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Abstract. A numerical methodology for the simulation of sediment transport is consid-
ered. The model is based on the shallow-water equations coupled with a sediment transport
equation for the morphodynamic, namely the Exner equation and the Grass model. The
aim of the present paper is to investigate the behavior of implicit linearized schemes in this
context. First, 1D problems are considered and then the approach is extended to 2D ones.
The equations are discretized in space through a finite-volume approach and second-order
accuracy is obtained through MUSCL reconstruction. The implicit linearized scheme is
derived by computing the Jacobian of the finite-volume fluxes using an automatic differ-
entiation tool. Second order accuracy in time is obtained through a two step Runge-Kutta
method for the explicit scheme and one or two iterations of Defect Correction for the im-
plicit one. The different time-advancing schemes are compared, both in terms of accuracy
and efficiency with different types of flow/bed interactions, namely strong, intermediate
and weak interaction. It is shown that, while the results are in good agreement for both the
explicit and implicit schemes, the implicit scheme is cost-effective for intermediate and
weak flow/bed interactions and, as a consequence, it turns out to be a good candidate to
simulate flows with sediment transport.
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1 Introduction

The design and validation of numerical methods for the simulation of bedload sediment
transport processes caused by the movement of a fluid in contact with the sediment layer
has a significant interest for environmental and engineering problems. A few examples
of such problems are beach profile changes due to severe climate waves, seabed response
to dredging procedures or imposed structures, harbor siltation or transport in gravel-bed
rivers.

The hydrodynamics part is usually modeled through the classical shallow-water equa-
tions coupled with an additional equation modeling the morphodynamical component.
This last equation is usually a continuity or Exner equation, expressing the conservation
of the sediment volume, in which the solid transport discharge is provided by a closure
model. Many different models of solid transport discharge are available in the literature
(see, e.g., [1] for a review). As a first step, the Grass equation [2] is considered herein,
which is one of the most popular and simple models.

A huge amount of work has been done in the last decades to develop numerical methods
for the simulation of the previous system of equations (see, e.g., the references in [1, 3, 4]).
The treatment of source terms and of the bed-load fluxes has received the largest attention.
Indeed, a well known problem is that shallow water equations on non-flat topography have
steady-state solutions in which the flux gradients are non-zero but are exactly balanced
by the source terms. Standard numerical methods for the discretization of conservation
laws may fail in correctly reproducing this balance (C-property, see e.g. [5]).

On the other hand, in shallow-water problems, time advancing has received much less
attention and it is usually carried out by explicit schemes. The focus of the present paper
is on the comparison between explicit and implicit schemes in the simulation of coupled
shallow-water equations and sediment transport. Indeed, if the interaction of the water
flow with the mobile bed is weak, the characteristic time scales of the flow and of the
sediment transport can be very different introducing time stiffness in the global problem.
For these cases, the stability properties of explicit schemes may significantly be deterio-
rated and, hence, it can be advantageous to use implicit schemes. Implicit schemes might
also be useful if morphodynamic models more complex than the Exner/Grass one, which
lead to a more stiff evolution of the bed (see e.g. [1]), are used. On the other hand, since
the considered problems are unsteady, attention must be paid for implicit schemes in the
choice of the time step. Indeed, a too large time step could deteriorate the accuracy of
the results and one issue is to investigate whether and for which conditions the use of
implicit schemes is really convenient from a computational viewpoint. A first investi-
gation of this issue is provided in the present paper for 1D and 2D sediment-transport
problems, involving different rates of bedload/water-flow interaction. Another difficulty
with implicit schemes is that, in order to avoid the solution of a nonlinear system at each
time step, the numerical fluxes must be linearized in time and this is classically done via
differentiation by computing the Jacobian of the fluxes with respect to the flow variables.
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Nevertheless, it is not always possible nor convenient to exactly compute the Jacobian
matrices, because it is not unusual to have some lack of differentiability of the numerical
flux functions or the computation may be complex for some schemes, as e.g. those involv-
ing projector-corrector stages. In order to overcome these difficulties, we use an automatic
differentiation tool (Tapenade, [6], http://www-sop.inria.fr/tropics/). Our starting point
was a numerical scheme developed and validated for the numerical simulation of sediment
transport problems, in which the equations are discretized in space through a finite-volume
approach and a non-homogeneous Riemann solver on unstructured grids [4]. The orig-
inal version of the scheme was explicit, involving two stages (predictor and corrector);
MUSCL reconstruction and a two-step Runge-Kutta time-integration method were used
to obtain second-order accuracy in space and time respectively. Starting from this scheme,
an implicit version is derived herein by computing the Jacobian matrices of the first-order
accurate numerical fluxes by the previously mentioned automatic differentiation tool. A
defect-correction approach [7], which consists in iteratively solving linear systems involv-
ing the 1st-order flux Jacobians, is finally used to obtain second-order accuracy (both in
time and space) at limited computational costs. Note that automatic differentiation to-
gether with the defect-correct approach allow the numerical method to be easily adapted
to changes in the physical model, such as for instance the use of different models for the
solid transport discharge.

