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Abstract. A novel numerical technique for the solution of the compressible flow equa-
tions over unstructured grids in a cylindrical reference is presented. The proposed approach
is based on a mixed finite volume / finite element method. Equivalence conditions relating
the finite volume and the finite element metrics in cylindrical coordinates are derived.
Numerical simulations of the explosion and implosion problems for inviscid compressible
flows are carried out to evaluate the correctness of the numerical scheme. For the implo-
sion problem, numerical simulations include also the effect of the presence of cylindrical
obstacles in the flow field, which have been recently proposed as a mean to modify the shape
of a cylindrical converging shock to increase the shock front stability in experimental stud-
ies on the sonoluminescence effect. Spherical shock waves are also considered and the
modification to the shock geometry due to the presence of a spherical obstacle is evaluated
numerically and compared to its cylindrical counterpart.
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1 INTRODUCTION

In a cylindrical reference, diverse gasdynamics problems exhibit relevant symmetries.
These are, e.g., nozzle flows, detonations, astrophysical flows, Inertial Confinement Fusion
(ICF) applications, sonoluminescence phenomena and nuclear explosions.1 To compute
the numerical solution of the compressible flow equations for these kind of flows, an
interesting possibility is provided by the use of a mixed finite volume (FV) / finite element
(FE) approach,2 which has been already successfully applied to the multidimensional
Cartesian case3,4 and the cylindrical case with axial symmetry.6 For example, in viscous
flows, it is possible to use the FV and the FE to compute the advection and dissipation
terms, respectively, within the same algorithm. Such a possibility is expected to be of
use in the study of the effect of viscosity on e.g. the formation of stable shock fronts in
cylindrically and spherically symmetric problems and on the determination of the onset
and dynamics of Richtmyer-Meshkov instabilities in cylindrical and spherical implosions.5

The combined use of these two different techniques is made possible by the introduction
of suitable equivalence conditions that relate the FV metrics, i.e. cell volumes and inte-
grated normals, to the FE integrals. Equivalence conditions relating FV and FE schemes
have been derived for Cartesian coordinates in two and three spatial dimensions3,4 and
for cylindrical coordinates in axially symmetric two-dimensional problems.6 In both cited
references, equivalent conditions are obtained by neglecting higher order FE contributions.
In the present paper, equivalence conditions for the cylindrical coordinates (Z,R, θ), with
Z, R and θ axial, radial and azimuthal coordinate, respectively, are derived for the first
time without introducing any approximation into the FE discrete expression of the diver-
gence operator. In particular, three independent equivalent conditions are introduced to
link all FV and FE metric quantities defined over the computational grid.

The present paper is structured as follows. In section 2, the FE and FV schemes are
briefly described for a scalar conservation law. Equivalence conditions are demonstrated
in this case. The extension to the system of Euler equations for compressible flow is also
sketched. In section 3, numerical simulations are presented for the explosion and implosion
problem in the cylindrical coordinates, including both the axisymmetric (Z-R plane) and
the polar (R-θ) case, and are compared to one-dimensional simulations. The effect of
introducing cylindrical obstacles in the flow field is also investigated numerically and the
modification to the geometry of the cylindrical converging shock wave is studied. The case
of spherical shock waves is also considered and the modification to the shock geometry
due to the presence of a spherical obstacle is evaluated. In section 4 final remarks and
comments are given.

2 FINITE VOLUME/ELEMENT METHOD IN CYLINDRICAL
COORDINATES

In the present section, the finite element and finite volume discrete equations for a
scalar conservation law in a three-dimensional cylindrical reference are given. The model
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equation reads
∂u

∂t
+
∂fZ
∂Z

+
1

R

∂

∂R
(RfR) +

1

R

∂fθ
∂θ

= 0, (1)

where t is the time, Z,R and θ are the axial, radial and azimuthal coordinates, respectively,
u = u(Z,R, θ, t) is the scalar unknown and f∅(u) = (fZ , fR, fθ) is the so-called flux
function. A more compact form of the above equation is obtained by introducing the
divergence operator in three-dimensional cylindrical coordinates ∇∅ · (·) as follows

∂(u)

∂t
+∇∅ · f∅(u) = 0. (2)

Equivalence conditions relating the FV and the FE approaches are then derived in the
three-dimensional case. Finally, the numerical scheme is applied to the compressible Euler
equations and time discretization is discussed.

