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Abstract. This paper presents a method for the simulation of incompressible flows past
arbitrary shape bodies. The method couples a combined vortex-in-cell (VIC) and parallel
fast multipole (PFM) method to an Immersed Boundary (IB) approach. The Navier-
Stokes equations in the vorticity-velocity formulation are solved. The Poisson equation
for the streamfunction is solved efficiently in an unbounded domain by means of a direct
solver; in each subdomain, the boundary conditions of which are provided by the PFM
method which has a global view of the whole vorticity field.

Because the vorticity field is a compact field, a very tight grid can be used and this
makes an efficient method for unbounded vortical flows.

An IB method is used in order to easily deal with complex body geometries. In vorticity-
velocity formulation, imposing the no-slip condition requires to solve a vector integral equa-
tion. This is done here using a boundary element method. The obtained panel strengths
provide the equivalent vorticity flux at the wall.

The method has been successfully validated using a well-referenced test case, which
consists in the flow past a sphere at Re = 300.
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1 INTRODUCTION

We solve the Navier-Stokes equations for an incompressible flow in vorticity-velocity
formulation. Those equations read

Dω

Dt
= (∇u) · ω + ν∇2

ω, (1)

where u is the velocity field and ω , ∇× u is the vorticity field. D
Dt

, ∂
∂t

+ u · ∇ is, by
definition, the material derivative. Using the Helmholtz decomposition, one can write the
velocity field as

u = ∇×Ψ + ∇φ. (2)

where Ψ is the so-called streamfunction and φ is the scalar potential. We take φ such
that ∇φ = U0, where U0 is the upstream velocity. If we set the gauge of Ψ as ∇·Ψ = 0,
the vorticity field and the stream function are related by the Poisson equation

∇2Ψ = −ω. (3)

The vorticity field is discretized using vortex particles, responsible for a volume Vp and
carrying a vorticity vector quantity (αp , α(xp) =

∫

Vp
ωdV ≃ ω(xp)Vp). The evolution

equations for the positions and the strengths of those particles read

dωp

dt
= (∇u(xp)) · ω(xp) + ν∇2

ω(xp) (4)

dxp

dt
= u(xp) ∀p = [1 . . .N ] (5)

Vortex particles methods require to solve Eq. (2) and (3) to obtain the velocity field
from the particle strengths. For unbounded domains, Eq. (2) and (3) can be solved
through fast summation techniques such as the Parallel Fast Multipole (PFM) method
to reduce cost complexity from O(N2) to O(N log N). However these methods are still
expensive for the simulation of external flows at practical Reynolds number (i.e. O >
103 . . . 104). The presents approach takles this problem through the efficient combination
of the “Vortex-In-Cell” (VIC, see1) method and the PFM method.

The advantage of VIC method is to solve the Poisson equation (Eq. (3)) using fast grid
solvers that are much faster that Green’s function based Poisson equation solver. The
required boundary conditions are here provided by the PFM method instead of simplified
analytical solution. Those boundary conditions being “exact”, a very compact grid can
be used, that is tight to the vorticity field. This is the basis of the hybrid VIC-PFM
method. For parallel computing perspective, we note that no global Poisson equation is
solved. Rather, multiple Poisson equations are solved locally on the Cartesian subgrid
using the proper boundary conditions.

This hybrid scheme requires the source term of Eq. (3) to be available on the grid. This
entails the translation of particles strength into a grid vorticity through interpolation. The
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Right Hand Side (RHS) of Eq. (4) is computed using finite differences, thus efficiently.
That requires, on the one hand, to interpolate particle strengths onto the grid in order to
compute time-variation of each particle intensity and position. On the other hand, this
“grid information” has to be interpolated from the grid to the particles. This method has
been successfully developed by Cocle2;3 for (half-)unbounded vortical flows.

This paper describes the extension of the VIC-PFM method in order to compute ex-
ternal flows past arbitrarily geometries at moderate Reynolds number. The methodology
is based on an Immersed Boundary (IB) approach (first developed by R. Peskin4, see also
the review of Mittal et al.5).

Morgenthal et al.6 have developed a 2-D immersed interface method for VIC algo-
rithms. A influence matrix (Particle-Particle Particle-mesh algorithm, the PP 3M) is
used in order to capture the under-resolved field. Cottet and Poncet7, and Poncet8 de-
veloped an IB method in a VIC code using potential sources instead of vorticity sources.
The body surface is discretized over few grid points while, here, the surface is discretized
using vortex panels in the spirits of sharp interface methods9;10;11;12.

