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Abstract. We present and test a gradient based optimization algorithm for the solution
of an inverse problem, where we solve Maxwell’s equations in a 2D setting. We consider a
model problem with six parallel-plate waveguides connected to a circular cavity, where the
object under reconstruction resides inside the cavity. The goal function in the optimization
problem is the misfit between the computed and measured scattering matrix averaged with
respect to the waveguide ports and the frequency range used for the reconstruction. The
inverse algorithm exploits the field solution of an adjoint problem to compute the gradient
of the goal function. This approach yields a computational cost that is independent of
the number of degrees of freedom used to describe the object under reconstruction. As
a consequence of the reciprocity of Maxwell’s equations, the value of the goal function
and its gradient are relatively inexpensive to compute when the scattering matrix and the
underlying field solutions are available. We use this reconstruction algorithm to study (i)
the impact of the cell size on the reconstruction error, (ii) the reconstruction error that
stems from an insufficient model order, and (iii) the influence of noise on the quality of
the reconstructions.
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1 INTRODUCTION

Inverse problems arise in many applications: non-destructive testing;1 non-invasive
detection of tumors;2 monitoring of industrial processes;3 and subsurface sensing.4 Elec-
tromagnetic waves in the microwave frequency range are good for many of these applica-
tions. In medical applications, it is advantageous to avoid X-rays since they are ionizing
and, therefore, microwave tomography is considered a good alternative. In some cases,
impedance tomography is a possible alternative, but such an approach yields a lower
resolution for the reconstructions as compared to microwaves.

For the reconstruction of the material parameters in an inhomogeneous region, it is
advantageous to exploit the finite element method (FEM)5 or similar techniques6 to solve
Maxwell’s equations. For such situations, it is common to use at least one material
parameter degree of freedom for each computational cell, which yields a large number of
material parameters to determine by means of the reconstruction algorithm that often
must exploit regularization.7 For example, the finite-difference time-domain (FDTD)
scheme has been used for inverse problems in such a setting.8,9 Another alternative2 is to
use an underlying model for the material description, where the model features a set of
basis functions and corresponding coefficients that are determined by the reconstruction
algorithm. This approach has some distinct advantages: (i) it is feasible to incorporate
a priori information about the material distribution subject to reconstruction; (ii) the
number of degrees of freedom in the reconstruction problem is significantly reduced; (iii)
the resolution for the reconstructed material parameter is decoupled from the cell size used
for the solution of Maxwell’s equations; and (iv) the sensitivity to measurement noise can
be controlled and mitigated by reducing the flexibility of the material parameterization
for parts of the parameter space that are not necessary for a successful reconstruction.
However, it is necessary to choose a parameterization with a model order that is sufficiently
high to capture the spatial variations of the material distribution subject to reconstruction,
but not too high since that results in a flexibility of the parameterized material which
may approximate measurement noise instead of improving the reconstruction.

In this article, we present an inverse scattering algorithm for Maxwell’s equations
applied to 2D problems. Our model problem consists of a number of parallel-plate waveg-
uides connected to a circular cavity, which contains the object subject to reconstruction.
The reconstruction algorithm is formulated as a minimization problem with a goal func-
tion that features the misfit of the computed and measured scattering matrix and, here,
we average this misfit with respect to the waveguide ports and the frequency. Based on the
continuum form of Maxwell’s equations, we formulate the sensitivity10 of the scattering
matrix (and the goal function) with respect to changes in the permittivity in the cavity
by a combination of the continuum field solution to (i) the original field problem and (ii)
an adjoint field problem. Here, the adjoint field problems are identical to the original field
problems, which is a consequence of the reciprocity of Maxwell’s equations. Thus, we get
the value of the goal function and its gradient provided that we have computed the field
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solutions that are necessary for the evaluation of the scattering matrix. The computa-
tional cost for the gradient of the goal function is independent of the model order that is
used to express the permittivity distribution subject to reconstruction. In addition, our
continuum formulation decouples the field solver from the optimization method, which
allows for good flexibility in the choice of the field solver.