As previously mentioned, the accuracy and efficiency of the implicit and explicit ver-
sions of the numerical method are compared in 1D and 2D coupled water-flow/sediment-
transport problems.

2 Physical Model

The physical model used in this work consists in the well known shallow-water equations
coupled with an additional equation to describe the transport of sediment. Neglecting
the wind effects, Coriolis forces and friction losses the 2D shallow water equations may
be written in the following conservative form:

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0

∂hu

∂t
+

∂

∂x

(
hu2 +

1

2
gh2

)
+

∂

∂y
(huv) = −gh∂Z

∂x

∂hv

∂t
+

∂

∂x
(huv) +

∂

∂y

(
hv2 +

1

2
gh2

)
= −gh∂Z

∂y

(1)

where x and y are the spatial coordinates, t is the time, h is the height of the flow above
the bottom Z, g is acceleration of gravity and u and v are the velocity components in the
x and y directions. In the standard shallow-water formulation the bottom is a function of
space only, that is Z = Z(x, y). To include the effect of sediment transport an additional
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equation which describes the time evolution of the bed level is required. In this work we
use the Exner equation, a well-known and a common choice for this kind of works:

(1− p) ∂Z
∂t

+
∂Qx

∂x
+
∂Qy

∂y
= 0 (2)

where p is the (constant) sediment porosity and Qx and Qy are the bed-load sediment
transport fluxes in the x and y directions. Many different formulations are possible for
the definition of these fluxes [1]: for the sake of simplicity in this work we restrict our
attention to the Grass model [2]:

Qx = Au
(
u2 + v2

)m−1
2 , Qy = Av

(
u2 + v2

)m−1
2 (3)

where A and 1 ≤ m ≤ 4 are experimental constants depending on the particular problem
under consideration.

3 Numerical Method

The numerical method proposed in this work to discretize in space the system of
equations (1)-(3) is a finite-volume approach, applicable to unstructured grids. For the
sake of simplicity we rewrite the system (1)-(3) in the form:

∂W

∂t
+
∂F(W)

∂x
+

G(W)

∂y
= S(W) (4)

where W, F(W), G(W) and S(W) are defined as follows:

W =


h
hu
hv
Z

 , S(W) =



0

−gh∂Z
∂x

−gh∂Z
∂y

0


, (5)

F(W) =


hu

hu2 +
1

2
gh2

huv
Qx

1− p

 , G(W) =


hv
huv

hv2 +
1

2
gh2

Qy

1− p

 , (6)

Starting from (4), a first-order general finite-volume discretization is obtained:

Wn+1
i −Wn

i

∆t
= − 1

|Vi|
∑
j∈N(i)

∫
Γij

F(Wn∗ ,n)dσ +
1

|Vi|

∫
Vi

S(Wn∗)dV (7)
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where N(i) is the set of neighbouring cells of the ith cell, Wn
i is an average value of the

solution W in the ith cell at time tn, |Vi| is the area of the cell, Γij is the interface between
cell i and j and n = (nx, ny) denotes the unit vector normal to Γij. The finite volume
discretization (7) is complete once a definition for the flux function F at the cell interfaces
is given. Finally the time index n∗ can be chosen to take the value n or n + 1: the first
choice corresponds to an explicit time scheme, the second one to an implicit scheme.

