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Abstract. A new finite volume method is proposed for numerical solution of multi-
layer shallow water equations on non-flat topography. The equations include the wind
shear stresses on the water free-surface and bed frictions on the bottom topography. The
layers can be formed in the shallow water model based on the variation of water density
which depend on the water temperature and salinity. For a water body with equal density
the model reduces to the canonical single-layer shallow water equations. The multi-layer
shallow water equations form a system of conservation laws with source terms for which
the computation of the eigenvalues is not trivial. For most practical applications, complex
eigenvalues can arise in the system and the multi-layer shallow water equations is not
hyperbolic any more. This property make the application of conventional finite volume
methods difficult even impossible for those methods which require in their formulation the
explicit computation of the eigenvalues. In the current study, we propose a new finite
volume method that avoids the solution of Riemann problems. At each time step, the
method consists of two stages to update the new solution. In the first stage, the multi-layer
shallow water equations are rewritten in a non-conservative form and the intermediate
solutions are calculated using the modified method of characteristics. The characteristic
curves are computed for each layer using the velocity field associated with each layer. The
intermediate solutions are obtained by interpolation at the departure points. In the second
stage, the numerical fluxes are reconstructed from the intermediate solutions in the first
stage and used in the conservative form of the multi-layer shallow water equations. The
proposed method avoids Riemann problem solvers, satisfies the conservation property and
suitable for multi-layer shallow water equations on non-flat topography. Numerical results
are presented for a two-layer wind-driven shallow water flow. The obtained results for
different wind conditions are considered to be representative, and might be helpful for a
fair rating of finite volume solution schemes, particularly in long time computations.
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1 INTRODUCTION

Mathematical modelling of tidal flows in water systems is based on the formulation and
solution of the appropriate equations of continuity and motion of water. In general, tidal
flows represent a three-dimensional turbulent Newtonian flow in complicated geometrical
domains. The costs of incorporating three-dimensional data in natural water courses is
often excessively high. Computational efforts needed to simulate three-dimensional tur-
bulent flows can also be significant. In view of such considerations, many researchers
have tended to use rational approximations in order to develop two-dimensional hydro-
dynamical models for shallow water flows. Indeed, under the influence of gravity, many
free-surface water flows can be modelled by the shallow water equations with the as-
sumption that the vertical scale is much smaller than any typical horizontal scale. These
equations can be derived from the depth-averaged incompressible Navier-Stokes equations
using appropriate free-surface and boundary conditions along with a hydrostatic pressure
assumption. The shallow water equations in depth-averaged form have been successfully
applied to many engineering problems and their application fields include a wide spec-
trum of phenomena other than water waves. For instance, the shallow water equations
have applications in environmental and hydraulic engineering, for example, for tidal flows
in an estuary or coastal regions, rivers, reservoir and open channel flows. Such practi-
cal flow problems are not trivial to simulate since the geometry can be complex and the
topography irregular. However, single-layer shallow water equations have the drawback
of missing some physical dynamics in the vertical motion. Therefore, during the last
decades, multi-layer shallow water models have been attracted more attention and have
became a very useful tools to solve hydrodynamical flows such as rivers, estuaries, bays
and other nearshore regions where water flows interact with the bed geometry and wind
shear stresses, see for instance [7, 5, 4, 6, 9]. The main advantage of these models is
the fact that the multi-layer shallow water model avoids the expensive three-dimensional
NavierStokes equations and obtains stratified horizontal flow velocities as vertical veloci-
ties are relatively small and the flow is still within the shallow water regime.

Numerical treatment of the multi-layer shallow water equations often presents difficul-
ties due to their nonlinear form, presence of the advective term, coupling between the
free-surface equation and the equations governing the water flow, compare [5, 4, 6, 9]
among others. In addition, the difficulty in these models comes from the coupling terms
involving some derivatives of the unknown physical variables that make the system non-
conservative and eventually non-hyperbolic. Due to these terms, a numerical scheme
originally designed for single-layer shallow water equations will lead to instabilities when
it is applied to each layer separately. In the present work we propose a new finite volume
modified method of characteristics to solve the multi-layer shallow water equations. The
method avoids the solution of Riemann problems and belongs to the predictor-corrector
type methods. The predictor stage uses the method of characteristics to reconstruct
the numerical fluxes whereas, the corrector stage recovers the conservation equations.
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The proposed method is simple, conservative, non-oscillatory and suitable for multi-layer
shallow water equations for which Riemann problems are difficult to solve. Numerical
examples are presented to verify the considered multi-layer shallow water model. We
demonstrate the model capability of calculating lateral and vertical distributions of ve-
locities for wind-driven circulation over complex bathymetry.