Here, we exploit this computational environment to investigate the effect on the re-
constructed object due to different types of errors: (i) discretization errors in the FEM;
(ii) errors due to a material parameterization of finite model order; and (iii) errors due
to measurements contaminated by noise. In order to perform these studies, we compute
accurate reference solutions by extrapolation to zero cell size.

2 BOUNDARY VALUE PROBLEM

Here, we consider a model problem in 2D and the geometry is shown in Fig. 1. The
region subject to reconstruction is located in a circular cavity of radius r0, and in Fig. 1
this region is described by x2 + y2 < r2

0. The cavity is equipped with P parallel-plate
waveguides connected to and uniformly distributed around its perimeter. The cavity and
waveguide boundaries are modeled as a perfect electric conductor (PEC).

p = 1

p = 2p = 3

p = 4

p = 5 p = 6

Γ1

Γ
(4)
2

Ω

n̂

v(4)

u(4)

x

y

Figure 1: Geometry for the inverse scattering model problem: circular cavity with the region subject to
reconstruction; P parallel-plate waveguides connected to the perimeter of the circular cavity; and a local

coordinate system (u(4), v(4)) used to describe the Robin boundary condition at Γ
(4)
2 associated with the

port p = 4.

Given this geometry, we consider the case when the magnetic field H is transverse to
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the cylinder axis and it satisfies the boundary value problem

∇× (ǫ−1∇× H) − ω2µ0H = 0 on Ω (1)

n̂ × (ǫ−1∇× H) = 0 on Γ1 (2)

n̂ × (ǫ−1∇× H) + γ(p) n̂ × (n̂ × H) = Q(p) on Γ
(p)
2 for p = 1, . . . , P (3)

Here, ǫ = ǫ0ǫr is the permittivity and n̂ is the unit normal vector to the bound-
ary Γ, where Γ is the union of the PEC boundary Γ1 and the waveguide ports Γ

(p)
2 for

p = 1, . . . , P . The relative permittivity ǫr is unity in the parallel-plate waveguides. Inside
the circular cavity, the relative permittivity ǫr = ǫr(x, y) ≥ 1 and it is subject to recon-
struction. Furthermore, the Robin boundary condition (3) at port p allows for an incident
field H+

p and we use

γ(p) = jωZ10 (4)

Q(p) = 2jωZ10n̂ × n̂ × H+
p (5)

Here, the wave impedance is Z10 = ωµ0/kv, the wave number kv =
√

(ω/c0)2 − (π/w)2,
the waveguide width w and the speed of light c0 = 1/

√
ǫ0µ0. We use operating frequencies

that only allow the fundamental mode to propagate in the waveguides, i.e. 1 < 2fw/c0 <
2. Thus, we let the incident field H+

p be the fundamental waveguide mode with the
amplitude E+

0p/Z10, where E+
0p is the amplitude of the corresponding electric field. The

amplitude E+
0p is a natural quantity to use for the definition of the scattering parameters

that are used later in this paper.
Furthermore, the Robin boundary condition (3) absorbs the reflected field H−

p with
the unknown amplitude E−

0p/Z10, where the corresponding electric field amplitude E−
0p is

used again for the purpose of the upcoming definition of the scattering parameters. In
the vicinity of the ports, the fields are consequently a superposition of the incident and
reflected fundamental waveguide modes given by

H±
p =

E±
0p

Z10

[

± û(p) cos

(

πu(p)

w

)

+ v̂(p)j
π

kvw
sin

(

πu(p)

w

)

]

e∓jkvv(p)

. (6)

where û(p) and v̂(p) denote the unit vectors of a local coordinate system (u(p), v(p)) asso-
ciated with the port p according to Fig. 1. (In the numerical tests that follow, we have
verified that the waveguide ports are sufficiently far from the waveguide apertures, which
implies that higher order modes are negligible at the waveguide ports.)

