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Abstract. Two-dimensional numerical simulation was employed to investigate the 
unsteady separated flow past a rectangular flat plate inclined with an angle of attack of 
30 degrees to the mean flow. The rectangular flat plate characterized by a length-width 
ratio of 50 represents a marine bluff body, and is described by the immersed boundary 
method in our code. Two different flow cases were compared for the chosen angle of 
attack. In the first case, to achieve the attack angle, the flat plate was imposed by 
introducing an inclination relative to the Cartesian grid. In the second case the flat 
plate was fit to the grid and the incoming flow was inclined. These two cases both have 
their advantages and disadvantages according to the different grid implementation. The 
Reynolds number is 750 with the chord length of the plate as characteristic length scale. 
The results show that these two flow cases give almost the same vortices shedding 
alternately from leading edge and trailing edge with a shedding frequency 
corresponding to a Strouhal number of around 0.34. The steady mean flow was 
obtained by averaging in time.  
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1 INTRODUCTION 

Flow of a fluid past bluff bodies and particularly of two-dimensional bluff bodies 
have been extensively studied because of their relevance to drag on vehicles and flow 
over ship hulls and submarines. Such flows provide rich and interesting flow dynamics 
of considerable engineering relevance. Bluff bodies such as plates, discs, circular and 
rectangular cylinders and V-shaped prisms are used in combustors to enhance scalar 
mixing and provide a flame-stabilizing region [1]. Investigations on some classical 
configurations have been done both experimentally and numerically in order to try to 
understand the fundamental aspects of wakes and flow-induced vibration. The most 
significant parameter to characterize this kind of flow separation is the Reynolds 
number. The flow past a flat plate with different inclination angles   is characterized 

by fixed separation points at the edges of the plate. In some special parameter regions 
the flow status are very sensitive to the Reynolds number and angle of attack. 

Incoming flow normal to the plate is the most studied (see Table 1). Unlike flow past 
a normal plate, the case with a tilting plate has different vortex shedding mechanism 
from the leading edge compare to the more complex shedding from the trailing edge. If 
we focus our attention on the tilting angle, it is surprising to see that almost all the 
inclined plate flow cases are either studied by experiments or by potential flow theory 
[2,3,4]. 
 

Case Re Angle Flow  
regime 

Method 

Fage and Johansen (1927) [5] 1.5×105 0-90° Turbulence Experiments 
Lam (1996) [6] 3.0×104 30° Turbulence Experiments 

Leder (1991) [7] 2.8×104 90° Turbulence Experiments 
Breuer and Jovicic (2001) [8] 2.0×104 18° Turbulence 3D-numerical 

Breuer et al. (2003) [9] 2.0×104 18° Turbulence 3D-numerical 
Elder (1960) [10] 104-106 0° Turbulence Experiments 

Crompton and Barrett (2000) [11] 104-5.4×105 0-90° Turbulence Experiments 
Lam and Leung (2005) [13] 5300 20-30° Turbulence Experiments 
Chen and Fang (1996) [12] 3.5×103-3.2×104 0-90° Turbulence Experiments 

Najjar and Vanka (1995) [14] 1000 90° Turbulence 3D-numerical 
Narasimhamurthy and  
Andersson (2009) [15] 

750 90° Turbulence 3D-numerical 

Knisely (1990) [16] 7.2×102-3.1×104 0-90° Turbulence Experiments 
Najjar and Vanka (1995) [1] 100-1000 90° Turbulence 2D-numerical 

Najjar and Balachandar (1998) [17] 250 90° Transition 3D-numerical 

Taira et al. (2007) [18] 300 0-90° Transition 
3D-numerical &

Experiments 
Zhang et al. (2009) [19] 0-800 0-45° Transition 2D-numerical 

Jackson (1987) [20] 0-100 0-60° Laminar 2D-numerical 

Table 1: Various studies on flow past a flat plate with inclinations. 

The earliest work concerned with vortex shedding from a sharp-edged plate was that 
of Fage & Johansen (1927) [5], dealing with the plate at 18 different angles of incidence. 
It is important to note that this geometry was not truly rectangular. Jackson (1987) [20] 
simulated the periodic behavior in two-dimensional laminar flow past various shapes of 
bodies including flat plates aligned over a range of angles to the direction of flow. 
Inclined plates at significant high Reynolds numbers are almost all investigated 
experimentally. Knisely (1990) [16] measured Strouhal numbers for a family of 
rectangular cylinders with side ratios ranging from 0.04 to 1.0 and with angles of attack 
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from 0° to 90°. Lam (1996) [6] investigated the flow past an inclined flat plate at 
 =15° using phased-averaged LDA measurements. The results showed that the train of 
trailing edge vortices has higher vortex strength than the train of leading edge vortices. 
The flat plates with sharp leading and trailing edges were also investigated [11, 12]. 
Breuer et al. [8, 9] simulated the flow over an inclined plate at  =18° and the 
computational results showed clearly that the wake is strongly dominated by the trailing 
edge vortices. It was also reported that there is no regular shedding motion of rotating 
vortices directly at the leading edge. Instead, behind the leading edge, a Kelvin-
Helmholtz instability is detected in the free shear layer. These shear layer vortices 
develop into a large recirculation region attached to the leeward side of the plate. Zhang 
et al. (2009) [19] studied the transition route from steady to chaotic state for flow past 
an inclined flat plate and the results reveal a transition process via the sequential 
occurrence of the period-doubling bifurcations and the various incommensurate 
bifurcations. 