3.1 Explicit time advancing

In this work we consider the SRNH (Non-Homogeneous Riemann Solver) scheme in-
troduced in [3]. Here we give only a brief summary of the main characteristics of the
scheme, for a complete description of the numerical method we refer to [3, 4]. The scheme
is composed by a predictor and a corrector stage: in the predictor stage an averaged state
Un
ij is computed, then this predicted state is used in the corrector stage to update the

solution.
The predictor stage is based on primitive variables projected on the normal and tan-

gential directions with respect to the cell interface (η and τ respectively). Hence, by
defining

uη = uηx + vηy, uτ = −uηy + vηx (8)

and assuming no space variation in the τ direction, it is possible to reformulate the system
(4) as follows:

∂U

∂t
+ Aη(U)

∂U

∂η
= 0 (9)

where

U =


h
uη
uτ
Z

 , Aη(U) =


uη h 0 0
g uη 0 g
0 0 uη 0
0 Aξ(3u2

η + u2
τ ) 2Aξuηuτ 0

 (10)

To complete the description of the SNRH scheme, it is necessary to introduce the sign
matrix and the Roe averaged state. The sign matrix is defined as:

sgn
[
Aη(U)

]
= R(U)sgn

[
Λ(U)

]
R−1(U) (11)

where Λ(U) is the diagonal matrix of eigenvalues of Aη(U), andR(U) is the corresponding
right-eigenvector matrix. Uij is the Roe averaged state, defined as:
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Uij =



hi + hj
2

uη,i
√
hi + uη,j

√
hj√

hi +
√
hj

uτ,i
√
hi + uτ,j

√
hj√

hi +
√
hj

Zi + Zj
2


(12)

The predictor and corrector stages of the explicit SRNH scheme are then formulated as
follows:

Un
ij =

1

2

(
Un
i + Un

j

)
− 1

2
sgn

[
Aη(Uij)

] (
Un
j −Un

i

)
Wn+1

i −Wn
i

∆t
= − 1

|Vi|
∑
j∈N(i)

F(Wn
ij,nij)|Γij|+ Sni (13)

where Sni is the discretization of the source term. The two equations (13) are coupled
because Wn

ij is obtained from Un
ij by inverting Eq. (8). In order to satisfy the C-property

[5] the approximation of the source term is defined as follows:

Sni =



0

−ghnx,i
∑
j∈N(i)

Zn
ijnx,ij|Γij|

−ghny,i
∑
j∈N(i)

Zn
ijny,ij|Γij|

0
0


(14)

with

h
n

x,i =
1

2

∑
j∈N(i)

(
hnij
)2
nx,ij|Γij|∑

j∈N(i)

hnijnx,ij|Γij|
, h

n

y,i =
1

2

∑
j∈N(i)

(
hnij
)2
ny,ij|Γij|∑

j∈N(i)

hnijny,ij|Γij|
(15)

For additional details we refer the interested reader to [8, 9].
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3.2 Implicit time advancing

To switch from an explicit scheme to an implicit one it is sufficient, from a theoretical
point of view, to compute the quantities F(Wn+1

ij ,nij) and Sn+1
i instead of F(Wn

ij,nij)
and Sni . However, from a practical point of view this would require the solution of a large
non-linear system of equations at each time step. The computational cost for this opera-
tion is in general not affordable in practical applications and generally greatly overcomes
any advantage that an implicit scheme could have with respect to its explicit counterpart.
A common technique to overcome this difficulty is to linearize the numerical scheme, that
is to find an approximation of Fn+1

ij = F(Wn+1
ij ,nij) and Sn+1

i in the form:

∆nFij ' D1,ij∆
nWi +D2,ij∆

nWj, ∆nSi '
∑
jεN̄(i)

D3,ij∆
nWj (16)

where ∆n(·) = (·)n+1−(·)n and N̄(i) = N(i)∪{i}. Using this approximation, the following
linear system must be solved at each time step:

Wn+1
i −Wn

i

∆t
+

1

|Vi|
∑
j∈N(i)

(D1,ij∆
nWi +D2,ij∆

nWj)−
∑
jεN̄(i)

D3,ij∆
nWj

= − 1

|Vi|
∑
j∈N(i)

F(Wn
ij,nij)|Γij|+ Sni (17)

The implicit linearized scheme is completely defined once a suitable definition for the
matrices D1,ij, D2,ij, D3,ij is given. If the flux function and the source term are differen-
tiable, a common choice is to use the Jacobian matrices, hence:

D1,ij '
∂F(Wij,nij)

∂Wi

∣∣∣∣
n

D2,ij '
∂F(Wij,nij)

∂Wj

∣∣∣∣
n

D3,ij '
∂Si
∂Wj

∣∣∣∣
n

(18)

Nevertheless, it is not always possible nor convenient to exactly compute the Jacobian
matrices. In fact, it is not unusual to have some lack of differentiability of the numerical
flux functions. Furthermore the explicit scheme (13) is composed by a predictor and a
corrector stage and this significantly increases the difficulty in using linearization (18).
This problem has been solved herein through the use of the automatic differentiation soft-
ware Tapenade [6]. The operational principle of an automatic differentiation software is as
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follows: given the source code of a routine which computes the function y = F (x), the au-
tomatic differentiation software generates a new source code which compute the analytical
derivative of the original program. In practice each time the original program performs
some operation, the differentiated program performs additional operations dealing with
the differential values. For example, if the original program, at some time executes the
following instruction on variables a, b, c:

a = b · c (19)

then the differentiated program computes also the differentials da, db, dc of these vari-
able [6]:

da = db · c+ b · dc (20)

Through an automatic differentiation software it is possible to quickly implement an
implicit linearized scheme of the form (17), once a routine which computes the explicit
flux function is available.

3.3 Extension to second order accuracy

The extension to second-order accuracy in space can be achieved by using a classical
MUSCL technique [10], in which the flux function is computed by using the extrapolated
variable values at the cell interface:

Wn
ij = Wn

i +
1

2
∇Wi · dij, Wn

ji = Wn
j −

1

2
∇Wj · dij (21)

where dij is the vector joining the ith node with the jth one and∇Wi is the cell gradient
evaluated as in [11]. Note that in the computation of ∇W we incorporate the Minmod
slope limiter in order to obtain a TVD scheme.

For the explicit scheme, second-order accuracy in time is achieved through a two-step
Runge-Kutta scheme for time advancing.

Finally, for the implicit case, it is possible to obtain a space and time second-order
accurate formulation by considering the MUSCL technique for space as previously defined
and a second-order backward differentiation formula in time:

|Vi|
3Wn+1

i − 4Wn
i + Wn−1

i

2∆t
+
∑
j∈N(i)

∆n[F2]ij −∆n[S2]i = −
∑
j∈N(i)

[F2]nij + [S2]ni (22)

where F2 and S2 are the second-order accurate numerical flux and source terms com-
puted as previously described. Similarly to the 1st-order case, a linearization of ∆nF2 and
S2 must be carried out in order to avoid the solution of a nonlinear system at each time
step. However, the linearization for the second-order accurate fluxes and the solution of
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the resulting linear system implies significant computational costs and memory require-
ments. Thus, a defect-correction technique [7] is used here, which consists in iteratively
solving simpler problems obtained, just considering the same linearization as used for the
1st-order scheme. The defect-correction iterations write as:

W0 = Wn

Bi,si ∆sWi +
∑
j∈N(i)

