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Abstract. In this work we present the results of high order Discontinuous Galerkin (DG) solu-
tions of the unsteady one-dimensional ideal magnetohydrodynamic (MHD) equations. The work
focused on assessing a shock-capturing technique coupled with the high order DG space dis-
cretization of MHD problems with discontinuous solutions. The main goal of shock-capturing
techniques for high order DG methods is to achieve an optimal balance between sharp reso-
lution of discontinuities and control of numerical oscillations. The technique here employed
explicitly adds an artificial diffusion term to the DG discretized equations. The artificial vis-
cosity is variable within the elements and for high order approximation the technique allows
to achieve sub-cell resolution of discontinuities. The behavior of the shock-capturing technique
here presented has been assessed by computing several shock-tube problems, using different
numerical flux functions and for increasingly higher degree of the polynomial approximations.
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1 INTRODUCTION

Discontinuous Galerkin (DG) methods1-6 for the numerical solution of partial differential
equations have received much attention in the last years because of a number of properties,
which make them well suited for very diverse fields of applications. In fact DG methods are
both accurate and flexible, allowing high accuracy on arbitrary unstructured grids without com-
promising stability. Moreover, most DG discretizations are very compact thus allowing an easy
and efficient parallelization of codes. Such favorable characteristics are of interest also in the
field of magnetohydrodynamics (MHD).

Nowadays MHD is playing an important role both in advanced engineering applications and
in astrophysics research problems. MHD flows can be very complex and very often they can
develop several types of discontinuities. MHD problems are thus ideal to assess accuracy and
robustness properties of numerical methods.

In this work we present the results of several numerical experiments on unsteady one-dimensional
flows, governed by the ideal MHD equations, aimed at testing the effectiveness of a shock-
capturing technique, inspired by the paper of Jaffre et al.7, that has been developed for the Euler
and Navier-Stokes equations and is here extended to the MHD equations.

The shock-capturing term has the form of an artificial viscosity term explicitly added to the
high order DG space discretization of the governing equations. The shock-capturing technique
has been implemented in a 1D DG code and has been evaluated coupled with numerical flux
functions resulting from the solution of Riemann problems using a non-linear solver8,9 and the
linear HLL10 and Roe’s11 approximate solvers.

The DG space discretized ODE system of equations is integrated in time using a multi-
stage Runge-Kutta explicit method12. For the sake of efficiency, time integration of the shock-
capturing term requires some degree of “implicitness” in order to avoid a large time step reduc-
tion entailed by a fully explicit treatment of the artificial viscosity term.

The performance of the shock-capturing approach has ben tested by computing several
shock-tube problems involving both regular and non-regular waves13. The first test-case was
presented by Dai and Woodward8 and consists of seven regular waves, including fast shocks,
slow shocks, rotational and contact discontinuities. In the second test-case a switch-on fast
shock, which is a limiting case of a fast shock, forms and develops. The third test-case is one
of the special shock-tube problems proposed by Torrilhon14 to highlight the existence of non-
unique solutions for a special class of MHD Riemann problems. Here we have considered the
non-regular solution which involves a compound wave15,16 consisting of an over-compressive
shock and an attached rarefaction wave. Finally the fourth test-case is used to evaluate the
performance of the code for a high Mach number flow condition.

The test problems have been computed up to P8 polynomial approximation and the numerical
results have been compared with exact solutions, either computed by means of a regular wave
Riemann solver or provided to us by Torrilhon for the third non-regular wave problem.

In the following of the paper the governing equations are presented in Section 2. Section 3
is devoted to the numerical solution, including the DG space discretization, the shock-capturing
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technique, the numerical fluxes and the time integration. Numerical results are presented and
discussed in Section 4. Conclusions are finally given in Section 5.

2 GOVERNING EQUATIONS

We consider the one-dimensional ideal magnetohydrodynamic equations in the conservative
form,

∂u

∂t
+
∂F

∂x
= 0. (1)

The conservative variables u and the flux vector F are given by:

u =



ρ
ρu
ρv
ρw
By

Bz

ρE∗


, F =



ρu
ρu2 + p∗ −B2

x

ρuv −BxBy

ρuw −BxBz

Byu−Bxv
Bzu−Bxw

ρuH∗ −Bx(Bxu+Byv +Bzw)


. (2)

Here ρ is the fluid density, u, v and w are velocity components, Bx,By and Bz are magnetic
field components, p∗ is the magnetic pressure, E∗ is the magnetic energy per unit mass and H∗

is the magnetic enthalpy per unit mass. Magnetic pressure, energy and enthalpy are defined by:

p∗ = p+
B2

2
(3)