2 AN IMMERSED BOUNDARY METHOD WITHIN A VIC METHOD

The coupling of an IB method is well-suited for codes using velocity-pressure formula-
tion because velocity components tend to zero at the wall. An IB method in a vorticity-
based Navier-Stokes solver however has to handle a non-discontinuous field. Indeed, the
vorticity is non zero on the fluid side an maximum at the wall and it is zero inside the
body up to the wall. In the present approach the wall treatment relies on a symetrized
vorticity field with respect to the wall.

The algorithm reads:
At time tn, the vorticity field is discretized using a set P1 of particles characterized by

their position and their strength: (xn
p , α

n
p ) for p ∈ [1 · · ·N ] where N is the number of

particles. Moreover, the arbitrary body shape is discretized using a set S of panels forming
a closed surface and described by the position of the three vertices: (xn

1,j , xn
2,j , xn

3,j) for
j ∈ [1 · · ·M ] where M is the number of panels.

1. Random grid shifting. The particle/panel position are randomly shifted between
−0.5h and 0.5h, in each direction, in order to distribute the IB discretization er-
ror over the body surface. Indeed, the body discretization crosses arbitrarily the
Cartesian grid. Hence, a non-uniform “discretization error” along the body is done.

2. Mesh overlay. A Cartesian grid with a uniform resolution h, is laid over the
support of vorticity, i.e. it covers the location of all particles and panels.

3. Wall distance. The grid points are tagged relative to the wall distance. For each
grid point xijk = (xi, yj, zk) = (x0 + ih, y0 + jh, z0 + kh), a point xwall on the wall
surface exists such that d = minijk(|xijk −xwall|), d is then the distance to the wall.
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4. Evaluation of the vorticity field on the grid. We construct a set P2 of image
vortex particles inside the body such that the spurious vorticity flux at the wall
is minimized up to the curvature. The methodology is sketched in Fig. 1. The
near-wall particle weight (i.e. d/h < 0.5 where d is the distance to the wall) has to
be extrapolated from the flow. The weight is here computed using second-degree
polynomial functions P:







Pt,n(xwall + hn) = αt,n(xwall + hn)
Pt,n(xwall + 2hn) = αt,n(xwall + 2hn)

dPt

dn
(xwall) = 0 for tangential components

Pn(xwall) = 0 for normal component

(6)

where Pn = ∇P · n and Pt = P− Pnn.

Afterward, the weight of the particle sets (P1 and P2) are redistributed onto the
grid using the M

′

4 scheme:

α
n
p

M
′

4

−−−−→ α
n
ijk. (7)

More precisely,

α
n
ijk =

N∑

p=0

M
′

4(xi − xp) M
′

4(yj − yp) M
′

4(zk − zp) α
n
p . (8)

where,

M
′

4(x) =







1 − 5
2
|x|2 + +3

2
|x|3, |x| ≤ 1,

1
2
(2 − |x|)2(1 − |x|), 1 < |x| < 2,

0, |x| ≥ 0.
(9)

The M
′

4 scheme has very good conservation properties, see Monaghan13, Cotted and
Koumoutsakos14 and Winckelmans15. Moments up to the second (i.e. the vorticity,
the linear impulse and the angular impulse) are conserved.

The redistribution is also used to handle Lagrangian distorsion in particle meth-
ods. With time, particles tend to cluster or deplete some region of the flow (e.g.
recirculation zone), thus causing a loss of overlap between particles. Redistribution
proceeds by periodically generating a new set of particles (from the old set) on a
regular lattice.

5. No-slip condition. The vortex panel vector intensity is computed such that the
tangential vector velocity underneath each panel is canceled (see Fig. 2).

Imposing the no-slip flow condition at the wall requires to solve a vector integral
equation. This is done here using a Boundary Element Method (BEM). For vortex
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Figure 1: General description of the methodology computing the near-wall vorticity field in the local
reference frame. The “bullets” (•) and the “stars” (∗) respectively represent the set P1 of outer-body
particles and the set P2 of inner-body particles.

Figure 2: General description of the IB method.
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panels of vector strength ∆γ:

1

2
∆γ(x) × n +

1

4π

∫

S

1

|x − x′|3 · (x − x′) × ∆γ dS(x′) = U0 + uω(x)

= ∆Uslip (10)

where uω is the solution of Eq. (2) and (3), the vortex-field induced velocity. This
equation is solved using an iterative method (a under-relaxed modified-Jacobi algo-
rithm). The surface body is discretized using triangles. In order to reduce memory
and computational cost, the matrix-vector multiplications (i.e. particle-panel and
panel-panel interactions) in the linear solver are evaluated by means of the PFM
method. The PFM method is, in practice, required in order to evaluate the particle-
panel interactions and the panel-panel interactions.