The present paper is organized as follows. We first give a brief description of the
model employed for multi-layer shallow water flows in section 2. In section 3, we then
formulate the finite volume modified method of characteristics for the two-layer shallow
water equations. This section includes the reconstruction of the numerical fluxes and the
discretization of source terms. Numerical results are presented in section 4. Conclusions
are summarized in section 5.

2 MULTI-LAYER SHALLOW WATER EQUATIONS

In the current study we are interested on hydraulic flows occurring on the water
free-surface where assumptions of shallow water flows applied. We consider the one-
dimensional multi-layer shallow water equations written in a conservative form as

∂thj + ∂x (hjuj) = 0, j = 1, . . . , M,
(1)

∂t (hjuj) + ∂x

(
hju

2
j +

1

2
gh2

j

)
= −ghj∂x

(
Z +

M∑

k=j+1

hk +

j−1∑

k=1

ρk

ρj

hk

)
+ Fb + Fw,

where ρj is the water density of the jth layer, hj(t, x) is the water height of the jth layer,
uj(t, x) is the local water velocity for the jth layer, j = 1, . . . , M with M is the total
number of layers, Z(x) is the bottom topography and g the gravitational acceleration.
For more details on the derivation of the system (1) we refer to [5, 4, 6, 9] among others.
Here, the water bodies 1, . . . , M are labeled from top to bottom and

0 < ρ1 ≤ · · · ≤ ρM .

In the system (1), the bed friction forcing term Fb is acting only on the lower layer and
the wind-driven forcing term Fw is acting only on the upper layer. They are given by

Fb = −δMj
τb

ρM

, Fw = δ1j
τω

ρ1

, (2)

with δkj represents the Kronecker delta, τb and τω are respectively, the bed shear stress
and the shear of the blowing wind defined by the water and wind velocities as

τb = ρMCbuM |uM | , τω = ρ1Cωω|ω|, (3)

where Cb is the bed friction coefficient, which may be either constant or estimated as
Cb = g/C2

z , where Cz = h
1/6
M /nb is the Chezy constant, with nb being the Manning
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Figure 1: Schematic of a two-layer shallow water flow.

roughness coefficient at the bed, ω is the velocity of wind at 10 m above water surface
and Cw is the coefficient of wind friction defined as [2]

Cw = ρa (0.75 + 0.067|ω|)× 10−3,

where ρa is the air density. It should be stressed that the multi-layer shallow water system
admits a convex entropy [3] and at rest the system has the steady states

uj = 0, ∂x

(
Z + hj +

M∑

k=j+1

hk +

j−1∑

k=1

ρk

ρj

hk

)
= 0, j = 1, . . . , M. (4)

Note that if ρ1 < · · · < ρM , the condition (4) reduces to

uj = 0, ∂x (Z + hM) = 0, ∂xhj = 0, j = 1, . . . , M − 1, (5)

while if ρ1 = · · · = ρM , (4) reduces to

uj = 0, ∂x (Z + h1 + · · ·+ hM) = 0. (6)

In the present work, we formulate the finite volume modified method of characteristics
for the one-dimensional two-layer hydraulic flows written in a conservative form as
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∂th1 + ∂x (h1u1) = 0, (7a)

∂t (h1u1) + ∂x

(
h1u

2
1 +

1

2
gh2

1

)
= −gh1∂x (Z + h2) +

τω

ρ1

, (7b)

∂th2 + ∂x (h2u2) = 0, (7c)

∂t (h2v2) + ∂x

(
h2u

2
2 +

1

2
gh2

2

)
= −gh2∂x

(
Z +

ρ1

ρ2

h1

)
− τb

ρ2

, (7d)

where the subscripts 1 and 2 represent respectively, the upper and lower layer in the
hydraulic system, see the Figure 1 for an illustration. For simplicity in presentation we
rewrite the equations (7) in a compact form as