E∗ = e+
1

2
v2 +

B2

2ρ
(4)

H∗ = E∗ +
p∗

ρ
. (5)

We refer to p as the hydrodynamic pressure and to e as the internal energy per unit mass.
Assuming the fluid satisfies the equation of state of a perfect gas, the hydrodynamic pressure is
given by p = (γ − 1) ρe, where γ is the ratio of specific heats of the fluid, given by γ = cp/cv.
Since we are working in one dimension, the divergence free condition of the magnetic field
∇ ·B = 0 reduces to Bx= const.

The seven eigenvalues of the Jacobian matrix ∂F
∂u

, representing the characteristic velocities
of eq. (1), written in an increasing order are:

u− cf , u− ca, u− cs, u, u+ cs, u+ ca, u+ cf (6)

with:

c2
a = b2

x (7)

c2
f =

1

2

(
(a∗)2 +

√
(a∗)4 − 4a2b2

x

)
(8)

c2
s =

1

2

(
(a∗)2 −

√
(a∗)4 − 4a2b2

x

)
(9)
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and:

b =
B
√
ρ
, b = (bx, by, bz)

t (10)

(a∗)2 = a2 + b2, a2 = γ
p

ρ
(11)

The corresponding roots c±a ,c±s and c±f define the right (+) left (-) rotation (Alfven), slow and fast
magnetoacoustic velocities, respectively. Furthermore, u defines the entropy (contact) velocity.
The system (1) is hyperbolic if the eigenvalues are real and distinct. However, since cs ≤ ca ≤
cf the eigenvalues may coincide in some limiting case and the system becomes non-strictly
hyperbolic. In the hyperbolic case the solution of the Riemann problem for the MHD system is
governed by seven waves. Each wave can be either continuous or discontinuous, depending on
initial data, and it is associated with a characteristic velocity as follows,

u± cf : fast shock or rarefaction to the right/left (12)
u± ca : rotational discontinuity to the right/left (13)
u± cs : slow shock or rarefaction to the right/left (14)

u : contact discontinuity. (15)

Through the shock fronts there exist jumps in all the variables. The rotational discontinuity
produces the rotation of magnetic field and jumps in the transverse components of the flow
velocity, while in the contact discontinuity the jumps interest only density, temperature and
entropy. As suggested by Torrilhon these waves will be called regular waves in the following,
to distinguishing them from other ones that may arise because of the non-hyperbolicity of the
MHD equations and non-convexity of the flux function15.

3 NUMERICAL SOLUTION

3.1 DG Space Discretization

Multiplying eq. (1) by a vector-valued test function v and integrating by parts, we obtain the
weak formulation, with built in boundary condition treatment:∫

Ω

v · ∂u
∂t

dx−
∫

Ω

∇v : F (u) dx +

∫
∂Ω

(v ⊗ n) : F (ub) ds = 0 ∀v ∈ H1 (Ω) (16)

where ub is a boundary state, Ω is the domain with boundary ∂Ω, and n is the unit outward nor-
mal vector. To discretize in space, we define Vκ

h to be the space of discontinuous vector-valued
polynomials of degree κ on a subdivision Th of the domain into non-overlapping elements such
that Ω =

⋃
K∈Th K. Thus, the solution and test function space is defined by

Vκ
h =

{
v ∈ L2 (Ω) : v |K∈ Pκ, K ∈ Th

}
, (17)
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where Pκ is the space of polynomial functions of degree at most κ. The discrete problem then
takes the following form: find uh ∈ Vκ

h such that∑
KεTh

{∫
K

vh ·
∂uh
∂t

dx−
∫
K

∇vh : F (uh) dx

+

∫
∂K\∂Ω

(
v−h − v+

h

)
·Hi

(
u+
h ,u

−
h ,n

−) ds+

∫
∂K∩∂Ω

(vh ⊗ n) : F (ub) ds
}

= 0 (18)

for all vh ∈ Vκ
h, where Hi

(
u+
h ,u

−
h ,n

)
is a numerical flux function defined on interior faces.

Hi takes into account the possible discontinuities of uh at element interfaces. On interior edges
∂K\∂Ω, Hi depends on the elements interior state u+

h and on the neighbouring elements state
u−h . On boundary edges ∂K ∩ ∂Ω, ub is computed by combining the prescribed boundary data
with the Riemann invariants associated to outgoing characteristic lines.