The RHS, i.e. the residual velocity ∆Uslip, is also evaluated using the PFM method.
The particles are considered for this step as “point” particles so as to have an entire
view of the vorticity field. A “halo” region, where no particle can exist, is defined to
avoid spurious vorticity flux at the wall. Typically, one fixes dhalo/h = 0.20 · · ·0.25.
Particles entering in this zone are reflected.

6. Vortcity flux. A Lighthill’s model of vorticity flux at the wall is used14;16;17. For
each grid point xijk, the net circulation increase ∆α

n
ijk,cons, due to the diffusion of

the vortex panels within the flow, is computed using a conservative scheme. Let’s
consider a panel with an area Ω and intensity ∆γ. One defines an infinitesimal
surface dS = dξ dη, the net circulation increase over a time ∆t is given by the
following formula

∆αijk =

∫ 1

0

dαijk

d(t/∆t)
d(t/∆t),

where

dαijk

d(t/∆t)
=

1

2
∆γ

(

[erfc(u)]
(zk−hl/2)/

√
4νt

(zk+h/2)/
√

4νt

)

∫

S

[erfc(u)]
(xi−h/2−x(ξ,η))/

√
4νt

(xi+h/2−x(ξ,η))/
√

4νt
[erfc(u)]

(yj−h/2−y(ξ,η))/
√

4νt

(yj+h/2−y(ξ,η))/
√

4νt
dξ dη
︸ ︷︷ ︸

dS

. (11)

ξ and η are the local integration coordinates. hl is equal to zero if zk < h/2+dhalo and
is h/2 else. This formula is numericaly integrated i) in-time using four-point Gauss
quadrature and ii) over the triangle using the three-point hammer rule. Notice that
this formula can be analyticaly integrated if the panel is a rectangle (S = f × b).
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Eq. (11) can be rewriten as followed

dαijk

d(t/∆t)
= νt∆γ

(

[erfc(u)]
(zk−hl/2)/

√
4νt

(zk+h/2)/
√

4νt

)

(

[ierfc(u)]
(xi+h/2−b/2)/

√
4νt

(xi−h/2−b/2)/
√

4νt
− [ierfc(u)]

(xi+h/2+b/2)/
√

4νt

(xi−h/2+b/2)/
√

4νt

)

(

[ierfc(u)]
(yj+h/2−f/2)/

√
4νt

(yj−h/2−f/2)/
√

4νt
− [ierfc(u)]

(yj+h/2+f/2)/
√

4νt

(yj−h/2+f/2)/
√

4νt

)

. (12)

In practice, if the triangular panels are equilateral enough, the panels considered as
rectangular (i.e. f , b ,

√
S△). Moreover, the scheme can be made conservative

through a weighted correction developed by Ploumhans et al.17, is used

∆αijk,cons = ∆αijk +
|∆αijk|2

∑

r,s,t |∆α(r,s,t)|2

(

S∆γ −
∑

r,s,t

∆α(r,s,t)

)

.

7. Poisson equation. Solving the Poisson equation ∇2Ψn
ijk = −(ωn

ijk + ∆ω
n
ijk)/(h3)

using the mathematical library FISHPACK (for more details, see18;19;20). Required
boundary conditions are obtained using the PFM method. The vortex panel inten-
sity is first redistributed onto the grid before solving the Poisson equation ∇2Ψ =
−ω, then diffused to the near-wall particles (see17).

8. Evolution equation. Computing is done using Finite Differences (FD)

un
ijk = ∇×Ψn

ijk

and
dω

n
ijk

dt
= (∇un

ijk).ω
n
ijk + ν∇2

ω
n
ijk.

Notice that the velocity and the stretching term is computed using centered second-
order FD. The diffusion term is computed using a 27 points “cube” scheme instead
of the “cross” scheme (see3), it provides less sensitivity to the grid.