∂tW + ∂xF(W) = Q(W) + R(W), (8)

where W is the vector of conserved variables, F the vector of flux functions, Q and R are
the vector of source terms

W =




h1

h1u1

h2

h1u2




, F(W) =




h1u1

h1u
2
1 +

1

2
gh2

1

h2u2

h2u
2
2 +

1

2
gh2

2




,

Q(W) =




0

−gh1∂x (Z + h2)

0

−gh2∂x (Z + rh1)




, R(W) =




0

τω

ρ1

0

− τb

ρ2




,

where the ratio r = ρ1

ρ2
. Notice that the equations (8) has to be solved in a bounded spatial

domain with smooth boundary, equipped with given boundary and initial conditions. In
practice, these conditions are problem dependent and their discussion is postponed for
section 4 where numerical results are discussed.
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3 FINITE VOLUME MODIFIED METHOD OF CHARACTERISTICS

It is well known that the calculation of the eigenvalues associated with the two-layer
system (8) is not trivial. Indeed, the four eigenvalues λk (k = 1, . . . , 4) of the Jacobian
∂F
∂W

are are the zeros of the characteristic polynomial [6]

P (λ) =
(
λ2 − 2u1λ + u2

1 − gh1

) (
λ2 − 2u2λ + u2

2 − gh2

)− g2rh1h2. (9)

For oceanographic applications with r ≈ 1 and u1 ≈ u2, a first-order approximation of
the eigenvalues can be obtained by expanding (9) in terms of 1− r and u2 − u1 as

λ1 ≈ Um −
√

g (h1 + h2),

λ2 ≈ Um +
√

g (h1 + h2),
(10)

λ3 ≈ Uc −
√√√√(1− r)g

h1h2

h1 + h2

(
1− (u2 − u1)

2

(1− r)g (h1 + h2)

)
,

λ4 ≈ Uc +

√√√√(1− r)g
h1h2

h1 + h2

(
1− (u2 − u1)

2

(1− r)g (h1 + h2)

)
,

where

Um =
h1u1 + h2u2

h1 + h2

, Uc =
h1u2 + h2u1

h1 + h2

.

It is evident that, depending on the values of the ratio r, the eigenvalues (10) may become
complex. In this case, the system is not hyperbolic and yields to the so-called Kelvin-
Helmholtz instability at the interface separating the two layers. A necessary condition for
the system (8) to be hyperbolic is

(u2 − u1)
2 < (1− r)g (h1 + h2) . (11)

It is worth remarking that the finite volume modified method of characteristics proposed
in this paper does not require the calculation of the eigenvalues (10) and can be applied
for arbitrary values of the ratio r. In this section we describe the different steps of the
proposed finite volume modified method of characteristics.

3.1 Time integration procedure

Let us discretize the spatial domain into control volumes [xi−1/2, xi+1/2] with uniform
size ∆x = xi+1/2− xi−1/2 and divide the temporal domain into subintervals [tn, tn+1] with
stepsize ∆t. Here, tn = n∆t, xi−1/2 = i∆x and xi = (i + 1/2)∆x is the center of the
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nt

+nt

x x x xi + 1i + 1/2i − 1/2 i Xi + 1/2
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δ

∆t/2

tn+ ∆t/4

Figure 2: A schematic diagram showing the control volumes and the main quantities used in the calcu-
lation of the departure points. The exact trajectory is represented by a solid line and the approximate
trajectory with a dashed line.

control volume. Integrating the equation (8) with respect to space over the control volume
[xi−1/2, xi+1/2] shown in Figure 2, we obtain the following semi-discrete equations

dWi

dt
+
Fi+1/2 −Fi−1/2

∆x
= Qi +Ri, (12)

where Wi(t) is the space average of the solution W in the control volume [xi−1/2, xi+1/2]
at time t, i.e.,

