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Abstract. Simulation of human blood flow is a demanding task both in terms of the
complexity of applicable models and the computational effort. One reason is the particulate
nature of blood which in first approximation may be treated as a suspension of red blood
cells (RBCs) in blood plasma.

A second reason is that in realistic geometries typical length scales vary over several
orders of magnitude. Usual computational models either cope with this complexity by
implementing only a homogenous although non-Newtonian fluid or highly resolve relatively
small numbers of RBCs by means of deformable meshes.

We developed a coarse-grained and highly efficient yet still particulate model for blood
that allows us to simulate up to millions of cells on current parallel supercomputers. We
start with a lattice Boltzmann based method for the simulation of suspensions of rigid
particles which accounts for long-range hydrodynamic interactions. Real RBCs, however,
are not rigid. We thus add anisotropic model potentials to cover the more complex short-
range behavior of deformable cells on a phenomenological level. In this work, we study the
effect of the model parameters and demonstrate the applicability of the model to simple
situations of confined flow as well as its scalability.
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1 INTRODUCTION

Human blood can be approximated as a suspension of deformable red blood cells
(RBCs, also called erythrocytes) in a Newtonian liquid, the blood plasma. The other
constituents like leukocytes and thrombocytes can be neglected due to their low volume
concentrations1. Typical concentrations for RBCs are 40 to 50 % under physiological con-
ditions. In the absence of external stresses, erythrocytes assume the shape of biconcave
discs of approximately 8µm diameter2. An understanding of their effect on the rheology
and the clotting behavior of blood is necessary for the study of pathological deviations in
the body and the design of microfluidic devices for improved blood analysis.

Well-established methods for the computer simulation of blood flow either consist of an
elaborate model of deformable cells3,4 or restrict themselves to a continuous description
at larger scales5. Our motivation is to bridge the gap between both classes of models
by an intermediate approach: we keep the particulate nature of blood, but simplify the
description of each cell as far as possible6. The ultimate goal is to perform large-scale
simulations that allow to study the flow in realistic geometries but also to link bulk prop-
erties, for example the effective viscosity, to phenomena at the level of single erythrocytes.
Only a computationally efficient description allows the reliable accumulation of statisti-
cal properties in time-dependent flows which is necessary for this task. The improved
understanding of the dynamic behavior of blood might be used for the optimization of
macroscopic simulation methods.

The main idea of our model is to distinguish between the long-range hydrodynamic
coupling of cells and the short-range interactions that are related to the complex me-
chanics, electrostatics, and the chemistry of the membranes. The short-range behavior of
RBCs is described on a phenomenological level by means of anisotropic model potentials.
Long-range hydrodynamic interactions are accounted for by means of a lattice Boltzmann
(LB) method7. Our model is well suited for the implementation of complex boundary con-
ditions and an efficient parallelization on parallel supercomputers. Both are necessary for
the study of realistic systems like branching vessels and the accumulation of statistically
relevant data in bulk flow situations. Various authors already applied the LB method to
blood flow at a large variety of scales5,4. Since we are interested in a minimal resolution
of RBCs we decide for a method for suspensions of rigid discs of finite size. However, in
contrast to other works8 our implementation allows the particles to overlap in order to
take into account the deformability of the erythrocytes.

2 HYDRODYNAMIC PART OF THE MODEL

We apply a D3Q19/BGK LB method for modeling the blood plasma9. See the book of
Succi for a comprehensive introduction7. The single particle distribution function nr(x, t)
resembles the fluid traveling with one of r = 1, . . . , 19 discrete velocities cr at the three-
dimensional lattice position x and discrete time t. Its evolution in time is determined by
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the lattice Boltzmann equation

nr(x + cr, t+ 1) = nr(x, t)− Ω , with Ω =
nr(x, t)− neq

r (ρ(x, t),u(x, t))

τ
(1)

being the BGK-collision term with a single relaxation time τ . The equilibrium distribu-
tion function neq

r (ρ,u) is an expansion of the Maxwell-Boltzmann distribution. ρ(x, t) =∑
r nr(x, t) and ρ(x, t)u(x, t) =

∑
r nr(x, t)cr can be identified as density and momen-

tum. In the limit of small velocities and lattice spacings the Navier-Stokes equations are
recovered with a kinematic viscosity of ν = (2τ − 1)/6, where τ = 1 in this study.