2.1 Node-pair finite element discretization

The scalar conservation law (2) is now written in a weak form by multiplying it by
the radial coordinate R and by a suitable Lagrangian test function φi ∈ Vh ⊂ H1(Ω).
Integrating over the support Ωi of φi gives∫

Ωi

Rφi
∂u

∂t
dΩi +

∫
Ωi

Rφi∇∅ · f∅(u) dΩi = 0, ∀i ∈ N , (3)

where N is the set of all nodes of the triangulation. Note that by multiplying by R,
the numerical singularity of the cylindrical reference system is formally removed.6 In
the following, to simplify the notation, the infinitesimal volume dΩ = RdRdθdZ is not
indicated in the integrals. Integrating by parts immediately gives∫

Ωi

Rφi
∂u

∂t
=

∫
Ωi

Rf∅ ·∇∅φi +

∫
Ωi

φif
∅ ·∇∅R−

∫
∂Ω∂

i

Rφif
∅ ·n∅

i (4)

where ∂Ω∂
i = ∂Ωi∩∂Ω, with ∂Ωi and ∂Ω are the boundary of Ωi and of the computational

domain Ω, respectively, and where n∅
i = nZẐ + nRR̂+ nθθ̂ is the outward normal versor

to Ωi. The scalar unknown is now interpolated as

u(Z,R, θ, t) ' uh(Z,R, θ, t) =
∑
k∈N

uk(t)φk(Z,R, θ),

to obtain the Bubnov-Galerkin approximation of (2), namely,∑
k∈Ni

M∅
ik

duk
dt

=

∫
Ωi

Rf∅(uh) ·∇∅φi +

∫
Ωi

φif
∅(uh) ·∇∅R−

∫
∂Ω∂

i

Rφif
∅(uh) ·n∅

i ,
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where Ni is the set of shape functions φk whose support Ωk overlap Ωi of φi and where

M∅
ik

def
=

∫
Ωik

Rφiφk,

with Ωik = Ωi ∩Ωk. By resorting to the so-called flux reinterpolation technique,7 the flux
function f∅(uh) is now expanded using the same shape functions φh ∈ Vh as follows

f∅
(
uh(Z,R, θ, t)

)
'
∑
k∈N

f∅
k (t)φk(Z,R, θ),

where f∅
k (t) = f∅(uk(t)), to obtain∑

k∈Ni

M∅
ik

duk
dt

=
∑
k∈Ni

f∅
k (t) ·

∫
Ωik

Rφk∇∅φi +
∑
k∈Ni

f∅
k (t) ·

∫
Ωik

φiφk∇∅R

−
∑
k∈N ∂

i

f∅
k (t) ·

∫
∂Ω∂

ik

Rφiφkn
∅
i ,

where ∂Ω∂
ik = ∂Ωi ∩ ∂Ωk ∩ ∂Ω, and N ∂

i is the set of all boundary nodes of Ωi. The above
spatially discrete form of the scalar equation (2) simplifies to6

∑
k∈Ni

M∅
ik

duk
dt

=−
∑

k∈Ni, 6=

(
f∅
k + f∅

i

2
·η∅

ik −
f∅
k − f

∅
i

2
· ζ∅

ik

)
+ f∅

i · L̂
∅

i −
∑
k∈N ∂

i, 6=

f∅
k − f

∅
i

2
·χ∅

ik − f
∅
i · ξ∅

i ,
(5)

where Ni, 6= = Ni\{i} and N ∂
i, 6= = N ∂

i \{i}. In the expression above, the following FE
metric quantities,

M∅
ik

def
=

∫
Ωik

Rφiφk, Mik
def
=

∫
Ωik

φiφk, ζ∅
ik

def
=

∫
Ωik

φiφkR̂, L̂
∅

i
def
=
∑
k∈Ni

ζ∅
ik =

∫
Ωik

φiR̂,

η∅
ik

def
=

∫
Ωik

R(φi∇∅φk − φk∇∅φi), χ∅
ik

def
=

∫
∂Ω∂

ik

Rφiφk, ξ∅
i

def
=

∫
∂Ω∂

ik

Rφi.

have been introduced. In the next section, the corresponding FV metrics are derived.

2.2 Edge-based finite volume discretization

The spatially discrete form of the scalar conservation law (2) is now obtained according
to the node-centred finite volume approach.8 To this purpose, the integral form of (2)
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times the radial coordinate R is enforced over a finite number of non-overlapping finite
volumes Ci, with boundary ∂Ci, to obtain,

d

dt

∫
Ci
Ru = −

∮
∂Ci
R∇∅ · f∅, ∀Ci ⊆ Ω.

