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Abstract. This paper presents the use of the continuous adjoint method as a low-cost
tool to derive useful information regarding the optimal location and type of steady suc-
tion/blowing jets, used to control flow separation. An objective function that expresses
the total pressure losses between the inlet and outlet of the flow domain is devised. The
derivatives of this objective function with respect to hypothetical jet velocities at the wall
boundaries are then computed using the continuous adjoint method. Emphasis is laid on
the computation of the exact sensitivity derivatives and, for this reason, the adjoint to the
turbulence (Spalart-Allmaras) model is also used, as proposed in a recent publication by
the same authors. The proposed method is demonstrated by controlling the separated flow
in a S-shaped duct.
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1 INTRODUCTION

In several applications, given a function F measuring the performance of an aerody-
namic body (the shape of which is described using N parameters, bn, n = 1, . . . , N), the
sensitivity derivatives of F with respect to bn ( δF

δbn
, n = 1, . . . , N) must be computed.

Computing δF
δbn

is a prerequisite for the use of any gradient–based optimization method or
for plotting sensitivity maps to reveal the areas mainly contributing to performance loss.

Thus far, adjoint methods have widely been used to compute the gradient of F . They
are inspired by the control theory and their major advantage is that the CPU cost of
computing the gradient is approximately equal to the cost of numerically solving the flow
equations, in contrast to other more expensive, rival methods such as finite differences,
the complex variable method, etc. The adjoint approach to aerodynamic design based
on the potential flow model was proposed by Pironneau, [1]. Later on, Jameson [2, 3]
extended it scid and viscous transonic flows. Adjoint methods appear in both continuous
and discrete form. In the continuous approach, [1, 2, 4, 5], the adjoint pde’s and their
boundary conditions are derived by developing the variation in F augmented by the state
(i.e. flow) equations weighted by the adjoint variables. The so–derived continuous adjoint
equations are, then, discretized (similarly to the flow equations) and numerically solved.
Discrete adjoints are not considered in this paper; a comparison between continuous and
discrete adjoint can be found in [6]. In case of turbulent flows, to compute the exact
sensitivity derivatives, the linearization (in discrete adjoint, [7, 8, 9, 10, 11, 12, 13]), or
differentiation (in continuous adjoint, [14]), of the turbulence variable equation(s) must be
taken into account. The present paper is concerned with the continuous adjoint method
adapted to turbulent flows in the presence of flow control mechanisms and is based on
the mathematical formulation presented in [14]. Developed by the same authors, [14]
proposed the adjoint to the Spalart-Allmaras turbulence model and demonstrated the
need for solving this extra equation if accurate derivatives are to be computed.

The role of flow control, based on suction/blowing/synthetic jets, is to prevent or delay
separation, control transition to turbulent flow, suppress or enhance turbulence, control
shock waves and the associated boundary layer development, etc. These are all related
to the drag (in external aerodynamics) or losses (internal aerodynamics). Passive flow
control, based on surface modifications, is beyond the scope of this paper and will not be
discussed further. The present paper deals exclusively with active flow control, namely
steady suction and blowing.

Early enough, Prandtl, [15], proposed the use of suction through a slot to control the
boundary layer separation. Since then, the progress was important, [16]. Suction/blowing
can be applied by means of porous media, multiple small surface slots and perforations,
[17]. Flow control applications in ducted flows, similar to those presented herein, can be
found in [18, 19]. The Reynolds–Averaged Navier–Stokes (RANS) are frequently used
to simulate active flow control systems, [20, 21]. In [22], numerical results from RANS
solvers predicted the effect of steady and unsteady flow control over a bump; the (steady
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suction) control device were modeled by a boundary condition imposed directly on the
body surface, making thus easier the mesh generation. In [23], a computational study
was conducted on two S–diffusers with blowing; [24] applied RANS models to simulate
the effect of periodic suction/blowing on the flow past the NACA0012 airfoil.