For a coarse-grained description of the hydrodynamic interaction of cells and blood
plasma, a method similar to the one by Aidun et al. modeling rigid particles of finite
size is applied10,8. Starting point is the mid-link bounce-back boundary condition: the
confining geometry is discretized on the lattice and all accordant nodes are turned into
fluid-less wall nodes. If x is such a node the updated distribution at x + cr is determined
as

nr(x + cr, t+ 1) = n∗r̄(x + cr, t) , with n∗r(x, t) = nr(x, t)− Ω . (2)

This corresponds to replacing the local distribution in direction r with the post-collision
distribution n∗r(x, t) of the opposite direction r̄. To model boundaries moving with velocity
v, Eq. 2 needs to be modified. The new update rule

nr(x + cr, t+ 1) = n∗r̄(x + cr, t) + C , with C =
2αcr
c2

s

ρ(x + cr, t) crv (3)

was chosen consistently with neq
r (ρ,u) for the general case u = v 6= 0. The lattice weights

αcr and the speed of sound cs are constants for a given set of discrete velocities. The
momentum

∆pfp = (2nr̄ + C) cr̄ , (4)

which is transferred during each time step by each single bounce-back process is used to
calculate the resulting force on the boundary. When a freely moving particle is modeled by
this method its discretization on the lattice needs to be updated occasionally. During this
process, fluid nodes are created or vanish and the related change in total fluid momentum
is balanced by an additional force on the respective particle.

Instead of the biconcave equilibrium shape of physiological RBCs we choose a simplified
ellipsoidal geometry that is defined by two distinct half-axes R‖ and R⊥ parallel and
perpendicular to the unit vector ôi which points along the direction of the axis of rotational
symmetry of each particle i. Since the cell-fluid interaction volumes are rigid we need to
allow them to overlap in order to account for the deformability of real erythrocytes. We
thus assume a pair of mutual forces

F+
pp = 2neq

r (ρ̄,u = 0)cr and F−pp = 2neq
r̄ (ρ̄,u = 0)cr̄ = −F+

pp (5)
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at each cell-cell link. This is exactly the momentum transfer during one time step due to
the rigid-particle algorithm for a resting particle and an adjacent site with resting fluid
at equilibrium and initial density ρ̄. In case of close contact of cells with the confining
geometry we proceed in a similar manner as for two cells but ignore forces on the system
walls.

3 MODEL POTENTIALS

In order to account for the complex behavior of real RBCs at small distances we add
phenomenological pair potentials. As a simple way to describe elastic deformability, we
use the repulsive branch of a Hookian spring potential

φ(rij) =

{
ε (1− rij/σ)2 rij < σ
0 rij ≥ σ

(6)

for the scalar displacement rij of two cells i and j. With respect to the disc-shape of
RBCs, we follow the approach of Berne and Pechukas11 and choose the energy and range
parameters

ε(ôi, ôj) =
ε̄√

1− χ2 (ôiôj)
2

, σ(ôi, ôj, r̂ij) =
σ̄√

1− χ
2

[
(r̂ij ôi+r̂ij ôj)2

1+χôiôj
+

(r̂ij ôi−r̂ij ôj)2

1−χôiôj

] (7)

as functions of the orientations ôi and ôj of the cells and their normalized center dis-
placement r̂ij. We achieve an anisotropic potential with a zero-energy surface that is
approximately that of ellipsoidal discs. Their half-axes parallel σ‖ and perpendicular σ⊥
to the symmetry axis enter Eq. 7 via σ̄ = 2σ⊥ and χ = (σ2