3.2 Shock-capturing

The shock-capturing approach consists of adding to the DG discretized equations an artificial
viscosity term that aims at controlling the high-order modes of the numerical solution within
elements while preserving as much as possible the spatial resolution of discontinuities. The
shock-capturing term is local and active in every element, but the amount of artificial viscosity
is proportional to the (inviscid) residual of the DG space discretization and thus it is almost
negligible except than at locations of flow discontinuities. The shock-capturing term added to
eq. (18) reads ∑

KεTh

∫
K

ε
(
u±h ,uh

)
(∇uh · b) (∇vh · b) dx, (19)

with the ε coefficient and the pressure gradient unit vector defined by

ε
(
u±h ,uh

)
= Ch2

K

∣∣sp (u±h ,uh)∣∣+ |dp (uh)|
p(uh)

fp (uh) , b (uh) =
∇p (uh)

|∇p (uh) |+ ε
, (20)

and

sp
(
u±h ,uh

)
=
∑
i

∂p (uh)

∂uih
si
(
u±h
)
, dp (uh) =

∑
i

∂p (uh)

∂uih
(∇ · F (uh))i . (21)

The components si of the function s defined by the solution of the problem∫
K

vihsi
(
u±h
)

dx =

∫
∂K

vih
(
Hi

(
u+
h ,u

−
h ,n

−)− F (uh) · n−
)
i
ds. (22)

are actually the interface jumps between the numerical and internal inviscid flux components in
normal direction. The further factor fp (uh) in eq. (20) is a pressure sensor defined by

fp (uh) =
|∇p (uh)|
p (uh)

(
hK
κ

)
, (23)
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which improves resolution of contact and rotational discontinuities. The scaling of the dimen-
sion hK of the element K with degree of polynomial approximation, allows to tune the amount
of added artificial viscosity for different polynomial degrees using a single value of the user-
defined parameter C (C = 0.05 in all the following computations).

3.3 Numerical Fluxes

The numerical fluxes in eq. (18) have been computed by using three different Riemann
solvers, namely a non-linear Riemann solver, that treats fast and slow rarefactions as “rarefac-
tion shocks”8, and the Roe11 and HLL10 approximate solvers. Exact solutions used in the fol-
lowing comparisons have been computed by means of an exact Riemann solver8,9,17 in the case
of regular wave solutions. The exact solution of the problem involving a compound wave has
been provided to us by Torrilhon14. The three Riemann solvers employed for the evaluation of
the numerical fluxes have been selected as representative of the solvers commonly used in the
field of MHD. Moreover, this allowed to asses the behavior of the proposed shock-capturing
scheme coupled to different numerical flux functions.

3.4 Time Integration

The DG space discretized eq. (18), including the shock-capturing term of eq. (19), results in
the following system of equations

M (U)
dU
dt

+ R (U) + D (U)U = 0, (24)

where U and R are the vectors of solution degrees of freedom and of inviscid residuals. Using
orthonormal basis functions for the polynomial approximation of the conservative variables of
the governing equations, the mass matrix M (U) simply reduces to the identity matrix. Notice
that the discretized shock-capturing term has been written as the product of a block diagonal
matrix D (U) times the vector of solution DOFs. Each block of D couples the degrees of
freedom of the components of u and within one element such blocks are equal to each other. The
shock-capturing term is a diffusion-like term, typically subject to wild variations even within
one element and that can attain large values in very few elements of the computational grid.
Seeking to avoid any further time step restriction in the explicit time integration scheme, it is
advisable to employ some degree of “implicitness”for the time integration of this term. For this
purpose, eq. (24) is rewritten as

M (U)
dU
dt

+ R (U) + D (U) (U + dU) = 0, (25)

and this leads to
dU
dt

+ R̃ (U) = 0, (26)

where
R̃ (U) = [M (U) + D (U) dt]−1 (R (U) + D (U)U) . (27)

6



A. Nigro, C. De Bartolo, F. Bassi

Solution of system (26) is advanced in time by means of the following s-stage SSP Runge-
Kutta scheme12,

U(0) = Un,

U(i) = U(0) −∆t
i−1∑
k=0

ci,kR̃
(
U(k)

)
i = 1, 2, ..., s, (28)

Un+1 = U(s),

where i is the stage counter and ci,k are the coefficients of the ith stage. We observe that the ci,k
coefficients are related to the usual ai,k and bk Butcher coefficients as follows

ai,k = ci−1,k−1 k = 1, ..., i− 1; i = 2, ..., s,

bk = cs,k−1 k = 1, ..., s. (29)

For equally spaced grid points, the time step ∆t is computed by considering the classical
CFL stability condition entailed by the TVD Runge-Kutta schemes, i.e. CFL = 1/(2κ + 1).
Using SSP Runge-Kutta schemes with more stages for a given order of temporal discretization
it is possible to slightly improve the efficiency of the time integration.