2.1 Finite element method

We exploit the FEM5 to solve the boundary value problem described above. The weak
form states: find H ∈ H(curl; Ω) such that

a(w, H) = b(w) (7)
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for all w ∈ H(curl; Ω). Here, the function space H(curl; Ω) is defined by

H(curl; Ω) = {w : w ∈ L2(Ω) and ∇× w ∈ L2(Ω)} (8)

and

a(u, v) =

∫

Ω

[ǫ−1(∇× u) · (∇× v) − ω2µ0 u · v]dΩ (9)

+

P
∑

p=1

γ(p)

∫

Γ
(p)
2

(n̂ × u) · (n̂ × v)dΓ

b(u) =
P

∑

p=1

bp(u) = −
P

∑

p=1

∫

Γ
(p)
2

u · Q(p) dΓ (10)

We triangulate Ω by means of the Delaunay algorithm implemented in the software Tri-
angle.11 On this triangulation, we expand the magnetic field in terms of the lowest-order
curl-conforming vector elements12 that are tailor-made for approximations in H(curl; Ω).
(See the book5 by Jin for explicit expressions of the basis functions for curl-conforming
vector elements on triangles and engineering application examples.)

3 SENSITIVITY ANALYSIS

The scattering parameters13 are defined as

Spq =
V −

0p

V +
0q

∣

∣

∣

∣

V +
0k

=0 for k 6=q

(11)

where V +
0q is the voltage amplitude of the incident wave at port q and V −

0p is the voltage
amplitude of the reflected wave at port p. Here, the voltages V ±

0p are directly proportional
to E±

0p, where the proportionality constant is identical for all ports.
Thus, the scattering parameters can be expressed as the ratio between the incident

and reflected field amplitudes

Spq =
E−

0p

E+
0q

=
E+

0p

E+
0q

e−2jkvv(p) − µ0

jkvwE+
0pE

+
0q

bp(H) (12)

3.1 Sensitivity derivation

Given a perturbation δǫ of the original permittivity ǫ inside the cavity, the new material
distribution ǫ + δǫ yields a perturbation δH of the original magnetic field H . Thus, we
have that the first-order variation of the scattering parameters (12) due to an infinitesimal
change δǫ in the permittivity distribution can be expressed as

δSpq = ζbp(δH) (13)
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where ζ = −µ0(jkvwE+
0pE

+
0q)

−1.
Now, we choose the adjoint problem

a(δH , F ) = bp(δH) (14)

where F is the adjoint solution. The solution of the adjoint problem allows us to express
the variation of the scattering parameters as

δSpq = ζa(δH, F ) = ζa(F , δH) (15)

where we have exploited that the bilinear form (9) is self-adjoint.
Next, we consider the perturbed problem

(a + δa)(w, H + δH) = b(w)

(16)

and the terms that involve the first-order variation yield a(w, δH)+δa(w, H) = 0, where
we exploit that a(w, H) = b(w) and neglect the higher-order terms.

Thus, we can express the first-order variation (15) of the scattering parameters as

δSpq = −ζδa(F , H) (17)

where we have14

δa(F , H) = −
∫

Ω

δǫ

ǫ2
(∇× F ) · (∇× H)dΩ (18)

Finally, the sensitivity of the scattering parameters Spq with respect to changes in the
permittivity ǫ is given by

δSpq = − µ0

jkvwE+
p,adjE

+
q,orig

∫

Ω

δǫ

ǫ2
(∇× Hadj) · (∇× Horig)dΩ (19)

Here, the original field problem yields the field solution Horig, where E+
q,orig is the ampli-

tude of the incident wave on port q. Similarly, the adjoint field solution Hadj is computed
with an incident wave on port p where the amplitude is E+

p,adj.
We emphasize that the adjoint problem is identical to the original problem due to the

reciprocity of Maxwell’s equations and, consequently, the computational cost for the sen-
sitivities δSpq is relatively small given that the scattering matrix and the underlying field
solutions are already computed. The technique presented here is similar to the approach
used for reduction of the radar cross section,14 optimization of microwave devices15 and
shape reconstruction of metallic surfaces.16
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4 RECONSTRUCTION ALGORITHM

Given the measured scattering parameters SM
pq, we attempt to reconstruct the permit-

tivity ǫ(r) inside the cavity, i.e. in the region x2 + y2 < r2
0. Thus, we parameterize the

permittivity ǫ = ǫ(r; a1, . . . , aM) in terms of a series with unknown coefficients ak and
some appropriate basis functions ϕk(r). The material parameters ak are collected in a
vector a.

