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Abstract. The work deals with the numerical solution of the 2D and 3D turbulent strat-
ified flows in atmospheric boundary layer over the “sinus hills”. Mathematical model
for the turbulent stratified flows in atmospheric boundary layer is the Boussinesq model
- Reynolds averaged Navier-Stokes equations (RANS) for incompressible turbulent flows
with addition of the density change equation. The artificial compressibility method and
the finite volume method have been used in all computed steady cases. Lax-Wendroff
scheme (MacCormack form) has been used to find the numerical solution and turbulence
was modeled by the Cebecci-Smith algebraic turbulence model. Computations have been
performed with Reynold’s number 108 that corresponds approximatelly to the upstream
velocity u∞ = 1.5 m

s
and with density range ρ ∈ [1.2; 1.1] kg

m3 .
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J. Šimonek, K. Kozel, Z. Jaňour

1 INTRODUCTION

The numerical solution of the 2D and 3D turbulent stratified flows in atmospheric
boundary layer over the “sinus hills” is introduced. Mathematical model for the turbu-
lent stratified flows in atmospheric boundary layer is the Boussinesq model - Reynolds
averaged Navier-Stokes equations (RANS) for incompressible turbulent flows with addi-
tion of the density change equation.

2 MATHEMATICAL MODEL

Reynolds averaged Navier-Stokes equations for 3D incompressible flows with addition
of the equation of density change (Boussinesq model) have been used as a mathematical
model for flows in atmospheric boundary layer:

ux + vy + wz = 0 (1)

ut + (u2 + p)x + (u · v)y + (u · w)z = ν · [(νtux)x + (νtuy)y + (νtuz)z] (2)

vt + (u · v)x + (v2 + p)y + (w · v)z = ν · [(νtvx)x + (νtvy)y + (νtvz)z] (3)

wt + (u · w)x + (v · w)y + (w2 + p)z = ν · [(νtwx)x + (νtwy)y + (νtwz)z]−
ρ

ρ0

g (4)

ρt + u · ρx + v · ρy + w · ρz = 0, (5)

where (u, v, w) is a velocity vector, p = P
ρ0

(P - static pressure, ρ0 - initial maximal

density), ρ - density, ν - laminar kinematic viscosity, νT - turbulent kinematic viscosity
computed by the Cebecci-Smith algebraic turbulence model and g - gravity acceleration.
Using artificial compressibility method, continuity equation is completed by term pt

β2 ,

β2 ∈ R+.
Density and pressure are changing depending on height (z-axis) as follows:

ρ∞(z) = −ρ0 − ρh
h

· z + ρ0 (6)

∂p∞
∂z

= −ρ∞(z)

ρ0

· g (7)

The ρinfty(z) (6) is the linear decreasing function of density and the relation (7) is the
hydrostatic equilibrium relation.
It is possible to consider p = p∞ + p′(x, y, z, t) and ρ = ρ∞ + ρ′(x, y, z, t), where the term
p∞ is the initial state of pressure, the term p′ is the pressure disturbance. The term ρ∞ is
the initial state of density and the term ρ′ is the density disturbance. If one substitutes
these terms and adds the artificial compressibility term to the RANS system: eqs. (1) -
(5), one obtains following system:
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p′t
β2

+ ux + vy + wz = 0 (8)

ut + (u2 + p′)x + (u · v)y + (u · w)z = ν · [(νtux)x + (νtuy)y + (νtuz)z] (9)

vt + (u · v)x + (v2 + p′)y + (w · v)z = ν · [(νtvx)x + (νtvy)y + (νtvz)z] (10)

wt + (u · w)x + (v · w)y + (w2 + p′)z = ν · [(νtwx)x + (νtwy)y + (νtwz)z]−
ρ′

ρ0

g (11)

ρt + u · ρx + v · ρy + w · ρz = 0, (12)

All solved cases have been solved using these substitutions.

Figure 1: 3D Computational domains

3 BOUNDARY CONDITIONS

Inlet boundary conditions has been set as follows:
u = u∞ = 1.0, v = v∞ = 0, w = w∞ = 0, ρ = ρ∞(z), where ρ∞(z) is a linear function
which is decreasing with increasing z:

ρ∞(z) = −ρ0 − ρh
h

· z + ρ0, z ∈ [0; h]

where ρ0 is a lower (maximal) density and ρh is a upper (minimal) density (both are
constants). Pressure change term p′ has been extrapolated.
Outlet boundary conditions: p′ = 0 and (u, v, w) and density ρ have been extrapo-
lated.
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Boundary conditions on the wall: u = 0, v = 0, w = 0, pressure perturbations and
density have been extrapolated on the wall.
Boundary conditions on the upper domain boundary: p′ = 0, ∂u

∂n
= 0, ∂v

∂n
=

0, ∂w
∂n

= 0, ρ = ρh
Boundary conditions on side-walls of the domain: symmetry boundary conditions
∂p′

∂n
= 0, (u, v, w) · ~n = 0, ∂ρ

∂n
= 0

4 NUMERICAL SOLUTION

In all cases the artificial compressibility method and the finite volume method have
been used on structured grid of quadrilateral (2D) and hexahedral (3D) cells (uniform in
x and y direction, refined near walls in z direction, 200x100x80 cells). Consider RANS
system: eq. (8) - (12) in a vector form:

Wt + Fx +Gy +Hz = (Rx + Sy + Tz) +K (13)

where:

W =

∥∥∥∥∥∥∥∥∥∥∥∥

p′

β2

u
v
w
ρ

∥∥∥∥∥∥∥∥∥∥∥∥
, F =

∥∥∥∥∥∥∥∥∥∥∥∥

u
u2 + p′

u · v
u · w
u · ρ

∥∥∥∥∥∥∥∥∥∥∥∥
, G =

∥∥∥∥∥∥∥∥∥∥∥∥

v
v · u
v2 + p′

v · w
v · ρ

∥∥∥∥∥∥∥∥∥∥∥∥
, H =

∥∥∥∥∥∥∥∥∥∥∥∥

w
w · u
w · v
w2 + p′

w · ρ

∥∥∥∥∥∥∥∥∥∥∥∥
,

R = ν

∥∥∥∥∥∥∥∥∥∥∥∥

0
νtux
νtvx
νtwx

0

∥∥∥∥∥∥∥∥∥∥∥∥
, S = ν

∥∥∥∥∥∥∥∥∥∥∥∥

0
νtuy
νtvy
νtwy

0

∥∥∥∥∥∥∥∥∥∥∥∥
, S = ν

∥∥∥∥∥∥∥∥∥∥∥∥

0
νtuz
νtvz
νtwz

0

∥∥∥∥∥∥∥∥∥∥∥∥
, K =

∥∥∥∥∥∥∥∥∥∥∥∥

0
0
0

− ρ′

ρ0
g

0

∥∥∥∥∥∥∥∥∥∥∥∥

(14)

Lax-Wendroff scheme (MacCormack form) has been used in following form:
Predictor step:

W
n+ 1

2
i = W n

i −
∆t

µ(Di)

(
6∑

k=1

(F̃ − R̃, G̃− S̃, H̃ − T̃ )ni,k · ~n0
i,k ·∆Si,k

)
+ ∆t ·Kn

i , (15)

if Dk is from Di in forward direction, then: F̃ = F n
k , G̃ = Gn

k , H̃ = Hn
k ,

else: F̃ = F n
i , G̃ = Gn

i , H̃ = Hn
i

Corrector step:

W n+1
i =

1

2
(W

n+ 1
2

i +W n
i )− ∆t

2µ(Di)

(
6∑

k=1

(F̃ − R̃, G̃− S̃, H̃ − T̃ )
n+ 1

2
i,k · ~n0

i,k ·∆Si,k
)

+
∆t

2
·Kn+ 1

2
i

(16)
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if Dk is from Di in backward direction, then: F̃ = F
n+ 1

2
k , G̃ = G

n+ 1
2

k , H̃ = H
n+ 1

2
k ,

else: F̃ = F
n+ 1

2
i , G̃ = G

n+ 1
2

i , H̃ = H
n+ 1

2
i . Viscous fluxes have been computed centrally.

The Jameson’s artificial dissipation has been used to stabilize numerical solution. The
Cebecci-Smith algebraic turbulence model [9] has been used to compute the turbulent
viscosity νt.

5 NUMERICAL RESULTS

Following cases of stratified turbulent flows in atmospheric boundary layer have been
computed. Authors consider flows over a geometry with the “sinus hill” (with the height
10% of its basis length) and with Re = 108 - figures show results with density change
ρ∞ ∈ [1.2; 1.1].

Figure 2: 2D Sin 10%; Velocity isolines [m
s ]

Figure 3: 2D Sin 10%; Residuals

5
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Figure 4: 3D Sin 10%; Half domain symmetrical solution - y-slice in the middle of the hill; Velocity
isolines [m

s ]

Figure 5: 3D Sin 10%; Half domain symmetrical solution - z-slice in the middle of the hill; Velocity
isolines [m

s ]

Figure 6: 3D Sin 10%; Full domain solution - y-slice in the middle of the hill; Velocity isolines [m
s ]
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Figure 7: 3D Sin 10%; Full domain solution - z-slice in the middle of the hill; Velocity isolines [m
s ]

Figure 8: 3D Sin 10%; Full domain solution; Residuals

Figures 2 and 4 show computed field using velocity isolines over 2D and 3D hill (only
in the plane y = 0) for half domain computational domain. Figure 5 shows results of
computation near ground computed in half symmetrical 3D domain. Figure 6 shows
results corresponding with figure 4 but computed in full 3D domain.

6 CONCLUSIONS

Results of the 2D and 3D incompressible turbulent stratified flows in atmospheric
boundary layer over the “10% sinus hill” with Reynolds numberRe = 108 that corresponds
approximatelly to the upstream velocity u∞ = 1.5 m

s
and with range of density change

ρ ∈ [1.2; 1.1] kg
m3 have been presented. As one can see in the figures 5 and 7 the 3D

solution is not symmetrical and therefore it is necessary to perform only the full domain
computations in the future. The future work will be to extend this model for more
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complex geometries in 3D and to make a comparison with other numerical methods and
mathematical models for variable density flows.
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REFERENCES
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