4 RESULTS

In MHD the solution of the Riemann problem admits not only regular shocks and rar-
efactions but also switch-on fast shocks, switch-on slow rarefactions, switch-off slow shocks,
switch-off fast rarefactions. Furthermore, it is possible to obtain over-compressive shocks due
to the non-strict hyperbolicity of the MHD equations and non-convexity of the flux function15.
This means that the wave speeds of two different structures may coincide and that compound
structures consisting of an over-compressive shock and an attached rarefaction wave may arise.
In this respect, we remind that the non-linear Riemann solver implemented in the DG cannot
reproduce compound waves as it has been implemented for selecting regular waves only.

We present the performance of the technique for the control of oscillations by computing
several shock-tube problems. Table 1 summarizes the test cases considered for this purpose. The
TC1 test case is the Riemann problem designed by Dai and Woodward8 to cover the entire range
of MHD regular wave structures. To test the performance of the proposed shock-capturing
approach in a limiting case of the fast shock and in the case of non-regular waves, we will show
the numerical solutions for Riemann problems containing a switch-on fast shock (TC2) and a
compound structure (TC3). Finally, the TC4 Riemann problem is used to evaluate the code for
an high Mach number flow. For each test-case of table 1 we solve the one-dimensional MHD
equations in the x-direction for x ∈ [0, 1] with 200 equally spaced grid points using P3, P5, P8

polynomial approximations.
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Test-Case ρ p u v w By Bz Bx γ t

TC1-L 1.08 0.95 1.2 0.01 0.5 3.6/
√

4π 2/
√

4π
2/
√

4π 5/3 0.2
TC1-R 1 1 0 0 0 4/

√
4π 2/

√
4π

TC2-L 1 1 0 0 0 1 0
1 5/3 0.15

TC2-R 0.2 0.1 0 0 0 0.0001 0

TC3-L 1 1 0 0 0 1 0
1 5/3 0.05

TC3-R 0.2 0.2 0 0 0 cosπ sin π

TC4-L 1 1000 0 0 0 1 0
0 2 0.006

TC4-R 0.125 0.1 0 0 0 −1 0

Table 1: One-dimensional ideal MHD test cases.

The TC1 test case presented in the following has been investigated in grater detail in order
to highlight the behavior of the proposed shock-capturing technique for MHD regular wave
solutions. This initial-value problem involves seven discontinuities: a left-going fast shock, a
left-going rotational discontinuity, a left-going slow shock, a contact discontinuity, a right-going
slow shock, a right-going rotational discontinuity and a right-going fast shock.

For this test case, the figure 1 shows the numerical solution obtained with the various Rie-
mann solvers using P0 elements. As expected, the Roe scheme gives results very similar to that
of the Godunov scheme, whereas the HLL numerical flux provides poor solution of the slow
shock and of the contact discontinuity.

x

ρ

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Exact

HLL

x

ρ

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Exact

Roe

x

ρ

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Exact

Godunov

Figure 1: TC1 shock-tube problem for P0 polynomial approximation, 200 elements. Exact solution of density
(solid line) versus approximate solution (solid circle) computed by the HLL solver (left), the Roe solver (middle)
and the Godunov solver (right).
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Figure 2: TC1 shock-tube problem for P3 polynomial approximation, 200 elements. Density (top left), hydro-
dynamic pressure (top right), y-component of the magnetic field (bottom left) and x-component of the velocity
(bottom right). Exact solution (solid line) versus approximate solution computed by the HLL solver (open square),
the Roe solver (open triangle) and the Godunov solver (solid circle). In the plots average values within elements
are shown. In the zoomed regions 4 plotting points for each element are shown.

Figure 2 shows that the P3 average solutions obtained using different Riemann solvers are
very close to each other and differences become even smaller raising the polynomial degree.
We also observe that all the Riemann solvers are able to capture the discontinuity within one
element.
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Figure 3: TC1 shock-tube problem for P3 polynomial approximation, 200 elements. Post-shock oscillations of
density. Exact solution (solid line) versus approximate solution computed by the HLL solver (white square), the
Roe solver (gray triangle) and the Godunov solver (black circle). In the plots 4 plotting points for each element are
shown.