Optimization methods have also been employed to flow control configurations. A dis-
crete adjoint technique based on the unsteady Navier–Stokes equations for the optimal
control of vortex shedding behind a cylinder, by means of suction and/or blowing, can be
found in [25]. In [26], a continuous adjoint method using backward-in-time integration of
the unsteady adjoint equations was used to find the type of control (blowing or suction
at the wall) that prevents the development of streamwise vortices causing transition to
turbulence. [26] is dealing with the flow control past a flat plate and a curved surface, by
minimizing the mean streamwise energy of the perturbation and the downstream energy
of the longitudinal velocity perturbation.

In the present paper, CFD techniques for numerically solving the flow and adjoint
equations are employed and, based on the so-computed fields, the sensitivity derivatives
of the total pressure losses functional are computed. Sensitivity derivatives with respect
to the flow control parameters, i.e. the suction/blowing velocities, instead of the fixed
geometrical quantities parameterizing the shape, are computed. These guide the engineer
to choose the optimal position and type (suction or blowing) of control. Since the flow
separation reflects on the total pressure losses between the inlet and outlet, high absolute
sensitivity values indicate the recommended positions of flow control whereas their signs
determine whether suction or blowing must be used.

2 OBJECTIVE FUNCTION AND DESIGN VARIABLES

In a flow control simulation, the boundary velocity components at the “wall” nodes
where the jet applies must be set equal to the jet velocities. In this paper, the latter
are assumed not to vary with time, since only steady suction or blowing is considered.
Let Q be the number of grid nodes along the wall boundary (marked with superscript
b) and q = 1, ..., Q the index corresponding to them. Then, vb

pq denotes the jet velocity
component along the p direction, at node q; p=1, 2. For any node p, vb

pq =0 corresponds
to the standard no-slip condition and indicates the absence of either suction or blowing
at this node. In contrast, non-zero vb

pq values correspond to suction or blowing. The two
options can be distinguished by the sign of vb

pqn
b
p, where nb

p are the components of the
outward unit vector normal to the boundary.

This paper presents an adjoint–based method to provide useful recommendations on
the optimal location and type (suction or blowing) of flow control jets. For this purpose,
the sensitivity derivatives of the integral of viscous losses with respect to vb

pq, q = 1, ..., Q
are computed. The difference in total pressure between the inlet (SI) to and the outlet
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(SO) from the flow domain is defined by

F = −

∫

SI

(
p +

1

2
v2

k

)
vinidS −

∫

SO

(
p +

1

2
v2

k

)
vinidS (1)

In eq. 1, vk, p stand for the velocity components and the static pressure and ni are the
components of the unit, normal to the boundary vector.

3 FLOW MODEL

The incompressible fluid flow is modeled through the RANS equations and the Spalart–
Allmaras one–equation turbulence model [27]. The mean–flow equations are written as

RU,i =vj
∂vi

∂xj
+

∂p

∂xi
−

∂

∂xj

[
(ν+νt)

(
∂vi

∂xj
+

∂vj

∂xi

)]
=0 , i = 1, 2 (2a)

RU,3 =
∂vj

∂xj
=0 (2b)

where ν and νt are the bulk and turbulent viscosity coefficients. The turbulence model
equation is the following

Reν =
∂(vj ν̃)

∂xj
−

∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
−

cb2

σ

(
∂ν̃

∂xj

)2

−ν̃ P (ν̃)+ν̃ D (ν̃)=0 (3)

and should be solved for ν̃ which, along with vi and p, constitute the state variables.
The required eddy viscosity coefficient νt is derived from νt = ν̃fv1

. The production

and destruction terms in eq. 3 are given by P (ν̃) = cb1S̃ and D(ν̃) = cw1fw(S̃) eν
d2 , where