Wi =
1

∆x

∫ xi+1/2

xi−1/2

W(t, x) dx,

and Fi±1/2 = F(Wi±1/2) are the numerical fluxes at x = xi±1/2 and time t. In (12), Qi

and Ri are the difference notation for the discretized source terms Q(Wi) and S(Wi) in
(8), respectively. To integrate the system (12) in time we consider an operator splitting
method consisting first of the predictor step

W
n+1/2
i = Wn

i + ∆tRn
i , (13)

followed by the corrector step

Wn+1
i = W

n+1/2
i −∆t

Fn+1/2
i+1/2 −Fn+1/2

i−1/2

∆x
+ ∆tQn+1/2

i . (14)

7



F. Benkhaldoun and M. Seaid

It should be pointed out that as with all explicit time stepping methods the theoretical
maximum stable time step ∆t is specified according to the Courant-Friedrichs-Lwey (CFL)
condition

∆t = Cr
∆x

max
k=1,...,4

(|λn
k |

) , (15)

where Cr is a constant to be chosen less than unity. The spatial discretization of the
equation (14) is complete when a numerical construction of the n umerical fluxes Fn+1/2

i±1/2

and source terms Qn+1/2
i is chosen. In general, the construction of the numerical fluxes

requires a solution of Riemann problems at the interfaces xi±1/2. From a computational
viewpoint, this procedure is very demanding and may restrict the application of the
method for which Riemann solutions are not available. Our objective in the present work
is to present a class of finite volume modified method of characteristics (FVC) that are
simple, easy to implement, and accurately solves the equations (8) without relying on a
Riemann problem solver. This objective is reached by reformulating the system (8) in an
advective form and integrating the obtained system along the characteristics defined by
the water velocity.

3.2 Discretization of the flux gradients

To reconstruct the numerical fluxes Fn
i±1/2 in (14), we consider the method of character-

istics applied to the advective version of the system (8). In general, the advective form of
the two-layer system (8) is built such that the non-conservative variables are transported
with the same velocity field associated with each layer. Here, the two-layer shallow water
equations (8) are reformulated in an advective form as

∂tU1 + u1∂xU1 = S1,
(16)

∂1U2 + u2∂xU2 = S2,

where

U1 =

(
h1

u1

)
, S1 =

(
−h1∂xu1

−g∂x (Z + h1 + h2)

)
, (17)

U2 =

(
h2

u2

)
, S2 =

(
−h2∂xu2

−g∂x (Z + rh1 + h2)

)
. (18)

The fundamental idea of the method of characteristics is to impose a regular grid at the
new time level and to backtrack the flow trajectories to the previous time level. At the old
time level, the quantities that are needed are evaluated by interpolation from their known
values on a regular grid, for more discussions we refer the reader to [13, 11, 12] among
others. Thus, the characteristic curves associated with the equation (16) are solutions of
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the initial-value problems

dXj,i+1/2(τ)

dτ
= uj,i+1/2

(
τ, Xj,i+1/2(τ)

)
, τ ∈ [tn, tn + ∆t/2] ,

(19)
Xj,i+1/2(tn + ∆t/2) = xi+1/2, j = 1, 2.

Note that Xj,i+1/2(τ) is the departure point at time τ of a particle that will arrive at point
xi+1/2 in time tn + ∆t/2. The method of characteristics does not follow the flow particles
forward in time, as the Lagrangian schemes do, instead it traces backward the position at
time tn of particles that will reach the points of a fixed mesh at time tn +∆t/2. By doing
so, the method avoids the grid distortion difficulties that the conventional Lagrangian
schemes have, see for instance [13, 11]. The solutions of (19) can be expressed as

Xj,i+1/2(tn) = xi+1/2 −
∫ tn+∆t/2

tn

uj,i+1/2

(
Xj,i+1/2(τ)

)
dτ,

(20)
= xi+1/2 − δj,i+1/2.

To approximate the integral in (20), we used a method first proposed by [13] in the
context of semi-Lagrangian schemes to integrate the weather prediction equations. Note
that δj,i+1/2 denotes the displacement between a mesh point on the new level, xi, and the
departure point of the trajectory to this point on the previous time level Xj,i+1/2(tn), i.e.

δj,i+1/2 = xi+1/2 −Xj,i+1/2(tn).