9. Vorticity divergence. With time, the vorticity field does not remain an “image”
of the velocity curl for several reasons. i) The interpolation procedure (particle-
mesh, mesh-particle) using the M

′

4 scheme, does not conserve the divergence of the
vorticity field. ii) The stream function Ψ obtained by solving the Poisson equation,
using FISHPACK, is not divergence free. Moreover, a “collocated” lattice instead of
a “staggered” lattice is used. The numerical scheme is thus not fully consistent: the
numerical Laplacian operator does not match with the numerical double rotational
operator (∇h × (∇h × Ψ) 6= −∇2

hΨ = ω).
The vorticity field thus has to be regularly corrected in order to project it in a diver-
gence free space, following a methodology first developed by Cotted and Poncet7,
and Poncet21.
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The vorticity field ω can be corrected to a divergence free field ω̃:

ω̃ = ω −∇D, (13)

by simply taking D such that
∇2D = ∇ · ω. (14)

Moreover, the existence of a wall requires to solve a scalar integral equation, over
the wall surface, to impose the following boundary condition

ω̃ · n = 0 ⇔ ∇D · n = ω · n. (15)

Notice that the Poisson equation is solved using the same combination of the
FISHPACK library and the PFM method. For the same reason that the vorticity
field is not exactly divergence free (consistency between Laplacian operator versus
double rotational operator), the above correction scheme (Eq. (14) and (13)) does
not exactly provide a solenoidal field. However, it turns out that this step provides
satisfactory results, if the vorticity field is smooth enough.

Moreover the near-wall vorticity field is often locally under-resolved, due to the
“halo” region, the evaluation of the divergence sources leads to spurious corrections
of the vorticity field. For this reason, the near-wall divergence sources (i.e. d < 2h)
and the boundary condition are not taken into account during this correction step.

10. Interpolation. Grid quantities (i.e. velocity, time-derivative of strength and net
increase of intensity due to panel diffusion) are interpolated onto the particles using
the M

′

4 scheme

un
ijk

M
′

4−−−−→ un
p

(
dα

dt

)n

ijk

M
′

4−−−−→
(

dα

dt

)n

p

∆α
n
ijk

M
′

4−−−−→ ∆α
n
p

11. Time integration. The particle positions and strengths are integrated in time us-
ing respectively the Leap-Frog scheme and the second-order Adams-Bashford (AB)
scheme

xn+1
p = xn−1

p + 2∆tun
p .

α
n+1
p = α

n
p +

1

2
∆t

(

3

(
dα

dt

)n−1

p

−
(

dα

dt

)n

p

)

+ ∆α
n
p

tn+1 = tn + ∆t.
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After particle redistribution, the AB temporal integration scheme cannot be used
anymore and is replaced by the second order Runge-Kutta scheme
The first step (predictor) is

x∗
p = xn

p + ∆tun
p

α
∗
p = α

n
p + ∆t

(
dα

dt

)n

p

+ ∆α
n
p

t∗ = tn + ∆t,

and the second step (corrector) is

xn+1
p = xn

p +
1

2
∆t
(
un

p + u∗
p

)

α
n+1
p = α

n
p +

1

2
∆t

((
dα

dt

)n

p

+

(
dα

dt

)∗

p

+
∆α

∗
p

∆t

)

tn+1 = t∗.

3 VALIDATION

The present VIC-PFM-IB methodology has been validated on a well-known test case
for which experimental and numerical data are available: the flow past a sphere at Re =
U0D

ν
= 300. At such a Reynolds number, the flow is known to be unsteady, thus making

it a relevant test for our handling of the no-slip condition and the diffusion step.
The mesh resolution is here fixed to h/D = 1.0/75 and the time step is ∆tU0/D ≤

1.25 10−2. The wake is simulated up to 20 diameters downstream. The sphere is dis-
cretized using 20 480 quasi-equilateral triangles obtained by recursive subdivision of an

icosahedron. The average surface of the triangles is
√

S△/h = 0.93. Fig. 4 shows various
views of the wake behind the sphere. The vortical structure, the so-called “hairpin” vor-
tices, are clearly present (here visualized using the λ2 criterion22. Fig. 5 shows a 2-D cut
of the vorticity field for the entire flow (a) and a zoom in the near-wall region (b).

