less than ten times the cost of
solving the flow equations (for the numbers of design variables used in our studies).
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