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Abstract:  A wide class of mass transfer problems is governed by the combined effect of 

convection, diffusion and reaction (CDR) processes. The finite element method using 

the standard Bubnov Galerkin method based on linear elements is widely applied for 

diffusion-dominated problems where the method produces accurate results. However, at 

high Péclet numbers of transport problems, where the convection process dominates, 

this scheme gives rise to numerical oscillations in the solution which do not coincide 

with the physical phenomena. As a remedy, the high order finite element method is 

applied for CDR problems in this paper. Two numerical examples are taken as test 

cases to illustrate the capability of the high order finite element method of suppressing 

residual oscillations. An error convergence study is also presented to show the different 

characteristics of the convergence of h-refinement and p-refinement. 
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1 INTRODUCTION 

In groundwater flow, the distribution of a substance which is fully dissolved in the 

medium can be affected by three factors in the transportation: convection, diffusion and 

reaction. It is well known that pure diffusion flow problems can be accurately solved by 

the standard Bubnov Galerkin finite element method. However, when the convection 

behaviour of the flow becomes dominant, the finite element method using the standard 

Bubnov Galerkin scheme based on linear elements exhibits numerical oscillations in the 

solution. The underlying reason is that the inclusion of the convective term in the 

stiffness matrix gives rise to complex eigenvalues of the stiffness matrix, which 

mathematically contributes an oscillation component to the solution.  

One effective stabilisation-scheme proposed to prevent the numerical oscillation is the 

SUPG (Streamline-upwind Petro-Galerkin) [2] method. The SUPG method can 

eliminate the oscillation in the solution by introducing the modified weighting function 

in the equation, being different from the unknown function. The main complexity of this 

method is to model the perturbation terms – an additional numerical diffusivity – to 

enhance the numerical stability. 

In this paper, a numerical study of the steady-state distribution of a substance is 

presented with higher order finite elements using the standard Bubnov Galerkin method. 

The simplicity of forming weighting functions benefiting from the standard Bubnov 

Galerkin method is maintained and the oscillation of the solution is reduced by 

increasing the polynomial degree of the shape functions. In contrast to h-FEM, where 

the accuracy in the solution is improved by the refinement of the mesh, the high order 

finite element method (also called p-FEM) achieves the convergence of the unknowns 

by increasing the order of shape functions for a fixed mesh. This method is also 

discussed in the book of Donea and Huerta [3] in comparison with h-FEM. In this book, 

quadratic elements are applied for an one-dimensional convection dominated problem 

and the conclusion is “…as the Péclet number is increased beyond unity, the solution 

has a boundary layer, which cannot be resolved by the standard Bubnov Galerkin 

method…”, which is also a common perception. This statement is further discussed in 

this paper, and the possibility of utilising the standard Bubnov Galerkin method is 

pointed out. 

2 MATHEMATICAL MODEL 

The transport equation of the convection-diffusion-reaction problem is derived based on 

the mass conservation law in fluid dynamics. Accordingly, for a steady-state problem, a 

substance in a control volume is conservative by the balance between the amount of the 

substance entering and leaving the control volume and the contributions from the source 

or the sink of that substance. The amount of the substance entering and leaving a control 

volume, which is called flux, is composed of convective flux, transported by the flow, 

and diffusive flux that is induced by molecular collisions. A chemical reaction may 

occur as well during the transportation process, which leads to the differential equation 

of the steady transport [1]. 

 

   𝑎 ∙ ∇𝑐 − ∇ ∙  𝜈∇𝑐 + 𝜎𝑐 = 𝑓     (1) 
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Here, a is the given velocity field, c is the unknown concentration of a substance, 𝜈 is 

the diffusion coefficient, σ is the reaction coefficient, and f is the source function in the 

control volume. 

To characterise the relative importance of the convection and diffusion, the Péclet 

number is introduced which expresses the ratio between diffusive flux and convective 

flux. The mesh Péclet number is a dimensionless number where the characteristic length 

of the mesh size h/2 is included. It is defined as: 

𝑃𝑒 = 𝑎ℎ/2𝜈      (2) 

 

When the convective flux dominants, the Péclet number becomes larger than 1. 

Consequently, the truncation error from the Galerkin method based on linear elements is 

not negligible any more since it is a function of Pe and the magnitude of the truncation 

error increases with a growing Pe [3]. This is the reason why convection dominated 

flow produces oscillation in the standard Bubnov Galerkin finite element method. 