Thus, we attempt to reconstruct the permittivity profile (described by the material
parameter vector a) by minimizing the goal function

g(a) =

[

1

P 2

P
∑

p=1

P
∑

q=1

1

fU − fL

∫ fU

fL

|SC
pq(f ; a) − SM

pq(f)|2df
]

1
2

(20)

In practice, we exploit the SNOPT algorithm implemented in TOMLAB.17 Thus, we solve
the minimization problem

a∗ =arg min
a

g(a) (21)

s.t. ǫ(r; a) ≥ ǫ0 ∀r ∈ Ω

4.1 Parameterization of the permittivity

In this article, we consider a model problem with an axisymmetric permittivity profile,
which implies that the permittivity is only a function of the distance to the center of the
circular cavity, i.e. ǫ = ǫ(r). We parameterize the relative permittivity ǫr profile by means
of a Bézier curve with M degrees of freedom, i.e.,

ǫr(r) =

M−1
∑

k=0

ak+1B
M−1
k

(

r

r0

)

(22)

Here, Bm
k (t) is the k-th Bernstein polynomial of degree m and it is given by

Bm
k (t) =

(

m

k

)

tk(1 − t)m−k for k = 0, . . . , m (23)

where t ∈ [0, 1]. The Bézier curve is located within the convex hull of its control points
and, consequently, it is feasible to guarantee that the relative permittivity satisfies the
condition ǫr(r) ≥ 1 for 0 ≤ r ≤ r0 by imposing the requirement ak ≥ 1 for k = 1, . . . , M .

4.2 Measurements with noise

In an experimental setup, the measured response SM
pq is composed of the exact response

S0
pq and an unwanted disturbance Sdist

pq , i.e. SM
pq = S0

pq + Sdist
pq . Here, we consider the case

when Sdist
pq stems from measurement noise and, in particular, we are interested in the

situation where the disturbance is small, i.e. |Sdist
pq | ≪ |S0

pq|.
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For such a situation, we exploit the linearization

SC
pq(f ; a∗ + δa) = SC

pq(f ; a∗) +
[

∇aS
C
pq(f ; a)|a=a

∗

]T

δa + . . . (24)

of the computed scattering matrix with respect to the parameter vector a, where we
neglect the higher-order terms in the series expansion. Here, a∗ is the solution to the non-
linear optimization problem (21) for an idealized situation where there is no disturbance
in the signal SM

pq, i.e. SM
pq = S0

pq. This is of course unrealistic in an experiment but, in
this article, we generate such a response by means of computation since it gives us the
possibility to study the influence of measurement noise on the reconstructed profiles.

Next, we consider the misfit |SC
pq(f ; a∗ + δa) − SM

pq(f)| that features in the goal func-
tion (20) and, in particular, we express this misfit as

|SC
pq(f ; a∗ + δa) − SM

pq(f)| =

∣

∣

∣

∣

∣

SC
pq(f ; a∗) +

[

∇aS
C
pq(f ; a)|a=a

∗

]T

δa − (S0
pq(f) + Sdist

pq (f))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

SC
pq(f ; a∗) − S0

pq(f)
)

+
([

∇aS
C
pq(f ; a)|a=a

∗

]T

δa − Sdist
pq (f)

)

∣

∣

∣

∣

∣

Within the region of validity for the linearization (24), we can consequently compute the
deviation δa from the optimum a∗ due to the noise Sdist

pq from the overdetermined system
of linear equations

(

ℜ{G}
ℑ{G}

)

δa =

(

ℜ{s}
ℑ{s}

)

(25)

where

Gij =
∂SC

pq(fn; a)