Bi,sj ∆sWj = Csi s = 0, · · · , r − 1

Wn+1 =Wr

(23)

in which: 

Bi,si =
3|Vi|
2∆t

I +
∑
j∈N(i)

D1,ij(Ws
i ,Ws

j )−D3,ii(S
s
i )

Bi,sj = D2,ij(Ws
i ,Ws

j )−D3,ij(S
s
i )

Csi = −

 |Vi|
2∆t

(3Ws
i − 4Wn

i + Wn−1
i ) +

∑
j∈N(i)

[F2]sij − [S2]si


(24)

D1,ij, D2,ij, D3,ij being the generic matrices of the approximation (16); r is typically
chosen equal to 2. Indeed, it can be shown [7, 12] that only one defect-correction iteration
is theoretically needed to reach a second-order accuracy while few additional iterations
(one or two) can improve the robustness.

4 One-dimensional numerical experiments

The first numerical experiment is the one dimensional test-case proposed in [4]. It
is a sediment transport problem in a channel of length l = 1000m. The initial bottom
topography is given by a hump shape function, that is:

Z(0, x) =


sin2

(
(x− 300)π

200

)
if 300 ≤ x ≤ 500

0 elsewhere

(25)

To generate the initial condition for the flow height and velocity field, we first simulated
a problem without bed evolution. The initial condition for this standard shallow-water
problem is:

h(0, x) = 10− Z(0, x), u(0, x) =
10

h(0, x)
(26)
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in which all the variables are in SI units. Starting from this condition the simulation
has been run until a steady state has been reached. The obtained field has then been
used as the initial condition for all the simulations with sediment transport. We compare
the results between first and second order schemes, both explicit and implicit, in terms
of accuracy and computational costs. Three sets of simulations have been carried out,
characterized by A = 0.001, 0.1, 1 respectively, A being a free parameter in the Grass
model (3). The first value corresponds to a slow interaction between the flow and the
bed-load, the last to a fast interaction, and the second value to an intermediate case. In
all cases the computational domain is discretized in 100 uniform cells. The simulations
have been carried out for 238000, 2380 and 238 secs for A = 0.001, A = 0.1 and A = 1
respectively. All the results and CPU times shown in the following are at the final instant
of each simulation. All the 1D simulations have been carried out on a laptop having a
AMD 3000+ processor with 2Gb RAM and only one defect-correction iteration has been
used.

4.1 Slow interaction between bed-load and water flow

Figures 1a and 1b show a comparison of the results obtained by means of the explicit
scheme at CFL = 0.8 with those of the implicit scheme CFL = 100, both for 1st and
2nd-order accuracy. There is practically no difference between the solutions obtained with
the implicit and explicit schemes, while the results obtained at first-order of accuracy
significantly differ from the second-order ones. As for the efficiency, the implicit scheme
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Figure 1: Comparison of the results of the explicit and implicit schemes, for first and second-order of
accuracy: A =10−3; (left) height, (right) bottom.

seems to be unconditionally stable: the CFL has been increased up to 105 while obtaining
stable solutions. However, the accuracy of the results obviously decreases if the time step
is too large. The results obtained with the implicit scheme at different values of the
CFL are compared in Fig 2. In this case of slow interaction between bed-load and water
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flow, the quality of the results for the implicit scheme is not significantly deteriorated
up to a CFL number of 1000. As for computational costs, Tab. 1 shows that already
at CFL = 100 the gain in CPU time obtained with the implicit scheme is large, both
at first and second-order of accuracy. Note also that in this case, in which only one
defect-correction iteration is made, the CPU gain obtained with the implicit scheme is
significantly larger for second-order accuracy.
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Figure 2: Bottom height obtained with the explicit scheme at CFL 0.8 and with the implicit one at
different values of CFL, A =10−3, first-order (left) and second-order (right) of accuracy.