In finite element methods, the weak form of the partial differential equation (1) is 

required for the discretization of the equation system. After multiplying the weighting 

function w to both sides of Equation (1), the integration by parts for the diffusive term 

leads to: 

 

  𝑎 ∙  ∇𝑐 ∙ 𝑤 +  ∇𝑐 ∙ 𝜈 ∙  ∇𝑤 + 𝜎 ∙ 𝑐 ∙ 𝑤 𝑑𝑣 =   𝑓 ∙ 𝑤 𝑑𝑣
ΩΩ

    (3) 

The exact solution 𝑐𝐸𝑋  is then approximated by an ansatz, which is the linear 

combination of the shape functions with polynomial degrees up to p. 

𝑐𝐹𝐸 =  𝑁𝑖𝑐𝑖
𝑝+1
𝑖=1      (4) 

In Equation (4), 𝑐𝐹𝐸  is the approximation of the exact solution in the finite element 

space while 𝑁𝑖  and 𝑐𝑖  represent the shape functions and the coefficients that determine 

the weight of the shape functions in the approximation respectively [4]. The dimension 

of the space V depends on the number of linearly independent shape functions, and 

therefore, the approximation space can be expanded by increasing the polynomial 

degree p. This basic concept of p-FEM is applied in the next two examples. 

3 NUMERICAL EXAMPLES 

3.1 One-dimensional convection-diffusion problem  

In this section, numerical results of the one-dimensional convection-diffusion transport 

problem are compared to the exact solution. The differential equation 

𝑎 ∙
𝑑2𝑐

𝑑𝑥2
− 𝜈 ∙

𝑑𝑐

𝑑𝑥
= 0     (5) 

has the following boundary condition in Ω =  0,1 : 𝑐 𝑥 = 0 = 0, 𝑐 𝑥 = 1 = 1, and it 

has the exact solution: 

𝑥 =
1−exp(

𝑎𝑥

𝑣
)

1−exp  
𝑎

𝑣
 
      (6) 
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When the mesh is fixed, the ratio between the velocity and the diffusivity determines 

the Péclet number as well as the convergence of the numerical solution. When the 

Péclet number increases, the standard Bubnov Galerkin method based on linear 

elements exhibits oscillations in the numerical solution. Figure 1, 2, and 3 show 

numerical solutions with three different Péclet numbers, using 10 linear elements with h 

= 0.1. The dashed line denotes the exact solution while the solid line represents the 

numerical solution. 

 

Figure 1: The numerical and the exact solution with Pe = 0.5 using linear elements 

 

Figure 2: The numerical and the exact solution with Pe = 1 using linear elements 



Q. Cai, S. Kollmannsberger, R. -P. Mundani and E. Rank 

 

 5 

 

Figure 3: The numerical and the exact solution with Pe = 2 using linear elements 

As expected, when the Péclet number is larger than 1, the solution starts to oscillate. If 

the velocity is zero, it is a pure diffusion problem with Pe = 0, and thus the stiffness 

matrix is symmetric, whose eigenvalues are all real. However, when the velocity is 

bigger than zero, the convection term starts to add a non-symmetric matrix component 

to the system matrix. When the number of Péclet is larger than 1, the eigenvalues of the 

system matrix are complex, where the nonzero imaginary part of the eigenvalues 

contributes the oscillatory component to the solution. 

The performance of the p-FEM is further investigated in the next example. We choose 

the following parameters: 𝑎 = 100, 𝑣 = 1,𝑃𝑒 = 5. The corresponding numerical 

solutions are obtained with 10 elements in the same length. Figure 4, 5, and 6 show the 

comparison between the exact solution and the numerical solution for different 

polynomial degrees. 

 

 

Figure 4: The numerical and the exact solution with p = 1, Pe = 5 
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Figure 5: The numerical and the exact solution with p = 3, Pe = 5 

 

Figure 6: The numerical and the exact solution with p = 5, Pe = 5 

Obviously, the oscillation tends to decrease as the polynomial degree of the ansatz is 

increased. With p=5, the numerical solution is in good agreement with the exact 

solution. 

 

3.2 Two-dimensional steady rotating pulse problem  

This test case investigates a two-dimensional diffusion-convection-reaction transport 

problem with a rotating velocity and a discontinuous source. The differential equation 

of the problem is equivalent to Equation (1). It has following boundary conditions in 

Ω =  −1,1 ×  −1,1  : 𝑐 𝑥 = −1 = 𝑐 𝑥 = 1 = 𝑐 𝑦 = −1 = 𝑐 𝑦 = 1 = 0. 