Applying the mid-point rule to approximate the integral in (20) yields

δj,i+1/2 =
∆t

2
uj,i+1/2

(
tn+1/2, Xj,i+1/2(tn+1/2)

)
. (21)

Using the second-order extrapolation

uj,i+1/2(tn+1/2, xi+1/2) =
3

2
uj,i+1/2(tn, xi+1/2)− 1

2
uj,i+1/2(tn−1, xi+1/2), (22)

and the second-order approximation

Xj,i+1/2(tn+1/2) = xi+1/2 − 1

2
δj,i+1/2,

we obtain the following implicit formula for δj,i+1/2

δj,i+1/2 =
∆t

2

[
3

2
uj,i+1/2

(
tn, xi+1/2 − 1

2
δj,i+1/2

)
− 1

2
uj,i+1/2

(
tn−1, xi+1/2 − 1

2
δj,i+1/2

)]
.
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To compute δj,i+1/2 we consider the following successive iteration procedure:

δ
(0)
j,i+1/2 =

∆t

2

[
3

2
uj,i+1/2

(
tn, xi+1/2

)− 1

2
uj,i+1/2

(
tn−1, xi+1/2

)]
,

δ
(m)
j,i+1/2 =

∆t

2

[
3

2
uj,i+1/2

(
tn, xi+1/2

1

2
δ
(m−1)
j,i+1/2

)]
(23)

−∆t

[
1

2
uj,i+1/2

(
tn−1, xi+1/2 − 1

2
δ
(m−1)
j,i+1/2

)]
, m = 1, 2, . . . .

The iterations (23) are terminated when the following criteria∥∥∥δ
(m)
j − δ

(m−1)
j

∥∥∥
∥∥∥δ

(m−1)
j

∥∥∥
< ε, (24)

is fulfilled for the L∞-norm ‖ · ‖ and a given tolerance ε. It is also known [10] that
∥∥∥δj − δ

(m)
j

∥∥∥ ≤ ∆t

8

∥∥∥δj − δ
(m−1)
j

∥∥∥ max (|u1| , |u2|) , m = 1, 2, . . . . (25)

Hence, a necessary condition for the convergence of iterations (23) is that the velocity
gradient satisfies

max (|u1| , |u2|) ∆t < 1. (26)

Note that the condition (26) is sufficient to guarantee that the characteristics curves do
not intersect during a time step of size ∆t/2. A schematic representation of the quantities
involved in computing the departure points is shown in Figure 2.

Once the characteristics curves Xj,i+1/2(tn) are known, a solution at the cell interface
xi+1/2 is reconstructed as

Un
j,i+1/2 = Uj

(
tn + ∆t/2, xi+1/2

)
= Ũj

(
tn, Xj,i+1/2(tn)

)
, (27)

where Ũj

(
tn, Xj,i+1/2(tn)

)
is the solution at the characteristic foot computed by interpo-

lation from the gridpoints of the control volume where the departure point resides i.e.

Ũj

(
tn, Xj,i+1/2(tn)

)
= P

(
Uj

(
tn, Xj,i+1/2(tn)

))
, (28)

where P represents the interpolating polynomial. For instance, a Lagrange-based inter-
polation polynomials can be formulated as

P
(
Uj

(
tn, Xi+1/2(tn)

))
=

∑

k

lk(Xj,i+1/2)U
n
j,k, (29)

with lk are the Lagrange basis polynomials given by

lk(x) =
∏
q=0
q 6=k

x− xq

xk − xq

.

Note that other interpolation procedures in (28) can also be applied.

10
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3.3 Discretization of the source terms

Applied to the equations (16), the characteristic solutions are given by

hn
1,i+1/2 = h̃n

1,i+1/2 −
ν

2
h̃n

1,i+1/2

(
un

1,i+1 − un
1,i

)
,

un
1,i+1/2 = ũn

1,i+1/2 −
ν

2
g

(
(Z + hn

1 + hn
2 )i+1 − (Z + hn

1 + hn
2 )i

)
,

(30)

hn
2,i+1/2 = h̃n

2,i+1/2 −
ν

2
h̃n

2,i+1/2

(
un

2,i+1 − un
2,i

)
,

un
2,i+1/2 = ũn

2,i+1/2 −
ν

2
g

(
(Z + rhn

1 + hn
2 )i+1 − (Z + rhn

1 + hn
2 )i

)
,

where ν = ∆t
∆x

and

h̃n
1,i+1/2 = h1

(
tn, X1,i+1/2(tn)