∂aj

∣

∣

∣

∣

∣

a=a
∗

(26)

si = Sdist
pq (fn) (27)

with the row index i = 1, . . . , P 2N that corresponds to a sequential numbering of the
triplets (p, q, n). Here, we consider all combinations of the port indices p = 1, . . . , P and
q = 1, . . . , P . Further, we use the index n = 1, . . . , N for the discrete frequency points
fn = (fU − fL)(n− 1)/(N − 1) + fL. (The column index j = 1, . . . , M corresponds to the
coefficient aj in the parameterization.) Equation (25) only involves real-valued quantities,
where the real part is denoted ℜ{·} and the imaginary part is denoted ℑ{·}.

Given the small disturbance Sdist
pq , the overdetermined system of linear equations (25)

yields a rather good approximation â = a∗ + δa to the solution of the non-linear opti-
mization problem (21) with the measurement SM

pq = S0
pq + Sdist

pq . Thus, we can generate
statistics for the case when Sdist

pq is a complex random variable with zero mean and suffi-
ciently small standard deviation, which is feasible given a relatively small computational
cost.
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5 RESULTS

The geometry of the model problem is shown in Fig. 1. In the following, we use a
circular cavity of radius r0 = 0.1 m and six parallel-plate waveguides of width w = 0.04 m
and length 0.14 m. For this setting, we consider the reconstruction of two different
permittivity profiles:

• Case A: As a first test case, the permittivity ǫA
r (r) is created by means of the

parameterization (22) with M = 6 and

a∗ = [2, 2, 1.1, 1.2, 1.7, 1.7].

This gives a permittivity profile ǫA
r (r) that the reconstruction algorithm can express

exactly since it is also based on the Bézier curve parameterization (22). We find
this type of permittivity profile useful for testing purposes.

• Case B: The smooth permittivity profile ǫB
r (r) is expressed as

ǫB
r (r) = 2 − 0.3

(

erf

(

r − rm1

δr1

)

− erf

(−rm1

δr1

))

+ 0.1

(

erf

(

r − rm2

δr2

)

− erf

(−rm2

δr2

))

(28)

which cannot be represented exactly by the parameterization (22). Here, we use
rm1 = 0.02 m, δr1 = 0.004 m, rm2 = 0.06 m and δr2 = 0.008 m.

The permittivity profiles for the two cases are shown in Fig. 2. Given these two
permittivity profiles on closed form, we exploit the FEM to compute the 6× 6 scattering
matrix for six uniformly distributed frequency points fn in the interval from fL = 3.8 GHz
to fU = 4.2 GHz, i.e. fn = (fU−fL)(n−1)/(N−1)+fL where n = 1, . . . , N and N = 6. For
each frequency point, we perform a convergence study with hierarchical mesh refinement
for λmin/h = 5, 10, 15, 20, 30, 45 and 60 points per wavelength, where h denotes the cell
size and λmin is the free-space wavelength at the highest frequency fU. The computed
results are extrapolated to zero cell size and we use these results as an approximation for
S0

pq.

5.1 Case A – reconstruction subject to discretization errors

Here, we consider the error in the reconstruction ǫr(r; a
∗) of the permittivity pro-

file ǫA
r due to discretization errors in the FEM solution of Maxwell’s equations for our

model problem. In particular, we are interested in the relative error EǫAr
= ||ǫr(r; a

∗) −
ǫA
r (r)||2/||ǫA

r (r)||2 as a function of the number of points per wavelength λmin/h. Here,
we use M = 6 degrees of freedom for the parameterization of the permittivity and,
consequently, the parameterization of the relative permittivity can exactly represent the
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Figure 2: Exact permittivity profiles subject to reconstruction: ǫAr – solid curve; and ǫBr – dashed curve.