Here, the velocity field is given as: 

𝑎 = ϕ ρ  
−𝑦
𝑥
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ϕ 𝜌 =  
1 − 𝜌2 𝑖𝑓 𝜌 ≤ 1

0 𝑒𝑙𝑠𝑒
    (7) 

           

            𝜌 =  𝑥2 + 𝑦2 

The magnitude of the velocity over the domain is depicted in Figure 7. 

 

 

Figure 7: The magnitude of the velocity field 

For the following computations, the coefficients are defined as follows: 

 
𝜎 = 2 

 
𝜈 = 0.0001     (8) 

 

𝑠 =  
1 𝑖𝑓 𝜌 ≤ 1/2

0 𝑒𝑙𝑠𝑒
  

This example is also discussed in the book of Donea and Huerta [3] and the result has a 

boundary layer along the circle 𝜌 = 1/2. Here, a uniform mesh with 10 times 10 

elements is applied and the numerical solution based on different polynomial degrees of 

the ansatz can be observed in Figure 8. 

 

  
p = 1 p = 3 
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p = 6 p = 12 

Figure 8: The numerical solutions with different polynomial degrees 

The numerical result has a strong oscillation along the boundary layer with the 

application of linear elements. This numerical oscillation can be suppressed by 

increasing the polynomial degree of the ansatz shown in Figure 8. One can see that p-

FEM with the standard Bubnov Galerkin method is also capable of resolving the 

solution with a boundary layer. 

4 ERROR ANALYSIS  

The numerical error in the finite element approximation can be quantified by the error in 

the energy norm. The error is defined by 

𝑒 = 𝑐𝐸𝑋 − 𝑐𝐹𝐸      (9) 

 

And the error in the energy norm is defined by 

 

 𝑒 𝐸(Ω) =  
1

2
 (𝑎 ∙  ∇𝑒 ∙ 𝑒 +  ∇𝑒 ∙ 𝜈 ∙  ∇𝑒 + 𝜎 ∙ 𝑒 ∙ 𝑒)

Ω
𝑑𝑣  (10) 

 

Let us take the one-dimensional convection-diffusion problem as an example. The error 

in the energy norm is computed with different Péclet numbers and different polynomial 

degrees. The result is plotted in Figure 9 with a logarithmic scale. 
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Figure 9: Error in the energy norm with different Péclet numbers 

Figure 9 shows the exponential convergence of the error in the energy norm when the 

degrees of freedom increase by pure p-extension. The effect of the Péclet number can 

also be observed in this figure. The convergence ratio of p-FEM is compared with h-

FEM for one-dimensional problem with the Péclet number 1.5 in Figure 10. The 

solution obtained by p-refinement has a faster convergence in this case than the 

algebraic one given by h-refinement with the application of the standard Bubnov 

Galerkin method. 

 

Figure 10: The convergence speed of h-refinement and p-refinement 
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5 CONCLUSIOINS 

In this paper, the high order finite element method with the standard Bubnov Galerkin 

method is applied for convection-diffusion-reaction flow problems. It is a well known 

fact that the Bubnov Galerkin method leads to artificial oscillations for convection 

dominated problems of this type in case low order finite elements are used.  

It is a common perception that high order finite element methods increase rather than 

decrease these artificial oscillations. The examples in this contribution, however, clearly 

show the contrary. The main conclusion can therefore be summarised as follows: 

High order finite element methods limit instead of increase the artificial oscillations in 

transport dominated problems. The solution converges exponentially to the exact 

solution when the polynomial degree of the Ansatz is increased. 

 

  

REFERENCES  

[1] C. Yang and J. Samper, A Subgrid-Scale Stabilized Finite Element Method for 

Multicomponent Reactive Transport through Porous Media, Transp Porous Med 78, p. 

101-126 (2009) 

 

[2] A. Brooks and T. J. R. Hughes, Streamline upwind Petrov-Galerkin formulations for 

convection dominated flows with particular emphasis on the incompressible Navier-

Stokes equations, Computer Methods in Applied Mechanics and Engineering. 32, p. 

109-259 (1982) 

 

[3] J. Donea and A. Huerta, Finite element methods for flow problems, Wiley, New York 

(2003) 

 

[4] B. A. Szabó, I. Babuška, Finite Element Analysis, John Wiley and Sons, New York, 

1991 

 