By integrating by parts the right hand side and by applying the Gauss theorem the
equation above reads

d

dt

∫
Ci
Ru = −

∮
∂Ci
Rf∅ ·n∅

i +

∫
Ci
f∅ · R̂, ∀i ∈ N .

where n∅
i is the outward normal to Ci ⊆ Ω. Note that each finite volume Ci surrounds

one and only one node of the triangulation. Over each control volume Ci the cell-averaged
unknown is introduced as follows

u(Z,R, θ, t) ' ui(t) =
1

Vi

∫
Ci
u(Z,R, θ, t),

where Vi is the volume of the i-th cell. Therefore

V ∅
i

dui
dt

= −
∮
∂Ci
Rf∅ ·n∅

i +

∫
Ci
f∅ · R̂, where V ∅

i
def
=

∫
Ci
R (6)

The boundary integral on the right hand side is now split into interface or edge contribu-
tions as follows

V ∅
i

dui
dt

= −
∑
k∈Ni, 6=

∫
∂Cik
Rf∅ ·n∅

i −
∫
∂C∂

i

Rf∅ ·n∅
i +

∫
Ci
f∅ · R̂, (7)

where Ni, 6= is the set of the finite volume Ck sharing a boundary with Ci, excluding Ci
and where ∂Cik = ∂Ci ∩ ∂Ck 6= ∅, k 6= i, is the so-called cell interface. As it is standard
practice, the flux vector is assumed to be constant over each cell interface. Under this
assumption, the domain and boundary contributions read∫

∂Cik
Rf∅ ·n∅

i ' f
∅
ik ·
∫
∂Cik
Rn∅

i = f∅
ik ·ν∅

ik with ν∅
ik

def
=

∫
∂Cik
Rn∅

i and∫
∂C∂

i

Rf∅ ·n∅
i ' f

∅
i ·
∫
∂C∂

i

Rn∅
i = f∅

i ·ν∅
i with ν∅

i
def
=

∫
∂C∂

i

Rn∅
i ,

respectively. If a second-order centred approximation of the fluxes is considered, namely,
f ik = (f∅

i + f∅
k )/2, the final form of the finite volume approximation of (2) reads,

V ∅
i

dui
dt

= −
∑
k∈Ni, 6=

f∅
i + f∅

k

2
·ν∅

ik + f∅
i · V̂

∅

i − f∅
i ·ν∅

i with V̂
∅

i
def
=

∫
Ci
R̂, (8)

to be compared with the corresponding FE discretization (5).
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2.3 Finite Element/Volume equivalence

The equivalence conditions relating the above FV metric quantities and the FE ones
defined in the previous section are now derived. To this purpose, relevant properties of
the FE and FV discretizations are briefly recalled.

Considering FE metric quantities first, from its definition the vector η∅
ik is asymmetric,

namely,
η∅
ik = −η∅

ki, (9)

which will be referred in the following as property FEM-a. Property FEM-b is obtained
by noting that ∑

k∈Ni

(η∅
ik − ζ

∅
ik) + ξ∅

i = 0,

which gives immediately

L̂
∅

i =
∑
k∈Ni, 6=

η∅
ik + ξ∅

i . (10)

Property FEM-c stems from the following identity∫
Ωi

Rφi∇∅ · p∅ =

∫
Ωi

3Rφi = 3L∅
i = 3

∑
k∈Ni

M∅
ik,

where p∅ is the position vector, p∅ = ZẐ + RR̂(θ). On the other hand, by integrating
by parts, one also has∫

Ωi

Rφi∇∅ · p∅ =

∫
∂Ω∂

i

Rφip
∅ ·n∅

i −
∫

Ωi

φip
∅ · R̂−

∫
Ωi

Rp∅ ·∇∅φi. (11)

By substituting the exact expansion p∅ =
∑

k∈Ni
p∅
kφk, Eq. (11) reads

3L∅
i = +

∑
k∈N ∂

i

p∅
k ·
∫
∂Ω∂

ik

Rφiφkn
∅
i −

∑
k∈Ni

p∅
k ·
∫

Ωik

φiφkR̂−
∑
k∈Ni

p∅
k ·
∫

Ωik

Rφk∇∅φi,

which, from the node-pair representation described in section 2.1, can be written as

3L∅
i =

∑
k∈Ni,6=

[
p∅
k + p∅

i

2
·η∅

ik −
p∅
k − p

∅
i

2
· ζ∅

ik

]
− L̂

∅

i ·p∅
i +

∑
k∈N ∂

i, 6=

p∅
k − p

∅
i

2
·χ∅

ik + p∅
i · ξ

∅
i .