‖ − σ2
⊥)/(σ2

‖ + σ2
⊥) whereas

ε̄ determines the potential strength. For modeling the cell-wall interaction we assume a
sphere with radius σw = 1/2 at every lattice node on the surface of a vessel wall and
implement similar forces as for the cell-cell interaction. Using

σ(ôi, r̂ix) =
σ̄w√

1− χw (r̂ixôi)
2

(8)

as a range parameter with σ̄w =
√
σ2
⊥ + σ2

w and χw = (σ2
‖ − σ2

⊥)/(σ2
‖ + σ2

w) allows to scale
a potential with radial symmetry to fit for the description of the interaction of a sphere
and an ellipsoidal disc11. The parameter ε(ôi, ôj) = ε̄w remains constant in this case. r̂ix
is the normalized center displacement of cell i and a wall node x.

Fig. 1 shows an outline of the full model. For two RBCs the inner volume implement-
ing the cell-plasma interaction with half axes R‖ and R⊥ is shown. Also depicted are the
larger volumes that are defined by the range parameters σ‖ and σ⊥ of the cell-cell and cell-
wall interaction. A section of a vessel wall is visualized by means of spheres with radius
σw according to the cell-wall potential. The forces emerging from the interaction of the
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red blood cell
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Figure 1: Outline of the model. Shown are two cells with their axes of rotational symmetry depicted
by vectors. The volumes defined by the cell-cell interaction are approximately ellipsoidal. The smaller
ellipsoidal volumes of the cell-plasma interaction are discretized on the underlying lattice. The cell-wall
potential assumes spheres with radius σw on all surface wall nodes.

cells with the fluid, other RBCs, and walls are integrated by a classical MD code in order
to evolve the system in time. Both LB and MD routines use the same domain decom-
position. For more detailed information concerning the model we refer to the upcoming
publication6.

4 RESULTS

All quantities can be converted from simulation units to physical units by multiplication
with products of integer powers of the conversion factors δx, δt, and δm for space, time,
and mass. As a convention in this work, primed variables are used to distinguish quantities
given in physical units from the same unprimed variable measured in lattice units. We
choose one lattice spacing to be δx = 2/3µm which ensures that RBCs are discretized as
contiguous and closed volumes. Supposing that ν matches the kinematic plasma viscosity
of ν ′ = 1.09 × 10−6 m2/s determines the time discretization as δt = 6.80 × 10−8 s. δm =
3.05 × 10−16 kg is chosen arbitrarily. We investigate the influence of the different model
parameters on the effective dynamic viscosity µeff for a homogenous suspension of cells
in plane Couette flow as a function of the shear rate. All simulations reported here are
performed on a system with a size of nx = 128 lattice units in x- and ny = nz = 40 lattice
units in y- and z-direction or 85× 272 µm3 of real blood. Between the two yz-side planes
a constant offset of the local fluid velocities in z-direction is imposed by an adaption of
the Lees-Edwards shear boundary condition to the LB method12.

First the influence of the volume of the cell-fluid interaction is studied. Fig. 2(a)
shows the viscosity as a function of the shear rate for different R‖ and R⊥ at a cell
number concentration that varies by less than 5 %. Generally, shear thinning is visible,
but both the absolute viscosities and the change in viscosity per shear rate increase
significantly for larger interaction volumes. Based on this result and the experiences from
additional parameter studies we choose the largest investigated value of R′⊥ = 11/3µm
but with respect to Fig. 2(a) modify the aspect ratio to R⊥ = 3R‖. We now define
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Figure 2: Effective viscosity µeff in dependence on the shear rate γ̇ as calculated for Couette flow for
different sets of model parameters. In (a), σ′⊥ = 4µm, σ′‖ = 1µm, and ε̄′ = 1.47×10−14 J is kept fixed and
the volume implementing the cell-fluid interaction is varied by means of R‖ and R⊥. The cell-fluid volume
concentration varies within 2.6 % and 36 %. Larger volumes 4πR2