Unlike the averaged distribution of figure 2 the plots of the polynomial representation of the
density show some degree of oscillations in the flat regions away from discontinuities, as shown
in figure 3. Such oscillations are relatively small for the HLL and Godunov schemes, whilst the
Roe solver exhibits significant overshoots, undershoots and post-shock oscillations. In all cases
the post-shock oscillations reduce moving away from the shock.

The next two figures compare solutions of the TC1 test case for increasingly higher degrees
of polynomial approximation and using the HLL numerical flux.
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Figure 4: TC1 shock-tube problem, 200 elements. Density (top left), hydrodynamic pressure (top right), y-
component of the magnetic field (bottom left) and x-component of the velocity (bottom right). Exact solution
(solid line) versus P3 (open square), P5 (open triangle) and P8 (solid circle) solutions computed by the HLL
solver. In the plots average values within elements are shown. In the zoomed regions κ+1 plotting points for each
Pκ element are shown.

Figures 4 and 5 show that the resolution of the discontinuities improves and the post-shock
oscillations reduce raising the degree of polynomial approximation.
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Figure 5: TC1 shock-tube problem, 200 elements. Post-shock oscillations of density. Exact solution (solid line)
versus P3 (white square), P5 (gray triangle) and P8 (black circle) solutions computed by the HLL solver. In the
plots κ+ 1 plotting points for each Pκ element are shown.
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Some insight about the behavior of the artificial viscosity term can be gained by looking
at the magnitude of the shock-capturing coefficient for a discontinuity moving through one
element. Figures 6 and 7 show seven successive snapshots of the TC1 fast and slow right-going
shocks while the shock front approaches and passes through one element of the grid. These
figures highlight the local behavior of the artificial viscosity coefficient, which is activated just
around the front of the shocks. On the other hand, for contact and rotational discontinuities, for
which the pressure is continuous, the artificial viscosity is negligible, as shown in figure 8.

Figure 9 shows the numerical solutions of the other test-cases reported in table 1. The TC2
test-case (top row) involves a so called switch-on fast shock. This shock-tube problem consists
of a left-going fast rarefaction, a left-going slow rarefaction, a contact discontinuity, a right-
going slow shock and a right-going switch-on fast shock which turns on the magnetic field in
the post-shock region. The zoomed regions show that this wave structure is well captured by
the DG solution within one element with a very good control of oscillations. The TC3 test-case
(middle row) shows the formation of a so-called compound wave. This shock-tube problem
consists of a left-going fast rarefaction, a left-going compound, a contact discontinuity, a right-
going slow shock and a right-going fast rarefaction. In this case the DG code selects the non-
regular solution and the compound wave appears to be well resolved. The density exhibits
low overshoots and post-shock oscillations which are almost negligible for the y-component
of the magnetic field. The TC4 test-case (bottom row) is characterized by a strong expansion
that produced an high Mach number flow. This shock-tube problem involves a left-going fast
rarefaction, a tangential discontinuity, and a right-going fast shock. We note that the fast shock
is resolved within one element and the tangential discontinuity is approximated within a couple
of elements. The zoomed regions display around the head of the left-moving rarefaction wave
the numerical solution of the density and of the y-component of the magnetic field.

5 CONCLUSIONS

We have presented a shock-capturing technique coupled with the high order DG solution
of MHD problems with discontinuities. The performance of the proposed approach has been
assessed by computing fourth-, sixth- and ninth-order simulations of several shock-tube prob-
lems involving both regular and non-regular waves. Overall, the numerical results show that
all the considered wave structures are well reproduced. The shock-capturing technique proved
to be effective using the Godunov and HLL numerical fluxes and slightly less satisfactory for
the Roe’s approximate Riemann solver, which exhibited significant overshoots, undershoots
and post-shock oscillations. All the Riemann solvers are able to provide sub-cell resolution of
discontinuities for higher order approximations.
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Figure 9: TC2 (top), TC3 (middle) and TC4 (bottom) shock-tube problems, 200 elements. Density (left) and y-
component of the magnetic field (right). Exact solution (solid line) versus P3 (open square), P5 (open triangle) and
P8 (solid circle) solutions computed by the HLL solver. In the plots average values within elements are shown. In
the zoomed regions κ+ 1 plotting points for each Pκ element are shown.
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