The present study has the same geometry of the plate as used by Narasimhamurthy 
and Andersson (2009) [15] except the attack angle in order to investigate the different 
vortex shedding from the leading and trailing edges respectively. 

2 NUMERICAL PROCEDURE 

2.1 Governing equations and numerical method 

The dynamics of an incompressible Newtonian fluid can be completely described by 
the Navier-Stokes equations. The non-dimensionalized mass and momentum equations 
written in vector form are 

0 u                                                               (1) 

  21
p

t R


     


u

u u
e

u                                           (2) 

The equations are non-dimensionalized by the plate length d  and the freestream 
velocity . The Reynolds number is defined as 0U 0 750Re U d   , where  is the 

kinematic viscosity. In the above equations  ,  u vu  is the instantaneous velocity field, 

p  is the non-dimensional pressure and  represents the non-dimensional time scaled by t

 0d U . 

The governing equations were solved in two-dimensional space and time using a 
parallel finite-volume code called MGLET (Manhart, 2001, [21]; Manhart et al, 2004, 
[22]) with the staggered Cartesian grid arrangements. The spatial derivatives were 
discretized by means of a 2nd-order central-difference scheme.  The time marching was 
carried out using a 3rd-order explicit Runge-Kutta scheme for the momentum equations 
in combination with an iterative SIP (Strong Implicit Procedure) solver for the Poisson 
equation. 

The bluff body (flat plate) was implemented on the Cartesian mesh by Immersed 
Boundary Method (IBM) [23]. In this method the non-slip condition was transformed 
from the solid body’s surfaces into internal boundary conditions at the nodes of the 
staggered grid by direct forcing. The rectangular inclined flat plate was represented by a 
mesh consisting of triangles. The internal boundary condition value had to be 
determined by interpolation. 
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2.2 Flow configuration and computational details 

With the Cartesian mesh and IBM a solid body surface with curvature is not 
smoothly represented. A flat plate’s surface is also rough when the plate is tilted with 
respect to the mesh. In the present simulation a computational domain with the plate 
immersed tilted to the structured grid by 30 degree was used (Case 1). For this case it is 
convenient to get the blockage ratio and the inflow velocity parallel to the streamwise 
mesh. To achieve the smooth result on the plate surfaces a case with the same plate 
immersed and overlapped on the grid was also simulated (Case 2). For the second case 
the angle of attack was achieved by totally different boundary implementations (see 
Table 2). Considering all these different characteristics, the two cases were simulated. 
The size of the computational domains in the streamwise ( x ) and cross-stream ( y ) 

direction and the position of plate were normalized by d , s shown in figure 1. 1d  is the 

projected length of the plate perpendicular to the main flow direction. All velocities 
were scaled by the uniform inflow velocity . The thickness of the plate was very 

small and equal to [15].  
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Table 2: Boundary conditions for the two different cases. 

Table 3 shows the various grid properties and domain sizes considered in this study. 
The time step size was set to 00.001d U  in both calculations, which kept the maximum 

convective CFL number below 0.3 on the finest grid. 
 

Case x
N ×

y
N  1

u d
,  x x   2

b t
,  y y min

x u

max
x  3d

max
x min

y b

max
y  4t

max
y  

Case 1 704×474 [5, 20] [8, 8] 0.01 0.22(0.04) 0.01 0.06(0.06) 
Case 2 768×855 [5, 20] [5, 15] 0.01 0.22(0.03) 0.01 0.12(0.02) 

1 
u

x  and 
d

x  are the upstream and downstream distance measured from the plate center respectively. 
2 

b
y  and  are the bottom and top widths measured from the plate center respectively. 

t
y

3 u

max
x  and d

max
x  are the maximum grid sizes upstream and downstream of the plate respectively. 

4 b

max
y  and  are the maximum grid sizes at the bottom and top of the plate respectively. t

max
y

Table 3: Summary of grid resolution and extent of computational domain. 
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(a) Case 1. 

   

(b) Case 2. 

Figure 1: Computational domain and mesh. 

3 RESULTS 

Comparisons were made between Case 1 and Case 2. 