S̃ =S+ eν
d2κ2 fv2

, S = |eijk
∂vk

∂xj
δi1| is the vorticity magnitude, eijk is the permutation symbol,

d is the distance from the wall, fv1
= χ3

χ3+c3v1

, fv2
= 1− χ

1+χfv1

, χ = eν
ν
, fw = g

(
1+c6w3

g+c6w3

)1/6

,

g = r+ cw2
(r6−r) and r = eν

eSκ2d2
. The model constants are: cb1 = 0.1355, cb2 = 0.622,

κ=0.4187, σ= 2
3
, cw1 = cb1

κ2 + (1+cb2)
σ

, cw2 =0.3, cw3 =2, cv1 =7.1 and cv2 =5, [27].
The proposed method was developed for structured grids. The mean–flow equations

are solved in a segregated manner using the SIMPLE algorithm [28], with collocated, cell–
centered storage of flow variables. Odd–even decoupling is avoided by standard numerical
dissipation schemes associated with the computation of pressure gradients. Second–order
upwind schemes are used for the convection terms. The system of the discretized equations
is solved using the biconjugate gradient stabilized, CGSTAB, algorithm, [29].

At the inlet, the vi and ν̃ distributions are specified and zero Neumann conditions
are imposed to p. The exit static pressure is arbitrarily set to zero and zero Neumann
conditions are imposed to all remaining flow variables at the exit.
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4 THE ADJOINT APPROACH TO THE FLOW CONTROL PROBLEM

The sensitivity derivatives δF
δvb

pq
are deduced from the differentiation of eq. 1 with

respect to vb
pq, as follows

δF

δvb
pq

= = −

∫

SI

(
δp

δvb
pq

+ vk
δvk

δvb
pq

)
vinidS −

∫

SI

(
p +

1

2
v2

k

)
δvi

δvb
pq

nidS

−

∫

SO

(
δp

δvb
pq

+ vk
δvk

δvb
pq

)
vinidS −

∫

SO

(
p +

1

2
v2

k

)
δvi

δvb
pq

nidS (4)

Note that the sensitivities of all geometrical quantities with respect to vb
pq are zero. Since

δF
δvb

pq
depend on variations δ()

δvb
pq

in the state variables, the state equations (eqs. 2a to 3)

must be differentiated with respect to vb
pq. Based on these differentiations, δvi

δvb
pq

, δp
δvb

pq
and

δνt

δvb
pq

must satisfy the following equations:

δRU,i

δvb
pq

=
δvj

∂vb
pq

∂vi

∂xj
+vj

∂

∂xj

(
δvi

δvb
pq

)
+

∂

∂xi

(
δp

δvb
pq

)
−

∂

∂xj

{
(ν+νt)

[
∂

∂xj

(
δvi

δvb
pq

)
+

∂

∂xi

(
δvj

δvb
pq

)]}

−
∂

∂xj

[
δνt

δvb
pq

(
∂vi

∂xj

+
∂vj

∂xi

)]
=0 , i = 1, 2 (5)

δRU,3

δvb
pq

=
∂

∂xj

(
δvj

δvb
pq

)
= 0 (6)

δReν

δvb
pq

=
∂

∂xj

(
δvj

δvb
pq

ν̃

)
+

∂

∂xj

(
vj

δν̃

δvb
pq

)
−

∂

∂xj

[(
ν+

ν̃

σ

)
∂

∂xj

(
δν̃

δvb
pq

)]
−

1

σ

∂

∂xj

(
δν̃

δvb
pq

∂ν̃

∂xj

)

−2
cb2

σ

∂ν̃

∂xj

∂

∂xj

(
δν̃

δvb
pq

)
+ ν̃

(
−

δP

δvb
pq

+
δD

δvb
pq

)
+ (−P +D)

δν̃

δvb
pq

= 0 (7)

where, for the bulk viscosity, the assumption δν
δvb

pq
= 0 was made. Eqs. 5, 6 and 7 are

often referred to as the direct differentiation of eqs. 2a, 2b and 3 with respect to vb
pq. To

complete the derived system of pde’s,

δνt

δvb
pq

=
δνt

δν̃

δν̃

δvb
pq

(8)

must also be used.
The first step of the adjoint approach is to define the augmented functional by summing

up F and the product of the state equations and the Lagrange multipliers or adjoint
variables ui, q and ν̃a (adjoint velocity components, pressure and turbulent viscosity,
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respectively) integrated over the flow domain Ω. The sensitivities of the augmented
functional are, then, given by