By substituting property FEM-b in the above identity, one finally obtain property FEM-c
as

3L∅
i =

∑
k∈Ni, 6=

[
p∅
k + p∅

i

2
·η∅

ik −
p∅
k − p

∅
i

2
· ζ∅

ik

]
+
∑
k∈N ∂

i, 6=

p∅
k − p

∅
i

2
·χ∅

ik. (12)
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Considering now FV metric quantities, from the fact that n∅
i = −n∅

k over ∂Cik, prop-
erty FVM-a reads

ν∅
ik = −ν∅

ki, (13)

which corresponds to the conservation property of the scheme. From the Gauss theorem,
one also has ∫

Ci
∇∅R =

∮
∂Ci
Rn∅

i ,

which, from the definition of FV metric quantities, gives property FVM-b as

V̂
∅

i =
∑
k∈Ni, 6=

ν∅
ik + ν∅

i . (14)

Property FVM-c is obtained by noting that

3V ∅
i =

∫
Ci
R∇∅ · p∅ =

∮
∂Ci
Rp∅ ·n∅

i −
∫
Ci
R̂ ·p∅. (15)

The right hand side of (15) is now computed by means of the FV discretization described
in section 2.2 as

3V ∅
i =

∑
k∈Ni, 6=

p∅
k + p∅

i

2
·ν∅

ik − p
∅
i · L̂

∅

i + p∅
i ·ν∅

i ,

which from property FVM-b becomes

3V ∅
i =

∑
k∈Ni, 6=

p∅
k + p∅

i

2
·ν∅

ik. (16)

Therefore, a FV approximation can be formally obtained from FE metric quantities
defined over the same grid points by setting (see properties FEM/FVM-a and -b)

ν∅
ik = η∅

ik, ν∅
i = ξ∅

i , V̂
∅

i = L̂
∅

i .

Note that the mass lumping approximation,∑
k∈Ni

M∅
ik

duk
dt
' L∅

i

dui
dt

is to be introduced in (5) for the equivalence conditions to be applicable. By subtracting
(12) to (16), one finally has

V ∅
i = L∅

i +
∑
k∈Ni, 6=

p∅
k − p

∅
i

6
· ζ∅

ik −
∑
k∈N ∂

i, 6=

p∅
k − p

∅
i

6
·χ∅

ik. (17)

It is remarkable that, differently from the Cartesian case,3,4 in the cylindrical reference
the FV cell is not coincident with the FE lumped mass matrix. Moreover, the shape
of the FV cells that guarantees equivalence with FE discretization still remains to be
determined.
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2.4 Fully discrete form of the Euler equations in cylindrical coordinates

The Euler equations for compressible inviscid flows of interest here are now briefly
recalled. The differential form reads,

∂u∅

∂t
+∇∅ · f∅ =

1

R
s∅, (18)

where u∅, u∅(Z,R, θ, t) = (ρ,m∅, Et)T, with ρ density, m∅ = (mZ ,mR,mθ)
T momentum

and Et total energy per unit mass, and where

f∅ =



mZ mR mθ

m2
Z

ρ
+ Π

mRmZ

ρ

mθmZ

ρ
mZmR

ρ

m2
R

ρ
+ Π

mθmR

ρ
mZmθ

ρ

mRmθ

ρ

m2
θ

ρ
+ Π

mZ

ρ
(Et + Π)

mR

ρ
(Et + Π)

mθ

ρ
(Et + Π)


and s∅ =



0

0

m2
θ

ρ
+ Π

mθmR

ρ
0


,

are the matrix of the fluxes and the source term, respectively. The FV spatially-discrete
form of the Euler equations reads

V ∅
i

du∅
i

dt
= −

∑
k∈Ni,6=

f∅
k + f∅

i

2
·η∅

ik + Lis
∅
i − f∅

i · ξ∅
i , (19)

where s∅
i (t)

def
= s∅(u∅

i ) and where V ∅
i is computed from the equivalence condition (17).