permittivity ǫA
r subject to reconstruction. We use SM

pq = S0
pq and, thus, the reconstruc-

tion error EǫAr
is due to a combination of (i) the FEM discretization errors and (ii) errors

associated with the non-linear optimization problem (21) and its termination criterion.
The optimized parameter vector a∗ is computed by TOMLAB,17 where we started with an
initial parameter vector a close to the optimum and terminated the reconstruction after
70 major iterations. We find that the error in the reconstruction scales as h4/3, which is
also the convergence rate for the scattering parameters due to the sharp corners where
the parallel-plate waveguides are connected to the cavity.18 We perform the convergence
study for three different resolutions: λmin/h = 20 yields EǫAr

= 1.8%; λmin/h = 40 yields
EǫAr

= 0.70%; and λmin/h = 80 yields EǫAr
= 0.25%. Thus, we achieve an error in the

reconstruction that is about 1% for λmin/h = 30 and we use this resolution to compute
SC

pq for all the reconstruction tests that follow.

5.2 Case A – reconstruction subject to modeling errors

Next, we attempt to reconstruct the permittivity profile ǫA
r when it is represented by the

parameterization (22) for different number of degrees of freedom M . Again, we exclude
measurement noise and, consequently, we use SM

pq = S0
pq. Figure 3 shows the reconstructed

relative permittivity ǫr(r; a
∗) for different number of degrees of freedom: M = 5 – thin

solid curve; M = 4 – dashed curve; M = 3 – dash-dotted curve; and M = 2 – dotted
curve. In order to facilitate comparisons, we also include ǫA

r (r) in Fig. 3 and it is shown
by the thick solid curve. It is clear that the model error is large for low values of M and
that it is reduced as M approaches the value used to generate ǫA

r .
Figure 4 shows the relative error EǫAr

= ||ǫr(r; a
∗) − ǫA

r (r)||2/||ǫA
r (r)||2 in the recon-

structed permittivity profile with respect to the number of degrees of freedom M that are

10
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Figure 3: Reconstructed permittivity ǫr(r;a
∗) as a function of radius: M = 5 – thin solid curve; M = 4 –

dashed curve; M = 3 – dash-dotted curve; and M = 2 – dotted curve. The true permittivity ǫAr is shown
by the thick solid curve to facilitate comparisons.

used in the reconstruction. Since ǫA
r is generated with M = 6, we expect reconstructions

with M ≥ 6 to yield a small reconstruction error and this is clearly seen in Fig. 4. On
the contrary, M < 6 may yield a large reconstruction error due to the inability of the
parameterization to approximate ǫA

r and, in particular, we notice that the reconstruction
error is significantly larger than the error due to the FEM discretization for M ≤ 4.

2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

M [-]

E ǫ
A r

[-
]

Figure 4: Reconstruction error as a function of the number of degrees of freedom M in the parameteri-
zation of the relative permittivity.
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5.3 Case A – reconstruction subject to model errors and noise

Next, we consider the reconstruction quality as noise is added to S0
pq, i.e. the recon-

struction is based on SM
pq = S0

pq + Sdist
pq where Sdist

pq is an independent complex Gaus-
sian random variable with zero mean and the standard deviation σ. Our objective is to
find the standard deviation in the reconstructed permittivity profile according to the
procedure presented in Sec. 4.2, which is related to the work by Ye et al.19,20 Fig-
ure 5 shows the relative permittivity ǫr as a function of the radial coordinate: thick
solid curves – the permittivity ǫA

r subject to reconstruction; thin solid curves – the
expected value mǫr(r) = E[ǫr(r; â)]; and thin dashed curves – bounds for the region
mǫr − σ̃ǫr < ǫr < mǫr + σ̃ǫr with σ̃ǫr(r) = 0.1σǫr(r)/ maxr σǫr(r) and the standard deviation
for the relative permittivity ǫr(r; â) denoted by σǫr(r). Consequently, the thin dashed
curves in Fig. 5 indicate the variation of the standard deviation σǫr(r) with respect to the
radial coordinate. In Fig. 5, the different subplots correspond to different number of de-
grees of freedom in the parameterization of the relative permittivity ǫr: M = 2 – top-left;
M = 3 – top-right; M = 4 – middle-left; M = 5 – middle-right; M = 6 – bottom-left;
and M = 7 – bottom-right. (The corresponding figures for 8 ≤ M ≤ 12 are rather similar
to M = 7 and, therefore, these are not included here.)