Explicit, CFL 0.8 Implicit, CFL 100

1st order 2nd order 1st order 2nd order

43s 63.7s 2.2s 2.4s

Table 1: CPU time required (seconds), A =10−3.

4.2 Intermediate speed of interaction between bed-load and water flow

Figures 3a and 3b show a comparison of the results obtained by means of the explicit
scheme at CFL = 0.8 with those of the implicit scheme at CFL = 10, both for 1st and
2nd-order accuracy. As for the previous case there is practically no difference between
the solutions obtained with the implicit and explicit schemes, while the results obtained
at first-order of accuracy significantly differ from the second-order ones. Also in this
case, the implicit scheme seems to be unconditionally stable: the CFL has been increased
up to 104 (only 3 iterations to complete the simulation). The results obtained with the
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Figure 3: Comparison of the results of the explicit and implicit schemes, for first and second-order of
accuracy: A =10−1; (left) height, (right) bottom.
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Figure 4: Bottom height obtained with the explicit scheme at CFL 0.8 and with the implicit one at
different values of CFL, A =10−1, first-order (left) and second-order (right) of accuracy.

implicit scheme at different values of the CFL are compared in Fig 4. In this case of
intermediate interaction between bed-load and water flow, the quality of the results for
the implicit scheme is not affected up to a CFL number of 100. As for computational
costs, Tab. 2 shows that at CFL = 100 there is a gain in CPU time obtained with the
implicit scheme, both at first and second-order of accuracy even if it is not as large as the
one in the previous case.

4.3 Fast interaction bed-load/water flow

Figures 5a and 5b show a comparison of the results obtained by means of the explicit
scheme at CFL = 0.8 with those of the implicit scheme CFL = 1, both for 1st and
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Explicit, CFL 0.8 Implicit, CFL 100

1st order 2nd order 1st order 2nd order

1.3s 1.7s 0.6s 0.7s

Table 2: CPU time (seconds) for the Shallow Water equations with A =10−1.

2nd-order accuracy. As for the previous case there is no difference between the solutions
obtained with the implicit and explicit schemes.
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Figure 5: Comparison of the results of the explicit and implicit schemes, for first and second-order of
accuracy: A =1; (a) height, (b) bottom.

In this case of fast interaction between bed-load and water flow, the quality of the
results for the implicit scheme imposes a maximum CFL number equal to 1, although
the implicit scheme seems again to be unconditionally stable. As a consequence in this
test case the computational cost of the implicit scheme is larger than for the explicit one,
both at first and second order of accuracy, as it is shown in Tab. 3. Summarizing, the

Explicit, CFL 0.8 Implicit, CFL 1

1st order 2nd order 1st order 2nd order

0.13s 0.2s 0.46s 0.52s

Table 3: CPU Time (seconds), A =1.
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implicit scheme seems to be unconditionally stable in all the considered cases and the
CFL limitation to avoid loss of accuracy is roughly inversely proportional to A.

5 2D Results

The 2D test case considered herein is the one proposed in [4]. The initial bottom
topography is defined as follows:

Z(0, x) =


sin2

(
(x− 300)π

200

)
sin2

(
(y − 400)π

200

)
if (x, y) ∈ Qh

0 elsewhere

(27)

where Qh = [300, 500] × [400, 600]. The computational domain is a rectangle of length
6000×1400 m2. Dirichlet boundary conditions are imposed for velocity at the inlet, while
at the outlet characteristic based conditions are used. Finally, free-slip is imposed on
the lateral boundaries. As in the 1D simulations, in order to compute a suitable initial
condition for the sediment transport problem, we first solved the standard shallow-water
problem with constant bottom and the following initial condition:

h(0, x, y) = 10− Z(0, x, y) u(0, x, y) =
10

h(0, x, y)
(28)

Once a steady condition is reached, this field is used as initial condition for the sediment
transport problem. The used grids are divided into two main regions: a square region of
1000× 1000 meters where the mesh is refined in order to capture the main characteristic
of the flow field, and an external region in which a coarse mesh is used, in order to limit
the influence of boundary conditions. The main characteristics of the grids used in our
simulations are reported in table 4, while a snapshot of the coarser grid GR1 is shown in
figure 6.

