
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal,14-17 June 2010

A 3D FINITE ELEMENT METHOD FOR THE COUPLED NUMERICAL
SIMULATION OF ELECTROCHEMICAL SYSTEMS

AND FLUID FLOW: ION TRANSPORT IN ELECTRODEPOSITION

Georg Bauer∗, Volker Gravemeier†,∗ and Wolfgang A. Wall∗

∗Institute for Computational Mechanics, Technische Universität München,
Boltzmannstr. 15, D-85748 Garching, Germany

e-mail: {bauer,wall}@lnm.mw.tum.de
†Emmy Noether Research Group “Computat. Multiscale Methods for Turbulent Combustion”,

Technische Universität München, Boltzmannstr. 15, D-85748 Garching, Germany
e-mail: vgravem@lnm.mw.tum.de

Key words: Finite element method, computational electrochemistry, coupled system,
ion transport, electroneutrality, electrolyte solution

Abstract. Multi-ion transport is a fundamental aspect for the modeling of many electro-
chemical systems. An important electrochemical application is electrodeposition of metals,
where electrically conductive objects are coated with layers of metal by using electrical
current. In macroscopic models based on the continuum hypothesis, the unknown physical
fields to be solved for are the respective ionic species concentrations as well as the electric
potential inside the electrolyte solution. Chemical reactions, that is, the deposition pro-
cess in the present context, are typically limited to the electrode surfaces and modeled by
nonlinear boundary conditions depending on the solution variables. The governing equa-
tions form a coupled system of nonlinear partial differential equations supplemented with
an algebraic constraint. For electrochemical systems where the influence of convection
is not negligible, an inherent coupling to fluid flow exists. Several challenges have to be
faced when solving the resulting system of coupled equations as described above. Here, we
present the development of a stabilized finite element formulation for the coupled nonlin-
ear system of ion transport and incompressible Navier-Stokes equations. After presenting
the computational approach, results from various three-dimensional numerical examples
will be provided, demonstrating that our numerical method is robust and provides accurate
results. Finally, we discuss challenges, advances and future steps of our current work
towards the development of a predictive tool for industrial electrodeposition applications.
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1 INTRODUCTION

The inclusion of ion-transport phenomena plays a fundamental role for the modeling
of many electrochemical systems. Typically, three different ion-transport mechanisms
are considered in dilute electrolyte solutions [1]: convection (movement with bulk elec-
trolyte solution), diffusion (movement caused by concentration gradients) and migration
(movement of ions due to an applied electric field). In this presentation, we focus on
electrochemical systems where the influence of convection is not negligible. One example
for such electrochemical systems is electrodeposition. This is an important and widely-
used electrochemical technique for coating electrically conductive objects with layers of
metal by using electrical current. There is a broad spectrum of industrial applications,
and plating mainly serves function, corrosion-control and/or decorative purposes. Typi-
cally, the process of electrodeposition takes place in so-called electrolytic baths. Therein,
the part to be plated acts as the cathode of the electrical circuit and is immersed in a
solution (electrolyte) containing one or more metal salts as well as other ions that permit
the flow of electricity. The applied electrical current causes the positively charged metal
ions in the solution to move to the cathode’s surface, where they are reduced and finally
plate out. In many industrial plating baths, it is aimed at keeping the electrolyte solution
well-mixed by using different agitation techniques such as jet systems and stirring de-
vices. Rotationally symmetric parts to be plated are usually also rotated to achieve more
uniform plating results. As a consequence, quite complex, often turbulent flow conditions
arise, directly influencing multi-ion transport inside the electrolyte solution. Hence, a
mathematical model describing such electrochemical systems has to take into account the
apparent coupling to fluid flow. Chemical reactions, that is, the deposition process in
the present context, are typically limited to the electrode surfaces and modeled by non-
linear boundary conditions depending on the solution variables. Several challenges have
to be faced when solving the system of coupled equations as described above. Especially
when electrodeposition is a critical aspect of the overall manufacturing process, reliable
numerical simulations can not only lead to better understanding of plating processes but
also provide promising and relatively cheap opportunities for designing new or optimized
existing electrodeposition facilities.