Figure 6 shows the standard deviation σǫr(r) for the relative permittivity: M = 4 –
solid curve; M = 6 – dashed curve; M = 9 – dash-dotted curve; and M = 12 – dotted
curve. The largest standard deviation occurs for M = 12 at r = 0 and, in Fig. 6, its value
is 0.01 which occurs for a signal-to-noise ratio (SNR) of about 104 dB. Here and in the
following, the SNR is computed in relation to |Spq| of unity magnitude.

For different values of M , Tab. 1 gives the SNR that is required for a maximum
standard deviation of 0.05 in the relative permittivity. It is noticed that as the number of
the degrees of freedom M for the parameterization of the relative permittivity is increased,
it is necessary to perform more accurate measurements in order to maintain a constant
maximum reconstruction error. Further, Tab. 1 gives the relative error EǫAr

= ||ǫr(r; a
∗)−

ǫA
r (r)||2/||ǫA

r (r)||2 in the L2-norm for the different values of M . Given these results, the
relative error EǫAr

decreases for M ≤ 6 as M is increased and then remains constant under
the assumption that the SNR is increased to a sufficiently high level for each individual
M . In a practical situation, the SNR may be limited by the measurement setup and,
consequently, this also imposes an upper bound on the highest possible model order
without degradation in the reconstructions due to noise in the measurement.

5.4 Case B

Finally, we attempt to reconstruct the permittivity profile ǫB
r , which cannot be ex-

pressed exactly by the Bézier curve parameterization (22). Figure 7 shows the reconstruc-
tions for three different number of parameters: M = 10 – dash-dotted curve; M = 15
– dashed curve; and M = 20 – solid curve. Here, it should be noticed that we use a
global polynomial for the entire domain subject to reconstruction, i.e. 0 ≤ r ≤ r0. This
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Figure 5: Relative permittivity as a function of radial coordinate for different number of degrees of
freedom: M = 2 – top-left; M = 3 – top-right; M = 4 – middle-left; M = 5 – middle-right; M = 6 –
bottom-left; and M = 7 – bottom-right. The solid curves show the permittivity ǫAr (thick curve) and
mǫr

= E[ǫr(r; â)] (thin curve) while the dashed curves indicate a confidence region normalized to yield a
maximum standard deviation of magnitude 1/10.
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Figure 6: Standard deviation σǫr
(r) for the relative permittivity: M = 4 – solid curve; M = 6 – dashed

curve; M = 9 – dash-dotted curve; and M = 12 – dotted curve. Here, the SNR is 104 dB.

yields an ill-conditioned problem for large values of M and we find that M > 20 cannot
give accurate solutions since the problem becomes too ill-conditioned. Currently, we are
implementing a parameterization of the permittivity that is based piecewise low-order
Bézier curves subject to continuity conditions and our most recent results will be shown
at the conference.
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Figure 7: Reconstructed relative permittivity as a function of radial coordinate for different number of
degrees of freedom: M = 10 – dash-dotted curve; M = 15 – dashed curve; and M = 20 – solid curve.
The thick solid curve shows the permittivity ǫBr subject to reconstruction.
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M [-] SNR [dB] EǫAr
[-]

2 5.3 1.2 · 10−1

3 18.7 3.4 · 10−2

4 19.1 3.6 · 10−2

5 23.4 9.2 · 10−3

6 32.5 6.5 · 10−3

7 33.3 6.7 · 10−3

8 38.7 6.2 · 10−3

9 60.5 5.4 · 10−3

10 77.5 5.2 · 10−3

11 85.3 5.3 · 10−3

12 90.3 5.1 · 10−3

Table 1: SNR required to achieve a maximum standard deviation of 0.05 in the reconstruction together
with the corresponding relative error E

ǫ
A
r

= ||ǫr(r;a∗) − ǫAr (r)||2/||ǫAr (r)||2 in the L2-norm.