⊥R‖/3 lead to more pronounced shear
thinning and generally higher viscosities. In (b), σ′⊥ = 4µm, σ′‖ = 4/3µm, and R⊥/σ⊥ = R‖/σ‖ = 11/12
is kept constant and the strength parameter ε̄ of the cell-cell interaction is varied at a cell-fluid volume
concentration of 43 %. Increasing ε̄ seemingly leads to a shift of the curve to higher shear rates γ̇ while
the viscosity for a given shear rate generally becomes larger yet more stable.

R⊥/σ⊥ = R‖/σ‖ = 11/12 and achieve values for the cell-cell interaction diameters 2σ′‖
and 2σ′⊥ and the associated volume 4πσ′‖σ

′
⊥

2/3 that closely resemble the respective values

of physiological erythrocytes2.
In further simulations the effect of the stiffness parameter of the cell-cell potential ε̄

is studied. The viscosity as a function of the shear rate as plotted in Fig. 2(b) shows
that generally the viscosity increases with increasing ε̄. For very stiff cells the depen-
dence on the shear rate decreases considerably. This is in asymptotic consistency with
the experimental results of Chien13 who measured the effective viscosity of a suspension
of artificially hardened RBCs and found a significantly increased yet mostly constant vis-
cosity. The cell-fluid volume concentration of 43 % in Fig. 2(b) seems sufficiently close
to the hematocrit of 45 % in the measurements done by Chien13 to justify a quantitative
comparison. We find best agreement for ε̄′ = 1.47× 10−15 J and use this parametrization
for the following investigations.

To demonstrate the effect of confinement on our model we study steady flow through a
cylindrical channel with a radius of 31µm and a length of 43µm with periodic boundaries.
The cell-fluid volume concentration is now 42 %. We choose ε̄′w = 1.47 × 10−16 J for the
strength of the cell-wall interaction. Fig. 3(a) visualizes the cells as the volumes defined
by the cell-cell interaction and the channel wall as midplane between fluid and wall nodes.
A strong alignment of the cells with shear is present. In Fig. 3(b), the normalized radial
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Figure 3: Steady flow through a cylindrical channel with a radius of 31µm at 42 % cell-fluid volume
concentration. In (a), the volumes defined by the cell-cell interaction and the midplane between wall and
fluid nodes are displayed. The flow is pointing into the drawing plane and has a maximum velocity of
1.08 × 10−2 m/s at the center. Layering of the cells in shear flow can be observed. (b) shows the radial
velocity profile for two different flow rates. Each curve is normalized to the respective maximum velocity
at the center. The parabolic Hagen-Poiseuille profile is plotted as well for comparison. Apparent slip
due to a cell depletion layer is visible. The blunting at low flow rates is in qualitative agreement with
literature data1.

velocity profiles for two flow velocities are compared. Close to the wall, apparent slip
is visible. It is due to a cell depletion layer and to some extent can be controlled via
ε̄w. While for the highest velocity the curve looks parabolic in the central region, there
are geometrically induced ordering effects and increasing blunting when the flow rate
is reduced. The blunting is qualitatively consistent with experimental data from the
literature1. Also the presence of cell alignment in shear flow is well known. The same
holds for a cell depletion layer close to vessel walls14.