2 PROBLEM FORMULATION

2.1 Electrolyte flow

Electrolyte flow and multi-ion transport in a polygonally-shaped and bounded domain
Ω ⊂ Rd, where d ≤ 3 is the number of space dimensions, is considered for the time
interval [0, T ]. The incompressible Navier-Stokes equations are used to describe the flow
of an electrolyte solution in an electrochemical cell. The solution variables are the velocity
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field u and the pressure p, which are governed by

∂u

∂t
+ u · ∇u− 2ν∇ · ε (u) +∇p = b in Ω× (0, T ) , (1)

∇ · u = 0 in Ω× (0, T ) , (2)

where ν denotes the kinematic viscosity of the electrolyte, b the specific volume force and
ε (u) the symmetric strain rate tensor given by

ε (u) =
1

2

(
∇u + (∇u)T

)
. (3)

Appropriate boundary and initial conditions complete the fluid flow model.

2.2 Multi-ion transport in dilute electrolyte solutions

The temporal and spatial variation of the molar concentration ck of each ionic species
k = 1, ...,m present in an electrolyte solution is governed by the three ion-transport
phenomena addressed above: convection, diffusion and migration. Based on mass conser-
vation, the following set of m nonlinear partial differential equations is obtained:

∂ck

∂t
+ u · ∇ck +∇ ·Nk = 0 in Ω× (0, T ) , k = 1 . . . m (4)

where
Nk := −Dk∇ck − zkµkFck∇Φ. (5)

Here, Dk is the diffusion coefficient of ionic species k, zk is the valence (charge number), µk

the mobility constant, F Faraday’s constant, Φ the electric potential inside the electrolyte
solution and u the solenoidal velocity field governed by the incompressible Navier-Stokes
equations. Thus, the convective term in (4) establishes the aforementioned one-way cou-
pling of each ion-transport equation to fluid flow. Beside the ionic species concentrations
ck, the electric potential Φ is an additional unknown physical field in (4). The system of
equations is typically closed with the so-called electroneutrality condition. This condition
is an algebraic constraint originating from the assumption that the electrolyte solution is
locally electrically neutral:

m∑
k=1

zkck = 0 in Ω× [0, T ] . (6)

For the transient case, initial conditions for all ion concentrations have to be specified,
which obey the electroneutrality condition. On the boundaries of the computational
domain, essential (Dirichlet) or natural (flux) boundary conditions have to be imposed.
For details, the reader is referred to [2], for example.
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2.3 Electrode surface kinetics

At electrode surfaces, the rate of electrochemical reaction is directly related to the nor-
mal current density in to this surface. Thus, for electroplating applications, the deposition
rate at the cathode is directly proportional to in. Inert ionic species have zero mass flux
at these boundaries, while the mass flux of reactive species at electrode surfaces is linked
to the normal current density. For the case of one single electrochemical reaction taking
place at the electrode, the boundary conditions read

−Nk · n =

{
0 : inert ionic species

in
zkF

: reactive ionic species
(7)

Here, n denotes the unit outer normal vector at the boundary. The normal current
density in on the associated boundary parts is determined by some (often nonlinear)
phenomenological kinetic model that typically depends on the solution variables. An
important example is the Butler-Volmer law in the form specified in [1]:

in = i0

(
ck

c∞k

)γ [
exp

(
αaF

RT
(V − Φ)

)
− exp

(
−αcF

RT
(V − Φ)

)]
. (8)

The parameters involved are the exchange current density i0, some reference concen-
tration for the reactive ionic species c∞k , an exponent γ for weighting the concentration
dependency, an anodic constant αa, a cathodic constant αc and the so-called overpotential
V −Φ, with V being the electric potential applied on the metal side of the metal-solution
interface.