Grid Nodes Elements lr

GR1 18265 36112 10
GR2 29191 57924 5

Table 4: Main characteristics of the grids used in the simulations, lr is the dimension of the elements in
the refined region.

The 2D numerical experiments correspond to a slow bed-load/flow interaction (A =
10−3). The initial conditions are shown in figure 7 on grid GR1. It has been found that
for this value of the parameter A the implicit scheme seems to be stable for CFL numbers
up to 100, while the explicit simulations reach a maximum CFL number of 0.8. Figure 8
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Figure 6: Grid GR1: global view (left) and zoom of the refined region(right)

Figure 7: Initial conditions on grid GR1, from left to right and from top to bottom: height of the flow,
bottom, and the two components of the velocity

shows a comparison of the results obtained by the implicit and the explicit schemes after a
time of 20 hours for the two different grids. All the 2D results shown herein are 2nd-order
accurate. As in the 1D case there is practically no difference between the results obtained
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on the same grid by the implicit and explicit schemes. The solutions are also in good
agreement with the results in [4].

Figure 8: Comparison of the results after 20 hours of simulation between the explicit (left) and implicit
(right) schemes: top grid GR1, bottom GR2

The CPU time required by the simulations is shown in Tab. 5. The simulations have
been carried out on a PC having an Intel Xeon 3.06 GHz processor with 2GB of RAM.
The CPU times in Tab. 5 only give a relative comparison between the schemes, while
their values are only approximate since the computer was not completely dedicated to
the task. Note that all the 2D implicit simulations have been run with two iterations of
defect correction. The CPU time required by the explicit scheme in this case is clearly
larger than the corresponding time required by the implicit scheme. Note also that with
only one Defect correction iteration the implicit scheme does not appear to be stable for
the CFL value of 100. We are currently investigating whether a further increment of
the number of Defect Correction iterations can further improve the stability range of the
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Explicit Implicit
GR1 ' 24 h ' 4 h
GR2 ' 50 h ' 8 h

Table 5: CPU time required by the numerical simulations

implicit scheme. Also the influence of different methods of solution for the linear system
associated to the implicit scheme could be of interest.

6 Concluding remarks

The numerical simulation of sediment transport problems has been considered. The
problem has been modeled through the shallow-water equations coupled with the Exner
equation to describe the time evolution of the bed level. The Grass model has been
used for the sediment transport. The governing equations have been discretized by using
a finite-volume method together with the SRHN predictor-corrector scheme. Starting
from the explicit version, a linearized implicit scheme has been built, in which the flux
Jacobians are computed through automatic differentiation. This allowed the complexity
of the analytical differentiation of the predictor-corrector scheme to be avoided. Second-
order accuracy in space and time has been obtained through MUSCL reconstruction
together with a defect-correction approach.

The focus of the present paper was on the comparison between implicit and explicit
schemes, in terms of accuracy and computational requirements. 1D and 2D test cases have
been considered. The 1D cases are characterized by different rates of interaction between
the bed and the water flow, while the 2D numerical experiments have been carried out
for a slow interaction, which a-priori is the most favorable case for implicit schemes. In
the 1D simulations, the implicit method was found to run with a virtually unlimited CFL
number without stability problems. However, to avoid loss of accuracy, the CFL number
of the implicit scheme must be reduced to a value roughly inversely proportional to the
velocity of the interaction between the flow and the bed-load. Despite this limitation, the
implicit code has been found to be computationally more efficient than the explicit one for
slow and intermediate rates of the interaction between the bed and the flow. The 2D tests
seem to confirm these results, at least for a slow bedload/water-flow interaction, since the
implicit code has been found to be significantly cheaper than its explicit counterpart and
the results obtained on the same grid are practically the same. However, to better assess
the capabilities of the implicit scheme in 2D, further investigations are ongoing.
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