)
, ũn

1,i+1/2 = u1

(
tn, X1,i+1/2(tn)

)
,

h̃n
2,i+1/2 = h2

(
tn, X2,i+1/2(tn)

)
, ũn

2,i+1/2 = u2

(
tn, X2,i+1/2(tn)

)
,

are the solutions at the characteristic foot computed by interpolation from the gridpoints
of the control volume where the departure points X1,i+1/2(tn) and X2,i+1/2(tn) belong.
The numerical fluxes Fi±1/2 in (12) are calculated using the intermediate states Wn

i±1/2

recovered accordingly from the characteristic solutions Un
j,i±1/2 in (27). Hence, the FVC

method (14) reduces to

hn+1
1,i = hn

1,i − ν
(
(h1u1)

n
i+1/2 − (h1u1)

n
i−1/2

)
,

qn+1
1,i = qn

1,i − ν

((
h1u

2
1 +

1

2
gh2

1

)n

i+1/2

−
(

h1u
2
1 +

1

2
gh2

1

)n

i−1/2

)

−1

2
νgĥn

1,i

(
(Z + h2)i+1 − (Z + h2)i−1

)
,

(31)

hn+1
2,i = hn

2,i − ν
(
(h2u2)

n
i+1/2 − (h2u2)

n
i−1/2

)
,

qn+1
2,i = qn

2,i − ν

((
h2u

2
2 +

1

2
gh2

2

)n

i+1/2

−
(

h2u
2
2 +

1

2
gh2

2

)n

i−1/2

)

−1

2
νgĥn

2,i

(
(Z + rh1)i+1 − (Z + rh1)i−1

)
,

where q1 = h1u1 and q2 = h2u2 are the water discharge associated with upper layer and
lower layer, respectively. In our FVC method, the reconstruction of the term ĥn

1,i and ĥn
2,i

in (31) is carried out such that the discretization of the source terms is well balanced with

11
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the discretization of flux gradients using the concept of C-property [2]. Here, a numerical
scheme is said to satisfy the C-property for the equations (8) if the condition

un
1 = un

2 = 0, hn
1 = C1 = constant, Z + hn

2 = C2 = constant, (32)

holds for stationary flows at rest. Therefore, the treatment of source terms in (31) is
reconstructed such that the condition (32) is preserved at the discrete level.

Let us assume a stationary flow at rest, u1 = u2 = 0 and a linear interpolation procedure
is used in the FVC method. Thus, the system (8) reduces to

∂t




h1

0

h2

0




+ ∂x




0
1

2
gh2

1

0
1

2
gh2

2




=




0

−gh1∂x (Z + h2)

0

−gh2∂x (Z + rh1)




. (33)

Applied to the system (33), the stage (30) computes

hn
1,i+1/2 =

hn
1,i + hn

1,i+1

2
,

un
1,i+1/2 = 0,

(34)

hn
2,i+1/2 =

hn
2,i + hn

2,i+1

2
,

un
2,i+1/2 = 0,

while the stage (31) updates the solution as

hn+1
1,i = hn

1,i,

qn+1
1,i = qn

1,i −
1

2
νg

((
hn

1,i+1/2

)2 − (
hn

1,i−1/2

)2
)
−∆tg

(
h1∂x (Z + h2)

)n

i
,

(35)
hn+1

2,i = hn
2,i,

qn+1
2,i = qn

2,i −
1

2
νg

((
hn

2,i+1/2

)2 − (
hn

2,i−1/2

)2
)
−∆tg

(
h2∂x (Z + rh1)

)n

i
.

To obtain stationary solutions hn+1
1,i = hn

1,i and hn+1
2,i = hn

2,i, the sum of discretized flux
gradient and source term in (35) should be equal to zero i.e.,

1

2∆x

((
hn

1,i+1/2

)2 − (
hn

1,i−1/2

)2
)

= −
(
h1∂x (Z + h2)

)n

i
,

(36)
1

2∆x

((
hn

2,i+1/2

)2 − (
hn

2,i−1/2

)2
)

= −
(
h2∂x (Z + rh1)

)n

i
.