5.5 Determination of model order

It is challenging to select the number of degrees of freedom M to be used in the
parameterization (22) for situations with very limited a priori information about the
permittivity profile subject to reconstruction. In practice, we can monitor the value of
the goal function (20) as the value for M is incremented. At the point when further
increments of M do not yield substantially lower values for the goal function, it may be
concluded that a sufficiently high model order is found given the parameterization at hand.
Unfortunately, this approach yields no guarantees that the correct permittivity profile has
been found, even if the value of the goal function is zero which corresponds to a perfect
fit between SC

pq and SM
pq. However, the reconstruction capabilities are in general improved

when the number of waveguides is increased and the frequency band is enlarged. We find
that extensive computational studies of the type that has been presented in this article
can give important information concerning the inverse problem at hand and that this
information may be used to design an inverse experiment. In addition, the computational
environment can be used for extensive parameter studies that provide information about
the reconstruction capabilities: (i) the risk of identifying an incorrect permittivity profile
despite a low value of the goal function; (ii) the impact of the parameterization of the
material; and (iii) the reconstruction error due to noise and computational errors.

We are currently incorporating model-order selection methods based21 on the likeli-
hood ratio test, which is used in estimation theory.22 These methods attempt to find a
good balance between two main error contributions. First, the so-called model error is
associated with the inability of the parameterization to accurately approximate the per-
mittivity subject to reconstruction. This error contribution can be reduced by increasing
the model order. Secondly, a higher model-order yields a larger error due to the presence
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of measurement noise and this error contribution is basically proportional to the model
order. Thus, there is a trade-off point where the total error has a minimum, when it is
considered a function of the model order. This effect is clearly visible in Fig. 6, where the
standard deviation increases with M .

6 CONCLUSIONS

We present and test a reconstruction algorithm for inverse problems, where Maxwell’s
equations are solved in a 2D setting. In particular, we consider a model problem that
consists of a circular cavity with six parallel-plate waveguides connected to its perimeter.
The sensitivity of the scattering parameters with respect to changes in the relative permit-
tivity is formulated in terms of the continuum variables for the transverse magnetic case.
We express the sensitivity in terms of the field solution of (i) the original field problem
and (ii) an adjoint field problem. Consequently, the gradient can be evaluated as a post-
processing step once the scattering matrix and its underlying field solutions have been
computed, where the additional computational cost is relatively small and independent of
the number of degrees of freedom that are used to parameterize the material distribution
subject to reconstruction. This allows for good flexibility in terms of the choice of field
solver, since the optimization algorithm is decoupled from the computation of the field
solution.

The permittivity distribution subject to reconstruction is parameterized in terms of a
set of basis functions and unknown coefficients, where the coefficients are determined by
the reconstruction algorithm. We exploit the misfit between the measured and computed
scattering matrix, where the goal function is formulated as an average of this difference
with respect to a user-specified frequency range and all pairs of available waveguide ports
that feature in the scattering matrix. The electromagnetic field problem is solved by the
finite element method, where we use Galerkin’s method and expand the magnetic field
transverse to the cylinder axis in terms of the lowest-order curl-conforming elements on
triangles.

We test the reconstruction algorithm on a simple test case, where the permittivity
profile subject to reconstruction can be expressed exactly by the parameterization used
by the reconstruction algorithm. We find that a resolution of 30 points per wavelength
in free-space yields a relative error in the reconstruction of about 1% for a permittivity
profile with the relative permittivity in the range [1.4, 2.0]. For parameterizations that
cannot exactly represent the permittivity profile subject to reconstruction, the reconstruc-
tions suffer from an approximation error that stems from the insufficient flexibility in the
parameterization. Further, we investigate the impact of noise added to the scattering
parameters. In particular, we compute the expected value and standard deviation for
the reconstructed permittivity profiles. It is found that as the model order is increased,
it is necessary to increase the signal-to-noise ratio in order to maintain a given constant
standard deviation for the reconstructed profile.
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