δL

δbn

=
δJ

δbn

+

∫

Ω

ui
∂RU,i

∂bn

dΩ +

∫

Ω

q
∂RU,3

∂bn

dΩ +

∫

Ω

ν̃a
∂Reν

∂bn

dΩ (9)

The Gauss divergence theorem is used and the adjoint variables are computed by elimi-
nating all field and boundary integrals of δvi

δvb
pq

, δp
δvb

pq
and δfνa

δvb
pq

. The remaining terms, which

depend on the computed ui, q and ν̃aa fields, stand for the derivatives of F with respect
to vb

pq, [14]. The adjoint to the mean flow equations are given by

−vj

(
∂ui

∂xj
+

∂uj

∂xi

)
−

∂

∂xj

[
(ν+νt)

(
∂ui

∂xj
+

∂uj

∂xi

)]
+

∂q

∂xi
−ν̃

∂ν̃a

∂xi
−

∂

∂xl

(
ejliejmq

CS

S

∂vq

∂xm
ν̃ν̃a

)
= 0

i = 1, 2 (10a)

∂uj

∂xj

= 0 (10b)

The adjoint to the Spalart-Allmaras equation, [14], yields

∂ν̃a

∂xj

vj +
∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃a

∂xj

]
=

1

σ

∂ν̃a

∂xj

∂ν̃

∂xj

+ 2
cb2

σ

∂

∂xj

(
ν̃a

∂ν̃

∂xj

)
+ ν̃aν̃ Ceν(ν̃,~v)

+
δνt

δν̃

∂ui

∂xj

(
∂vi

∂xj

+
∂vj

∂xi

)
+ (−P +D) ν̃a (11)

The adjoint state equations (eqs. 10a, 10b and 11) are discretized and solved similarly to
the state equations.

The adjoint boundary conditions are consistent with the state ones. At the inlet, the
adjoint velocity is fully determined by the conditions uini = vini and uiti = 0 (where ti are
the components of the unit, tangent to the boundary vector). Zero Neumann condition
is imposed to q and zero Dirichlet condition to ν̃a. At the outlet grid nodes, the system
of the following two equations, [14],

q =ujvj+uinivjnj + (ν+νt)
∂ui

∂xj
ninj + ν̃aν̃ + ν̃aν̃

CS

S
ejmqejli

∂vq

∂xm
nlni −

1

2
v2

i − v2
i n

2
j(12)

0 =uitivjnj + (ν+νt)
∂ui

∂xj
tinj + ν̃aν̃

CS

S
ejmqejli

∂vq

∂xm
nlti (13)

must be solved for the three adjoint variables, by setting one of them equal to an arbitrary
value and solving eqs. 12 and 13 for the other. At the “wall”, zero Dirichlet conditions
are imposed to ui and ν̃a and zero Neumann to q.

6



A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou and C. Othmer

After having computed the adjoint fields that satisfy the adjoint equations, the sen-
sitivity derivatives of the total pressure losses functional with respect to the jet velocity
components are given by the expression

δF

δvb
pq

= ν

(
∂upq

∂xj
+

∂ujq

∂xp

)
njq − qqnpq (14)

5 APPLICATION - DISCUSSION

In this section, the proposed adjoint method for the computation of the sensitivities
of the objective function F with respect to the jet velocity components is applied to the
search for the optimal location and type (suction/blowing) of the jet. The problem under
consideration is that of the flow through an S-shaped duct. The total pressure losses
sensitivities with respect to the normal to the wall velocities at the wall boundary nodes
are computed by solving the state and adjoint equations. Without loss in generality, it
is assumed that the jet velocities are applied normal to the wall. Thus, the signed jet
velocities become

vjet
q = vb

pqn
b
p (15)

The effect of inclined (with respect to the normal direction) jet velocities to F could
also be investigated by the present method, by computing the corresponding sensitivity
derivatives with respect to vb

pqa
b
p where ab

p are the components of any other unit vector
aligned with the desired jet direction at the wall node p. In any case, the proposed method
computes δF

δvb
pq

and the sensitivity derivatives δF

δvjet
q

result from (with either nb
p or ab

p)

δF

δv
jet
q

=
δF

δvb
pq

nb
p (16)

Locations where the absolute gradients take on the highest absolute values are the most
promising for the placement of jets. The sign of the sensitivity derivatives at these points
indicates the preferred direction of the jet, choosing between suction and blowing.