In the computation, a TVD9 numerical flux is used, with the van Leer limiter.10 The
fully discrete form of the Euler system is obtained by a two-step Backward Differencing
Formulæ. At each time level, a dual time-stepping technique is used to solve the time-
implicit problem.11

3 NUMERICAL RESULTS

In the present section, numerical results for converging and diverging cylindrical and
spherical shock waves are presented in the two- (Z-R and R-θ planes) and one-dimensional
cases.

The case of the explosion problem1 is considered first. The computational domain
is shown in figure 1, where a representative computational grid is also shown. Initial
conditions for the explosion problem are as follows. The velocity is assumed to be zero
everywhere; the density is uniform and equal to 1, whereas the pressure is uniform and
equal to 10 in circular region centred at the origin with radius R = 0.5. In the remaining
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Figure 1: Exemplary grid for the explosion and implosion problems. The grid is the coarse grid made of
9 551 nodes and 18 745 triangles. The resolution along the radial direction is approximatively 0.01.

portion of the domain, the pressure is uniform and equal to 1. In all computations, the
ideal gas model for nitrogen (γ = cP/cv = 1.39) is used. Pressure and density are made
dimensionless by the corresponding value at rest (outer region), which are indicated in the
following as Pref and ρref, respectively. The time is made dimensionless by Lref

√
ρref/Pref,

with Lref unit length.
Numerical results are shown in figure 2, where density isolines at different time levels

are shown. On the left column of figure 2, the independent variables are R and θ, namely,
a cylindrical shock wave is considered. On the left hand side, a spherical problem is
solved in the Z-R plane, where axial symmetry is assumed. The grid is the fine grid with
39 153 nodes 77 587 triangles and the time step is 2.5× 10−4 for the cylindrical case and
1.5 × 10−4 for the spherical one. In both situations, a cylindrical/spherical shock wave
propagates towards the outer boundary of the computational domain; the shock wave is
followed by a contact discontinuity. A rarefaction wave propagates towards the origin and
is then reflected outward. Note that the initial corrugation of the shock front, due to the
un-even shape of the initial discontinuity caused by its discrete representation over an
unstructured grid of triangles, is clearly visible also at later times. The pressure profile in
figure 3 confirm the above description of the flow field and are compared against reference
one-dimensional results for three different time levels. One-dimensional computations
were performed over a evenly-spaced grid made of 2 001 nodes, which corresponds to an
element spacing of 5× 10−4.

A grid dependence study is shown in figure 4. Pressure signals along the y = 0 axis
are compared at time t = 0.16 for three different grid resolutions: the coarse grid is made
of 9 551 nodes and 18 745 triangles, the medium one is made of 20 683 nodes and 40 841
triangles, the fine one is made of 39 153 nodes 77 587 triangles. Numerical results are find
to be almost independent from the grid resolution; in the following, the fine grid is used

9
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Figure 2: Density isolines for the explosion problem. Each isoline corresponds to a density difference of
∆ρ/ρref = 0.03. Left row: cylindrical problem, right row: spherical problem. Time increases from top to
bottom.
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Figure 3: Pressure along the y = 0 axis for the explosion problem at times t = 0.05, t = 0.16 and t = 0.20.
The solid line is the 1D reference solution, the dash-dot line is the 2D solution. Left: cylindrical problem,
right: spherical problem.
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Figure 4: Comparison of pressure signals along the y = 0 axis for the explosion problem at time t = 0.16
for different grid resolutions against one dimensional simulations. Left: cylindrical case, right: spherical
case.
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Figure 5: Comparison of pressure signals along the y = 0 axis for the explosion problem at time t = 0.16
for diverse time steps against one dimensional simulations. Left: cylindrical case, right: spherical case.

in all computations. Time step dependence can be appreciated from figure 5, where the
pressure signals for three different time steps is shown at time t = 0.16 for the medium
grid. Numerical results are found to be independent from the chosen time step. In all
computations in the R-θ plane, the solution at the grid node located at the origin of the
reference system suffers from a significant undershoot, which however does not propagate
inside the domain and does not affect the correct propagation of the reflected waves.

In figure 6, numerical results for the so-called implosion problem1 are shown for both
the cylindrical and spherical case. The initial condition is as in the explosion problem,
where now the high pressure region is the outer one and the low pressure region is at
R ≤ 0.5. The grid is the fine grid and the time step is 2.5 × 10−4 for the cylindrical
(R-θ) case and 1.5 × 10−4 for the spherical (Z-R) one. A rarefaction wave propagates
towards the outer boundary; a shock wave and a contact surface propagates inwards. The
intensity of the shock increases as it moves towards the origin; when the shock wave is
reflected at the origin, a region of high pressure/temperature is observed. In the spherical
case, this effect is more evident.