3.1 Time-averaged flow variables 

Time-averaged statistical quantities were evaluated by sampling for 0200d U  time 

units. Each sample is taken every tenth time step for averaging. Figure 2 presents the 
time-averaged streamlines behind the inclined plate. The flow separates at the leading 
edge and forms a large clockwise rotating recirculation region on the leeward side of the 
plate (B). Whereas the trailing edge vortex resides upon the end of the plate (D). These 
two types of vortices form a stagnation point closer to the trailing edge (C). There is 
also a small anti-clockwise rotating recirculation region between the clockwise 
recirculation and the plate (A). The position of this small recirculation is attributed to 
the chosen attack angle.  

The different locations of and pressure at the characteristic points (A, B, C and D) 
shown in Fig. 2 in the two simulations are compared in Table 4. The positions were 
measured from the leading edge and scaled with the plate length d . Apparently these 
two simulations are quite close. This circumstance is also clearly visible in figure 3, 
which shows the time-averaged pressure contours and streamlines around the plate. 
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Figure 2: Mean flow field recirculation shape. 

 
 A B C D 

l d  0.3552 0.6805 0.8249 1.0856

h d  0.0501 0.2873 0.0 0.2217Case1 
2

0
p U -0.5465 -0.7027 -0.3283 -1.0736

l d  0.3340 0.6731 0.8263 1.0959

h d  0.0564 0.2887 0.0 0.2249Case2 
2

0
p U -0.5949 -0.7864 -0.5706 -1.1961

Table 4: Different positions and pressure at the points (A, B, C and D) in Fig.2. 

 

 

   
(a) Case 1.                                                                  (b) Case 2. 

Figure 3: Pressure contours and streamlines. 

The mean pressure coefficient is defined as 

2
01 2p

p p
C

U


                                                       (3) 

Where the reference pressure p  is taken from the pressure at the inflow and the bar 

means averaging in time. The distribution of pC  on the surface of the plate from the 

present two simulations is compared with the earliest experimental data in figure 4. The 
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pressure on the front surface of the plate compares well with the previous data. 
However, on the rear surface the pressure is relatively lower compared to the 
experiment and the difference is larger near the trailing edge both on the front and rear 
surface. This could be a 2D-simulation and Reynolds number effect. The vortex on the 
rear surface of the plate leads to a pronounced minimum close to the trailing side, which 
also could be a 2D-simulation effect as said before. The pressure in the large 
recirculation region is nearly constant. 

Comparing the present two simulations, the pressure is a little lower in the second 
case especially on the rear surface. This will cause higher drag and lift forces on the 
plate. Table 5 provides a comparison of integral quantities and frequency for the flat 
plate in the present simulations and 2D numerical results of Breuer and Jovicic (2001) 
[8]. The drag and lift forces are higher in the second case as expected because of the 
lower pressure which contribute to the main part in these two forces. Because the angle 
of attack and Reynolds number are different, the drag force is higher and the lift force is 
lower than Ref. [8]. 

Figure 5 shows the distribution of the friction coefficient  fC  along the plate for the 

time-averaged flow,  fC  is defined as 

2
01 2

w
fC

U




                                                      (4) 
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Figure 4: Pressure coefficient distribution on flat plate. 

 

 Re    1

L
C  2

D
C  3

St   4
St  

Case1 750 30° 1.2714 0.6874 0.3412 0.1706 
Case2 750 30° 1.3220 0.7191 0.3455 0.1728 

Breuer and Jovicic (2001) [8] 2.0×104 18° 1.69 0.57 0.45 0.139 
1  2

0
2

L L
C F U d  is the time-averaged lift coefficient of the plate, where 

L
F is the lift force. 

 2 2

0
2

D D
C F U d  is the time-averaged drag coefficient of the plate, where 

D
F is the drag force. 

and  4 
1 0

St fd U  are Strouhal number base on different length scales. 3 
0

St fd U

Table 5: Comparison of integral quantities and frequency for the flat plate. 
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Figure 5: Friction coefficient distribution on the flat plate (Case 2). 

The profiles of the tangential velocity component on the front and rear sides of the 
inclined plate are depicted in figure 6 for the time-averaged flow field. On the rear side 
of the plate the profile exhibits an upstream fluid flow along the plate except close to the 

trailing edge. This is consistent with the distribution of the friction coefficient fC  

shown in figure 5. Combining both figures it becomes clear that the fluid at the rear side 
of the plate move with a variable velocity towards the leading edge. As expected the 
flow is accelerated along the front side of the plate, and there is a stagnation point on the 
front side close to the leading edge. 

      

(a) Case 1.                                                                  (b) Case 2. 

Figure 6: Tangential velocity distribution on flat plate. 