The force acting on a body can be computed from an exact formula developed by Noca
et al.23;24 and applied to PIV (Particle Image Velocitmetry) measurements. This formula
was also successfully used in the context of vortex particle method by Ploumhans et al.17

and Daeninck25. Let us consider a control volume VC with a surface SC which includes
the body described by the simply-connected closed surface Sb, see Fig. 3. The force acting
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on S reads

F

ρ
= − 1

N − 1

d

dt

∫

SC+Sb

((u · x)n − u(x · n) + (N − 1)x(u · n)) dS

+

∫

SC

(
1

2
(u · u)n− (n · u)u

)

dS

− 1

N − 1

∫

SC

(n · u)(x × ω)dS +
1

N − 1

∫

SC

(n · ω)(x × u)dS

+
1

N − 1

∫

SC

x × (n ×∇ · T)dS +

∫

SC

n · TdS, (16)

where T = ν
(
∇u + (∇u)T

)
. This formula is particularly well adapted for vortex method,

because it only requires the knowledge of the velocity and its derivatives; the pressure
field is not required. Note that the surface integral on Sb vanishes when u = 0 at the wall
(as for the flows considered in this paper). The evaluation of the various fields are thus
only needed on the control surface SC .

Figure 3: General view of the flow past an arbitrarily shape.

One defines the Drag coefficient (CD)

CD =
F · ey

1
2
ρU2

0 (πD2/4)
(17)
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CD ∆CD CL ∆CL Str
Present work 0.672 3.4 10−3 0.065 1.5 10−2 0.134
Johnson & Patel26 0.656 3.5 10−3 0.069 1.6 10−2 0.137
Tomboulides & Orszag27 0.671 2.8 10−3 - - 0.137
Constantinescu et al.28 0.655 - 0.065 - 0.136
Ploumhans et al.17 0.683 2.5 10−3 0.061 1.4 10−2 0.135
Georges29 0.661 2.5 10−3 0.066 1.3 10−2 0.134

Table 1: Summarizing table of interest quantities compared to the literature for the flow past a sphere
at Reynolds 300.

where ey is the streamwise unit vector. The Lift coefficient (CL) is defined as

CL =
||F− (F · ey)ey||

1
2
ρU2

0 (πD2/4)
(18)

The time-evolution of the diagnostics (drag/lift coefficients) are presented in Fig. 6.
Table 1 shows a brief comparison with reference results. The time-averaged value of
CD and CL, as well as the Strouhal number(Str = f D/U0), compare well with those
of the literature. As for the oscillation amplitude (∆CD , 1

2
(max CD − min CD) and

∆CL , 1
2
(max CL − min CL)), they compare quite well with those of the literature. It is

worth noting that those latter values are more difficult to obtain.
Along the simulation, the mesh Reynolds number, based on the vorticity field (Reω

mesh =
max(|ω|)h2

ν
) or based on the velocity field (Reu

mesh = max(|u|)h
ν

), was maintained at a low
level O(5 · · ·7), see Fig. 7.(a). Moreover, the divergence of the vorticity field was also
maintained at an acceptable level O(5 10−4), see Fig. 7.(b).
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(a)

(b)

(c)

Figure 4: Isocontour of the λ2 criterion: (a) top view, (b) side view and (c) offset view.
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(a)

(b)

Figure 5: 2D slice of the z-component of the vorticity field D

U0

ω: (a) global view and (b) zoom in the
near-wall region. Saturation was used in order to see both the near wall vorticity and the wake vorticity.
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Figure 6: Time-evolution of the force acting on the sphere: drag coefficient (solid line) and lift coefficient
(dashed line).
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Figure 7: (a) Time-evolution of the mesh Reynolds number Re
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mesh (solid line) and Re
u

mesh (dashed line).
(b) Time-evolution of the divergence of the vorticity field. Vω is the volume where ω is non zero.
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Figure 8: Streamlines and streamwise vorticity cut-planes of the flow past a low aspect-ratio wing
(NACA0012 profile).
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4 CONCLUDING REMARKS

The presented IB method within the VIC-PFM method provides satifstactory results
for the simulation of the flows past arbitrary body shape, at moderate Reynolds number,
in terms of flow dynamics and forces acting on the body.

The IB approach conserves the main advantages of the VIC-PFM method3, that is, i)
the easy and efficient paralellization of any problem by locally solving the Poisson equation
on each subdomain.

The method has been successfully validaded against the test case of the flow past a
sphere at Re = 300. Satisfactory results were obtained.

Recently, the method has also been successfully applied to the simulation of the im-
pulsively started flow past a very low aspect-ratio wing (NACA0012 profile, AR = 1) at
moderate Reynolds number (Re = cU0/ν = 3000 where c is the chord). The wing surface
was discretized using 152 000 triangular panels. The complete formation of lift-induced
vortices is captured (see Fig. 8). The method was seen to be robust; in particular, it can
be weakly under-resolved locally.

So far, the method uses uniform isotropic grids. The extension to a multi-resolution
framework is ongoing work.
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