12
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Using hn
1,i+1/2 =

hn
1,i+hn

1,i+1

2
and hn

2,i+1/2 =
hn
2,i+hn

2,i+1

2
, the condition (36) is equivalent to

1

8∆x

(
hn

1,i+1 + 2hn
1,i + hn

1,i−1

) (
hn

1,i+1 − hn
1,i−1

)
= −

(
h1∂x (Z + h2)

)n

i
,

(37)
1

8∆x

(
hn

2,i+1 + 2hn
2,i + hn

2,i−1

) (
hn

2,i+1 − hn
2,i−1

)
= −

(
h2∂x (Z + rh1)

)n

i
.

Since for stationary solutions hn
1,i+1−hn

1,i−1 = Zi+1−Zi−1 and hn
2,i+1−hn

2,i−1 = Zi+1−Zi−1,
the equations (37) become

(
h1∂x (Z + h2)

)n

i
=

hn
1,i+1/2 + hn

1,i−1/2

2

(Z + h2)
n
i+1 − (Z + h2)

n
i−1

2∆x
,

(38)(
h2∂x (Z + rh1)

)n

i
=

hn
2,i+1/2 + hn

2,i−1/2

2

(Z + rh1)
n
i+1 − (Z + rh1)

n
i−1

2∆x
.

Hence, if the source terms ĥn
1,i and ĥn

2,i in the stage of (31) are discretized as

ĥn
1,i =

1

4

(
hn

1,i+1 + 2hn
1,i + hn

1,i−1

)
,

(39)

ĥn
2,i =

1

4

(
hn

2,i+1 + 2hn
2,i + hn

2,i−1

)
,

then the proposed FVC method satisfies the C-property. A detailed analysis of conver-
gence and stability has been presented in [1] for nonlinear scalar problems. Notice that
this property is achieved by assuming a linear interpolation procedure in the predictor
stage of the FVC method. However, a well-balanced discretization of flux gradients and
source terms for a quadratic or cubic interpolation procedures can be carried out using
similar techniques.

In summary, the implementation of FVC algorithm to solve the two-layer shallow water
equations (8) is carried out in the following steps. Given

(
hn

1,i, q
n
1,i, h

n
2,i, q

n
2,i

)
, we compute(

hn+1
1,i , qn+1

1,i , hn+1
2,i , qn+1

2,i

)
via:

Step 1. Compute the departure points X1,i+1/2(tn) and X2,i+1/2(tn) using the iterative
procedure (23).

Step 2. Compute the approximations

h̃n
1,i+1/2 = h1

(
tn, X1,i+1/2(tn)

)
, ũn

1,i+1/2 = u1

(
tn, X1,i+1/2(tn)

)
,

h̃n
2,i+1/2 = h2

(
tn, X2,i+1/2(tn)

)
and ũn

2,i+1/2 = u2

(
tn, X2,i+1/2(tn)

)
,

employing an interpolation procedure.

13
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Table 1: Reference parameters used for two-layer wind-driven flow problem.

Quantity Reference value

ρ1 990 kg/m3

ρ2 1100 kg/m3

ρa 1.2 kg/m3

g 9.81 m/s2

nb 0.035 s/m1/3

Step 3. Evaluate the intermediate states hn
1,i+1/2, un

1,i+1/2, hn
2,i+1/2 and un

2,i+1/2 from the

predictor stage (30).

Step 4. Update the solutions hn+1
1,i , qn+1

1,i , hn+1
2,i and qn+1

2,i using the corrector stage (31).

Note that other interpolation procedures in Step 2 can also be applied. In our simulations
we have used a linear interpolation since for this type of interpolations the obtained
solution remains monotone and the FVC method preserves the exact C-property at the
machine precision, compare [1].

Remark 1 In order to avoid the division by very small values of h1 and h2 in the com-
putation of the velocities u1 and u2, we use the following formula [8]

uj =

√
2hjqj√

h4
j + max

(
ξ, h4

j

) , j = 1, 2, (40)

where ξ is a perturbation number selected a-priori. In our computations presented in
this study, ξ = ∆x.