3.2  Wake pattern and frequency analysis 

The vorticity fields both time-averaged and instantaneous are shown in figure 7. The 
red color denotes the clockwise rotation while the blue color means counter-clockwise 
rotation. As can be seen in figure 7(b) and (c), the vortices generated from the leading 
edge almost align in one line and decrease in strength (see figure 7(a)). The clockwise 
vortex separated from the leading edge is split into two parts where the second is 
attracted to the counter-clockwise vortex generated from the trailing edge. The vortex 
pair moves downstream and has a counter-clockwise rotation. When they reach the 
lowest position in the vertical direction, at 16 18x d   , the clockwise vortex is 
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approximately right under the counter-clockwise vortex. The vortex pair then moves 
upwards while they still rotate anti-clockwise. This vertical oscillating motion varies 
with the inclined angle of the plate. The lowest position may be different as the angle of 
attack changes (not shown here). 
 

 

 
(a) Mean vorticity. 

 
(b) Instantaneous vorticity from Case 1. 

 
(c) Instantaneous vorticity from Case 2. 

Figure 7: Mean and instantaneous vorticity in the wake. 

This phenomenon can also be seen from the mean vorticity field in figure 7(a). The 
time-averaged vorticity figure gives more clearly the vortex strength and position in the 
wake. 

The mean velocity profiles at different fixed x d  positions are presented in figure 8 
in order to compare the details of the two simulations. The streamwise velocity at the 
location 6x d   is very low since this position is very close to the recirculation zone. 
Because of the oscillating position of the vortex pairs, the low velocity region enlarges 
along the wake. At 18x d   this region is at its largest in the wake (can also be seen 
from figure 7(a)).The maximum streamwise velocity along the vortex pair side becomes 
higher before the vortex pair moves up again. The discrepancy of the mean streamwise 
velocity between the two simulations seems to be larger far away from the plate. This 
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tendency can also be seen from the mean streamwise velocity profile at the centerline of 
the plate as a function of x d  in figure 9(a). The mean cross-stream velocity shown in 
figure 9(b) does not show the same tendency. The boundary conditions setup in the two 
simulations could be the explanation for the different tendency. 
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Figure 8: Mean velocity profile at fixed x d positions. 
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Figure 9: Mean velocity at the centerline of the plate along the streamwise direction. 

The time evolution of the instantaneous velocity components  ,  u v  and the 

instantaneous pressure p  (not shown in the paper) were sampled along the two trailing 
vortices in the wake. Here the time trace of the streamwise velocity sampled at three 
different points (see point I, II and III in figure 7(b)) are shown in figure 10. The total 
sampling time was equal to 0200d U , which covers about 60 vortex shedding cycles. 

To enable quantitative comparisons the power spectral density (PSD) was obtained from 
the streamwise velocity time trace and the phase-space of velocity components was 
plotted. The plots in figure 10(a) are for the point II located in the upper leading edge 
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vortices area. The PSD figure and phase-space plot give clearly one frequency at 0.34 
which is consistent with aforementioned figures and the Strouhal number   in table 

5. The plots in figure 10(b) and (c) are for point I and III located in the lower trailing 
edge vortices area. There should be two main frequencies in this area, but because the 
vortex pairs rotate, it is difficult to capture two frequencies all along the vortex trace. 
Figure 10(b) gives one of these points (point I), whereas the point III in 10(c) has one 
main frequency even though it is located in the same vortex st
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(b) Point I: 8x d  , 7.5y d  . 
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(c) Point III: 18x d  , 6.8y d  . 

Figure 10: Left: streamwise velocity time history (only a portion of the total time-traces are shown here); 
Center: power spectrum density of the streamwise velocity, and; Right: phase-space plot of the velocity 

components  ,  u v  at different points in the wake. 

4 CONCLUSIONS 

The two-dimensional numerical simulations with different numerical 
implementations were used to capture the shedding characteristics of the wake behind a 
flat plate inclined at an angle of 30 degrees. The details in the results were compared 
and it turned out that the flows near the plate are quite consistent. The measured base 
pressure from experiment was relatively higher compared to the present calculations 
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especially at the rear side close to the trailing edge of the plate. The reason for this 
discrepancy may be due to the 2D-simulation effect and different Reynolds number 
considered in the present study and in Fage & Johansen (1927) [5]. A detailed analysis 
of the wake was presented. It was noticed that a clockwise vortex separated from the 
leading edge vortex was attracted to the main counter-clockwise vortex generated from 
the trailing edge and formed a vortex pair moving downstream while rotating. Almost 
all the results for Case 2, in which the plate was implemented aligned with the Cartesian 
grid lines, compared favorably with the results of the more straightforward 
implementation used in Case 1. The reason for the modest discrepancy in the far wake 
velocities could be due to the different boundary conditions adopted in the two 
simulations. The time trace of velocity component at different positions in the wake 
captured two types of shedding frequencies as expected. 
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