3 NUMERICAL CHALLENGES AND SOLUTION APPROACHES

If convection has to be accounted for, the one-way coupling of fluid flow and ion trans-
port has to be appropriately performed. We use matching spatial discretizations for both
fluid and electrochemistry system with the same ansatz function order. Since equal-order
shape functions for velocity and pressure are used, stabilization/ multiscale techniques
are required for the flow solver (see, e.g., [3, 4]). In each time step, we first solve the
nonlinear Navier-Stokes system for the current velocity and pressure fields. After provid-
ing the determined velocity field, the nonlinear electrochemistry equations can be solved
for the current time step. A sketch of the coupling algorithm is provided in Fig. 1. The

Electrochemistry solverFluid flow solver

Go to next time step

Solve for un+1, pn+1 Solve for cn+1

k , Φn+1
un+1

Figure 1: One-way coupling fluid flow - electrochemistry
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same order is also used for solving stationary problem formulations without proceeding
in time. This one-way coupled approach is all that is needed for the current model. For
future applications, however, the proposed coupling scheme will be extended to a two-
way-coupled partitioned scheme. A possible application that requires such an extension
is the consideration of electrode shape changes due to deposition processes. Furthermore,
local electrolyte density variations due to concentration variations near the electrodes re-
sult in natural convection phenomena. Both effects influence the flow field, the first one
due to a moving-boundary problem, the second one due to a varying density.
Beside the well-known challenges linked to the numerical solution of the incompressible
Navier-Stokes equations, the ion-transport model reveals three difficulties that need proper
numerical treatment. Equations (4) together with (5) and initial and boundary condi-
tions define a volume-coupled system of nonlinear partial differential equations subjected
to an algebraic contraint given in (6). The first challenge is related to the nonlinearity
of the ion-transport equations due to the electromigration term as well as the nonlinear
boundary conditions applied at electrode surfaces. Second, the presence of the algebraic
constraint (6) leads to the fact, that linear equation systems that have to be solved in the
nonlinear solution loop possess a non-symmetric saddle-point matrix structure. As a third
point, one has to account for the convection-dominated regime, since it is well-known that
spatial discretizations based on the standard Galerkin method become unstable in this
case. We use stabilized finite element formulations for the spatial discretization of the
ion-transport equations to achieve stable solutions for convection-dominated problems.
For this purpose the streamline upwind/Petrov Galerkin (SUPG) method for convection-
diffusion equations [5] was extended for the system of ion-transport equations coupled
to electroneutrality and electrode kinetics. A similar method for ionic transport was
proposed in [6] in the context of electrophoresis separation techniques. Details of the
stabilized finite element formulation and the computational approach are provided in [2].

4 NUMERICAL EXAMPLES

4.1 Rotating cylinder electrode

An important example is the rotating cylinder electrode (RCE), where the cylinder-
shaped cathode of the electrolytic cell is rotating in the center of the cell configuration.
Due to rotation, fluid flow is induced, which in turn influences the rate of deposition at
the surface of the cathode. For an RCE configuration specified in [7], tertiary current
distribution and fluid flow conditions are investigated. A stationary problem configura-
tion is addressed here. Rotationally symmetric boundary conditions allow the usage of
the flexible computational approach based on Cartesian coordinates also for rotationally
symmetric applications. Thus, a solver implementation based on cylinder coordinates is
not required. In Fig. 2, the resulting wedge-shaped computational domain with an angle
of 15 ◦ can be seen. Simulation results for velocity and copper concentration fields for the
cell operating at limiting current density are shown. The computed mean current density
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(a) (b) (c)

Figure 2: Simulation results for an rotating cylinder electrode configuration: velocity magnitude (a),
copper ion concentration (b) and zoom to the concentration boundary layer that is forming near the
surface of the cathode (c).

along the cathode surface is 708 A/m2, which is in excellent agreement with the value of
709 A/m2 reported in [7]. According to Faraday’s law, the corresponding average depo-
sition rate of copper is 2.33 · 10−4 kg m−2s−1, with a surface growth rate of 93.6 µm/h.

4.2 Oscillating shear flow cell

As a second example, we consider unsteady tertiary current distributions governed by
oscillating shear flow. In the following, an excerpt of the simulation results presented in
[2] is given. The setup of the problem as well as experimental conditions are described
in [8]. A two-dimensional sketch of the cell configuration is depicted in Fig. 3. Here, the
cathode with length 2L = 0.25mm is part of the bottom plane that is oscillating in its own
plane. The fixed counter electrode is placed above the working electrode with distance
H = 16mm. In the experiments carried out in [8], the anode (20×13cm) and the bottom
plane are very large compared to the line-shaped cathode (2L × 2cm). Thus, the planes
at top and bottom can be assumed infinitely long. However, the computational domain
has to be limited by two artificial boundaries located at x1 = −(D + L) and x1 = D + L.
The value for D has to be chosen sufficiently large for not introducing errors due to these
artificial boundaries. Here, D = 20mm is used.
Copper deposition from a 3.0 mM CuSO4 + 0.3 mM H2SO4 electrolyte solution under
potentiostatic conditions is considered. As in [8], complete dissociation is assumed. Thus,
an instationary multi-ion transport problem involving three different ionic species (Cu2+,
SO2−