It is evident that, for large values of hj, the formula (40) reduces to uj = qj/hj, j = 1, 2.

4 NUMERICAL RESULTS

To examine the performance of the proposed FVC method we consider a test example
of two-layer wind-driven flow problem in a lake with non-flat topography. The lake is of
length 2000 m and the bed consists of four bumps as

Z(x) =
4∑

k=1

Ak exp

(
−

(
x− xk

100

)2
)

,

where A1 = A3 = 0.5, A2 = 1, A4 = 0.25, x1 = 500 m, x2 = 800 m, x3 = 1100 m and
x4 = 1400 m. Initial water levels and initial velocities are given as

h2(0, x) = 7 m−Z(x), h1(0, x) = 13 m−h2(0, x)−Z(x), u1(0, x) = u2(0, x) = 0 m/s.
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Figure 3: Water free-surface for blowing wind from the east at four simulation times.

The selected values for the evaluation of the present method are summarized in Table 1.
Depending on the wind conditions, two situations are simulated namely:

(i) Wind blowing from the east corresponding to (ω = −5.1 m/s).

(ii) Wind blowing from the west corresponding to (ω = 5.1 m/s).

The computational domain is discretized in 100 gridpoints and the computed water free-
surface and velocity fields are illustrated at four different instants t = 250 s, t = 500 s,
t = 1000 s and t = 2000 s. In all our computations a fixed courant number Cr = 0.75 is
used while the time step is varied according to the stability condition (15).

In Figure 3 and Figure 4 we present numerical results for the water free-surface and
the water velocity respectively, obtained using conditions for the wind blowing from the
east. Those results obtained for the wind blowing from the west are displayed in Figure 5
and Figure 6. In Figure 3 and Figure 5, we also show the the topography used in the lake.
It is clear that using the considered wind conditions in the two-layer shallow water flow
example, the flow exhibits a hydraulic jump with different order of magnitudes near the
center of the lake. At the beginning of simulation time, the water flow enters the lake from
the eastern boundary and flows towards the eastern exit of the lake. At later time, due to
wind effects, the water flow changes the direction pointing towards the eastern coast of
the lake. Note that this recirculation features of the water flow can not be captured using
the conventional single-layer shallow water equations. A periodic behavior is also detected
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Figure 4: Water velocity for blowing wind from the east at four simulation times.
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Figure 5: Water free-surface for blowing wind from the west at four simulation times.
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Figure 6: Water velocity for blowing wind from the west at four simulation times.

for the considered two-layer shallow water flow problem subject to the wind blowing from
the east and west. The proposed FVC method performs very satisfactorily for this test
problem since it does not diffuse the moving fronts and no spurious oscillations have been
detected near steep gradients of the flow field in the computational domain. It should be
stressed that the performance of the FVC method is very attractive since the computed
solution remains stable and accurate even when coarse meshes are used without requiring
Riemann-problem solvers or complicated techniques to balance the source terms and flux
gradients.

5 CONCLUSIONS

In this paper we have proposed a simple and accurate finite volume modified method
of characteristics to solve the multi-layer shallow water equations. A detailed formulation
of the method has been presented for the special case of two-layer system. The method
combines the attractive attributes of the finite volume discretization and the method
of characteristics to yield a robust algorithm for multi-layer hydraulic flows. The new
method can compute the numerical flux corresponding to the real state of water flow
without relying on Riemann problem solvers. Furthermore, the proposed approach does
not require either nonlinear solution or special front tracking techniques.

The proposed method has been numerically examined for the test example of two-layer
wind driven flow problem on non-flat topography. The obtained results have exhibited
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accurate prediction of both, the free surface and the velocity field with correct C-property,
and stable representation of free surface response to the lower layer. The results make
it promising to be applicable also to real situations where, beyond the many sources of
complexity, there is a more severe demand for accuracy in predicting multi-layer shallow
water flows, which must be performed for long time.
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[11] M. Seäıd, On the quasi-monotone modified method of characteristics for transport-
diffusion problems with reactive sources, Comp. Methods in App. Math., 2, 186–210
(2002).
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