Converging shock waves are used in experimental facility to attain high pressure and
high temperature state to be used e.g. in Inertial Confinement Fusion (ICF) or sono-
luminescence studies. A major drawback of this kind of technique is the occurrence of
shock front instabilities in converging cylindrical and spherical shock waves.5 Recently,
the inclusion of obstacles in the flow field has been proposed as a mean to transform
a converging cylindrical shock into a polygonal one,12–14 which does not suffer from the
aforementioned front instabilities. An example is given in figure 7, where four cylindrical
obstacles are used to transform the converging cylindrical shock wave into a square-shaped
shock wave. The computational domain is made discrete by an unstructured grid made
of 36 713 nodes and 72 612 triangle. In all computations with obstacles, the Courant-
Friedrichs-Lewy number is 0.5. The symmetry of the problem is not enforced to reduce
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Figure 6: Density isolines for the implosion problem. Each isoline corresponds to a density difference of
∆ρ/ρref = 0.03. Left row: cylindrical problem, right row: spherical problem. Time increases from top to
bottom.
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Figure 7: Numerical Schlieren of the cylindrical implosion problem with four cylindrical obstacles. Time
increases from left to right and from top to bottom. The first three plots show the converging shock wave
before reflection at the origin.
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Figure 8: Numerical Schlieren of the implosion problem with two obstacles (only one is shown because
of symmetry). Left: before shock-obstacle interaction. Right: after shock-obstacle interaction. In each
plot, the upper half shows the spherical problem, the lower half the cylindrical one.

the computational burden to verify the capability of the scheme to reproduce correctly
symmetry boundaries within the domain. The initial conditions correspond to a pressure
and density discontinuity at R = 0.875, with a pressure and density ratio of 10 across the
initial discontinuity. Numerical results are in good agreement with similar cases available
in the literature, where additional details on the problem geometry can be found.12

In the present study, the case of a spherical converging shock wave is also considered.
As mentioned above, for a given pressure/density initial ratio, a spherical shock wave
results in higher pressure/temperature at the origin. Figure 8 reports on a comparison
between spherical shock wave being diffracted from a spherical obstacle and a cylindrical
shock wave encountering a cylindrical obstacle. In the computations, a grid made of 22 649
nodes and 44 781 triangles was used. In the cylindrical case, the interaction between the
shock and the obstacle results in the formation of a planar portion of the shock wave,
which for the four-obstacle case eventually results in the formation of a square-shaped
shock. This is not the case for the spherical obstacle, in which the modification of the
shock geometry is less relevant. This is possibly due to the limited area ratio of the
obstacle frontal area and that of the propagating shock waves.15 A geometry more similar
to that considered in the cylindrical case would have been obtained by inserting a number
of spherical obstacles providing the same area blockage and would have required complex
three-dimensional simulations, which are left for future investigations.
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4 CONCLUSIONS

A novel unstructured-grid hybrid finite element/volume method in a cylindrical refer-
ence was presented. The proposed approach represents an extension of the well-known
node-pair scheme of Selmin3 to the case of cylindrical coordinates and moves from suitable
equivalence conditions linking finite element integrals to the corresponding finite volume
metrics, such as the cell volume or the integrated normals. Differently from previous ref-
erences, equivalence conditions were derived here without introducing any approximation
and allowed to determine all needed finite volume metric quantities from finite element
ones.

Numerical results are presented for two-dimensional compressible flows in the polar
and axisymmetric cases. These include numerical simulation of the explosion and implo-
sion problems, in which an initial discontinuity in pressure results in the formation of a
diverging and converging shock, respectively. The computed pressure and density profile
agree fairly well with one-dimensional simulation in cylindrical and spherical symmetry
over a very fine grid.

The proposed approach was applied to the simulation of converging shock waves includ-
ing their interaction with cylindrical obstacles, a case study that is relevant for Inertial
Confinement Fusion (ICF) and sonoluminescence studies. Cylindrical obstacles are placed
within the flow field to modify the cylindrical shock geometry into that of a polygonal
shock wave, to increase the shock front stability. In the present study, spherical obstacles
were considered to modify the geometry of a spherical converging shock waves. With
respect to their cylindrical counterpart, spherical obstacles introduces a smaller modifi-
cation to the shock front and are not sufficient, at least for the geometry considered here,
to reshape the spherical shock wave into a polygonal one.
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