4 , H+) has to be solved. This example is especially interesting, since not only the
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cathode

anode

H

D D

x1

x2

uosc = (U0sin(ωt), 0, 0)T

2L

Figure 3: Two-dimensional sketch of the oscillation shear flow cell (not drawn to scale).

one-way coupling of ion transport to fluid flow for an unsteady problem is tested, but
also all three mechanisms of ion transport. In addition, a nonlinear kinetic model of
Butler-Volmer type is used at the cathode surface. In [8], a linear approximation to
the convective velocity field was used in the vicinity of the cathode, which was derived
analytically. In contrast, we actually solve the instationary incompressible Navier-Stokes
equations combined with periodic boundary conditions to provide the current flow field.
In [8], two-dimensional simulations using finite-difference schemes where performed. We
use an appropriate three-dimensional “slice” as computational domain for testing our
three-dimensional implementation and proving that our approach can also deal with es-
sentially two-dimensional problem setups. In total, the mesh consists of 12, 296 hexahedral
elements with trilinear shape functions and 25, 148 nodes. With four degrees of freedom
per node for the fluid problem (velocity u, pressure p) and four degrees of freedom per

Figure 4: Locally refined mesh near the cathode surface.
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Figure 5: Temporal evolution of space-averaged cathodic current density. Comparison of computed results
with experimental data provided in [8].

node for the electrochemistry fields (c1, c2, c3, Φ), in total, more than 200, 000 degrees of
freedom have to be determined within each time step.
Data evaluation was performed after initial transients had vanished and the quasi-static
periodic solution had been reached. In Fig. 5, the temporal evolution of the spatially av-
eraged current density at the cathode surface is shown over two periods of oscillation. The
comparison with the experimental data given in [8] shows excellent agreement for both
values of applied cell voltages. Fig. 6 depicts the computed copper cation concentration
profiles near the cathode for the potential VC at the metal side of the cathode being set to
VC = −0.245V. Snapshots at four different times are provided that clearly reveal the in-
fluence of the oscillating shear flow on the shape of the concentration boundary layer. The
periodic changes in the boundary layer thickness cause the observed oscillatory behavior
of mass flux and current density at the cathode surface.
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(a) t = 146.1s (= 15 T )

(b) t = 148.5s

(c) t = 151.0s

(d) t = 153.4s

Figure 6: Concentration boundary layer of Cu2+ forming near the cathode surface: snapshots at various
times within one oscillation period (T = 9.74s).
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5 CONCLUSIONS

We presented a new finite element approach to the numerical simulation of electrochem-
ical systems, with special emphasis on electrodeposition applications. Our computational
approach addresses all modelling aspects of multi-ion transport subjected to electroneu-
trality. The coupled effects of convection, diffusion, migration as well as the potential
use of any nonlinear phenomenological boundary conditions at electrode surfaces are in-
cluded. Our solution approach is also capable of dealing with the one-way coupling of
fluid flow to electrochemistry that is arising whenever ion transport due to convection has
to be considered. The finite element method is used for the spatial discretization of all
governing equations, that is, the electrochemistry equations as well as the Navier-Stokes
equations. The computational method presented is capable of solving for stationary and
instationary tertiary current distributions including ionic concentrations and electric po-
tential field in three-dimensional geometries. It has been successfully tested for several
numerical examples. Further benefit of the finite element method will be gained when
considering more complex geometries in the future. In particular, this work is part of
our effort towards the development of a predictive tool for industrial electroplating ap-
plications. When effects such as moving boundaries due to the deposition process and
density variations due to concentration gradients in the solution are also included, fluid
and electrochemical equations will become fully (two-way) coupled. This extension is part
of our current work.
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