The duct geometry along with the velocity magnitude isolines computed by solving the
state equations is illustrated in fig. 1. The turbulent flow equations are solved assuming
that the “wall” boundaries act as perforated walls, allowing suction or blowing (even with
zero velocity since the sensitivities of δF

δvb
pq

for vb
pq = 0 are sought). Therefore, the duct

walls act, practically, as a standard solid walls. A 220×161 structured grid, sufficiently
stretched along the normal to the boundary direction, was used.

Isolines of the computed adjoint velocity magnitude, adjoint pressure and the adjoint
turbulence variable are shown in fig. 2. The distribution of the sensitivity derivatives δF

δvb
pq

in terms of the wall grid nodes are illustrated in fig. 3. In fig. 4, the same distribution is
plotted along the curved duct boundaries. Figs. 3 and 4 clearly suggest two locations for
the placement of the suction jets, one on the lower and the other on the upper surface,
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uncontrolled study (a) study (b) study (c)
F 0.01835 0.01662 0.01817 0.01649
FT - 0.01723 0.01809 0.01697

Table 1: Total pressure losses value, obtained by applying steady suction at the lower surface of the
duct (a), at the top surface (b) and at both of them (c). The computed values (F ) are compared to
the values obtained through Taylor series (FT ), based on the sensitivities computed using the proposed
adjoint formulation, (FT = F + δF = F + δF

δvi
δvi, i = 1, 2).

almost at the end of the S-type bend. The sensitivity derivatives can also be used to
provide suggestions for the optimal width of the jet stream.

To demonstrate the significance of the computed sensitivities, the same Navier-Stokes
solver was used to compute the flow with control. According to the previously acquired
knowledge, the following cases were studied: (a) flow controlled by a suction jet imposed
normal to the wall between x = −0.026m and x = −0.023m over the lower wall of the
duct, (b) flow controlled by a suction jet imposed normal to the upper wall between
x = 0.240m and x = 0.242m and (c) the combination of (a) and (b). These parts of the
lower and upper boundaries become suction slots, where the no-slip condition is no more
valid. To avoid numerical difficulties, a cubic polynomial suction velocity profile with
maximum velocity equal to 10% of the inlet velocity was imposed. In fig.5, the isolines of
the velocity magnitude for the controlled study (c) are shown. With flow control (steady
suction), the objective function value in all three studies is reduced, the values are given
in Table 1 (non-dimensional values). The most significant reduction of F is achieved using
jets over both wall boundaries (i.e. study (c)). Regarding the significance of the two jet
locations, the F reduction which is greater in study (a) rather than (b) proves that the
lower wall jet plays the most important role. This is in accordance with the sensitivity
derivatives values which take on higher values on the lower wall.

6 CONCLUSIONS

The continuous adjoint method was used to compute the sensitivity derivatives of the
objective function expressing the total pressure losses of duct flows with respect to hypo-
thetical signed velocities at the “wall” nodes. In a flow control problem, the optimization
variables are the suction or blowing velocities which are expected to affect the extent of the
flow separation zone and, thus, the overall losses. At the CPU cost of a state (flow) and a
costate (adjoint) problem solution, a clear indication of the type (suction or blowing) and
location of the control jet can be obtained. Though the present formulation computes
sensitivity derivatives at zero jet velocities (uncontrolled case), which practically means
that this method (in its present form) cannot also provide the optimal jet velocity, it is a
very useful tool for the preliminary design of optimal flow control systems.
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Figure 1: Computed velocity magnitude isolines.
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