In the following study of the flow of nine RBCs through branching capillaries with a
radius of 4.7µm particulate effects play an even more important role. One of the branches
features a stenosis with only 2.7µm radius. Both tube diameters and Reynolds numbers
Re . 4×10−3 match physiological situations14. We vary the cell-wall interaction stiffness
ε̄w and find that the constricted branch gets clogged for ε̄′w = 1.47 × 10−15 J. This can
be seen from the RBC trajectories displayed in Fig. 4(a) together with a cut through
the geometry and from the development of the relative flow rate in the respective branch
over time in Fig. 4(b). For ε̄′w = 1.47× 10−17 J, however, the erythrocytes easily pass the
constriction as expected for healthy cells1 and the flow rate does not change except for
fluctuations induced by the mutable configuration of RBCs in the system. In the case
of an intermediate value of ε̄′w = 1.47 × 10−16 J, cells are initially stopped but due to
pressure fluctuations get squeezed through the stenosis eventually. The acceleration by
the cell-wall potential when leaving the constriction leads to the peaks of the flow rate
visible in Fig. 4(b).
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Figure 4: Flow through a branching capillary. The channel radius is R′s = 2.7µm at a stenosis in the
upper branch and 4.7µm otherwise. (a) compares the center trajectories of nine cells for a cell-wall
interaction stiffness of either ε̄′w = 1.47× 10−15 J or ε̄′w = 1.47× 10−17 J. Also visualized is a cut of the
midplane between wall and fluid nodes. The flow direction is pointing from left to right. (b) depicts
the time evolution of the relative volume flow rate through the constricted branch for different values of
ε̄′w. The clogging in the case of ε̄′w = 1.47 × 10−15 J becomes visible both in the trajectories and in a
drop of the relative flow rate to less than 10 %. While ε̄′w = 1.47 × 10−17 J leads to a continuous flow
situation, there are temporary drops and sharp peaks of the flow rate for ε̄′w = 1.47× 10−16 J. They can
be explained by RBCs being initially stopped at the stenosis and eventually squeezed through due to
local pressure fluctuations.

While the results for the larger channel studied above could still mostly be reproduced
by a homogenous fluid with a specially tuned shear-rate dependent viscosity µ(γ̇), this is
not possible at the scale of capillaries. Our model allows to account for clearly particulate
effects like clogging or local changes of flow rate and pressure. In Fig. 4(a), the interplay
of both of them prevents further cells from entering the constricted branch after its closure
as expected from the literature14.

Despite the simplifications of the model, parallel supercomputers are necessary to sim-
ulate more realistic vessel networks or large bulk systems. This makes the scalability of
the code crucial. For a quasi-homogenous chunk of suspension consisting of 10242× 2048
lattice sites and 4.1 × 106 cells (see Fig. 5(a)) simulated on a BlueGene/P system, we
achieve a parallel efficiency normalized to the case of 2048-fold parallelism of 95.7 % on
16384 and still 85.2 % on 32768 cores. In comparison, the pure LB code without the MD
routines shows a relative parallel efficiency of 98.1 % on 32768 cores. The parallel per-
formance of the combined code is mainly limited by the relation of the interaction range
of a cell to the size of the computational domain dedicated to each task. The full strong
scaling behavior for 1024 to 32768 cores is shown in Fig. 5(b). Compared to deformable
particle models4, our method not only has a lower overall number of computations at a
given resolution but is also easier to parallelize efficiently because each RBC has only six
degrees of freedom.
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Figure 5: Strong scaling benchmark on the BlueGene/P system at JSC. (a) shows the benchmark system
consisting of 4.1× 106 cells and 10242 × 2048 lattice sites which resembles 0.682 × 1.37 mm3 of blood. In
(b) the relative speedup is plotted as a function of the number of cores for the full model (LB & MD) and
a cell-free fluid volume of the same size (LB).

5 CONCLUSION

The results presented above suggest that our model bears the potential to reproduce
the particulate behavior of blood on a large range of spatial scales. Clearly, our motivation
is not to replace models with higher resolution like the one presented by Dupin et al.4,
but instead to tune our model to reproduce their results as well as experimental data and
bridge the gap to scales that are inaccessible for higher resolution methods. For this task,
the reproduction of effects related to simple confined flows is a proper way to calibrate
and validate the model. We are confident that our new method will prove both an efficient
tool for coarse grained yet particulate simulations of flow in complex geometries and a
valuable contribution to the improvement of macroscopic blood modeling.
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