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Abstract. We present a robust numerical methods for solving transient flows involving
erosion and deposition of sediments. The governing equations consist of three components,
namely a hydrodynamical part described by the shallow water equations, a morphologycal
part described by the Exner equation and a sediment transport part modelled by an advec-
tion equation accounting for erosion and deposition effects. The coupled equations form
a hyperbolic system of conservation laws with source terms. Approximating numerical
solution to this system is not trivial due to the coupling between the hydrodynamics and
morphodynamics, presence of the source terms and the disparity of time scales for the
water waves and sediment loads. In the current study we propose a finite volume method
formulated for the one-dimensional problems. The numerical fluxes are reconstructed us-
ing a modified Roe’s scheme that incorporates, in its reconstruction, the sign of the Jaco-
bian matrix in the morphodynamic system. A well-balanced discretization is used for the
treatment of source terms. The method is well-balanced, non-oscillatory and suitable for
both slow and rapid interactions between hydrodynamics and morphodynamics. Numerical
results are presented for a test example of dam-break over a movable bed. The obtained
results for this test example are considered to be representative, and might be helpful for
a fair rating of finite volume solution schemes, particularly in transient flow regimes.
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1 INTRODUCTION

The main concern of the sediment transport (or morphodynamics) is to determine the
evolution of bed levels for hydrodynamics systems such as rivers, estuaries, bays and other
nearshore regions where water flows interact with the bed geometry. Example of appli-
cations include among others, beach profile changes due to severe wave climates, seabed
response to dredging procedures or imposed structures, and harbour siltation. The ability
to design numerical methods able to predict the morphodynamics evolution of the coastal
seabed has a clear mathematical and engineering relevances. In practice, morphodynam-
ics involve coupling between a hydrodynamics model, which provides a description of the
flow field leading to a specification of local sediment transport rates, and an equation
for bed level change which expresses the conservative balance of sediment volume and its
continual redistribution with time. Here, the hydrodynamic model is described by the
shallow water equations, the bed-load is modelled by the Exner equation, and the sus-
pended sediment transport is modelled by an advection equation accounting for erosion
and deposition effects. The coupled models form a hyperbolic system of conservation laws
with a source term.

Nowadays, much effort has been devoted to develop numerical schemes for morpho-
dynamic models able to resolve all hydrodynamic and morphodynamic scales. Special
attention has been given to the treatment of source term and the bed-load flux. It is
well known that shallow water equations on nonflat topography have steady-state solu-
tions in which the flux gradients are nonzero but exactly balanced by the source terms.
This well-balanced concept is also known by conservation property (C-property), compare
[9, 15] among others. The well-established Roe’s scheme [13] has been modified in [6] for
the sediment transport problems. However, for practical applications, this method may
become computationally demanding due to its treatment of the source terms. Numerical
methods based on Euler-WENO techniques have also been applied to sediment transport
equations in [12]. Authors in [14] extended the ENO and WENO schemes to sediment
transport equations, whereas the CWENO method has been applied to sediment trans-
port problems in [10]. Unfortunately, most ENO, WENO and CWENO methods that
solves real morphodynamic models correctly are still very computationally expensive. On
the other hand, numerical methods using the relaxation approximation have also been
applied to sediment transport equations in [11]. It is well known that TVD schemes have
their order of accuracy reduced to first order in the presence of shocks due to the effects
of limiters.

In the current study, a class of finite volume methods is proposed for numerical simula-
tion of transient flows involving erosion and deposition of sediments. The method consists
of a predictor stage where the numerical fluxes are constructed and a corrector stage to
recover the conservation equations. The sign matrix of the Jacobian matrix is used in
the reconstruction of the numerical fluxes. Most of these techniques have been recently
investigated in [3, 2] for solving sediment transport models without accounting for ero-
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sion and deposition effects. The current study presents an extension of this method to
transient flows involving erosion and deposition of sediments. A detailed formulation of
the sign matrix and the numerical fluxes is presented. The proposed method also satisfies
the property of well-balancing flux-gradient and source-term in the system. Numerical
results are shown for a dam-break problem over a Mobil bed.

2 GOVERNING EQUATIONS FOR SEDIMENT TRANSPORT

In the present work, we consider the following one-dimensional sediment transport
model [16]

∂h
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+
∂(hu)

∂x
=

E −D
1− p

, (1a)
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∂u3
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where t is the time, x is the streamwise coordinate, h is the water depth, u is the depth-
averaged streamwise velocity, Z is the bed elevation, c is the flux-averaged volumetric
sediment concentration, g is the gravitational acceleration, Sf is the friction slope, p
is the bed sediment porosity, E and D are sediment entrainment and deposition fluxes
across the bottom boundary of flow, representing the sediment exchange between the
water column and the bed. The density of the water-sediment mixture is defined by

ρ = ρw(1− c) + ρsc, (2)

where ρw and ρs are the densities of water and suspended sediment, respectively. The
density of the saturated bed is given by

ρ0 = ρwp+ ρs(1− p), (3)

with p denotes the bed sediment porosity. In (1),

ξ =
1

1− p
,

and A is the Grass constant for the sediment transport flux. To close the governing equa-
tions, a conventional empirical relation is used to determine the friction slope involving
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the Manning roughness nb,

Sf =
n2

bu
2

h4/3
. (4)

Since the sediment exchange between the water and the bed is a vital process for morpho-
logical evolution, a large number of empirical relations have been proposed to determine
the entrainment and deposition fluxes. For deposition of non-cohesive sediment, this study
uses the relation :

D = w(1− Ca)mCa, (5)

where w is the settling velocity of a single particle in tranquil water

ω =

√
(36ν/d)2 + 7.5ρsgd− 36ν/d

2.8
, (6)

with ν is the kinematic viscosity of water, d is the averaged diameter sediment particles,
m is the exponent indicating the effects of hindered settling due to high sediment con-
centrations, Ca is the near-bed volumetric sediment concentration, Ca = αcc where c is
the depth averaged volumetric sediment concentration and αc is a coefficient larger than
unity. In order so that the near-bed concentration does not exceed (1 − p), the coeffi-
cient αc is computed by αc = min(2, 1−p

c
). For the entrainment of cohesive material the

following relation is used

E =


ϕ(θ − θc)uh

−1d−0.2, if θ ≥ θc

0, else
(7)

where ϕ is a coefficient to control the erosion forces, θc is the critical value of Shield
parameter for the initiation of sediment motion and the Shields parameter

θ =
u2
∗

sgd
,

with

u2
∗ =

√
f

8
|u|,

is the friction velocity, with f is the Darcy-Weisbach friction factor and s is the submerged
specific gravity of sediment defined as

f =
8gn2

h
1
3

, s =
ρs

ρw

− 1.

For simplicity in presentation we rewrite the system (1) can be rearranged in the following
vector form

∂W

∂t
+
∂F(W)

∂x
= S(W). (8)
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where

W =
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Z


, F(W) =
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,

S =



E −D
1− p

−gh(
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.

Note that most of existing formulations for sediment transport models are empirical to
differing extents and have been derived from experiments and measured data. It should
be stressed that the method described in this paper can be applied to other forms of
sediment transport fluxes without major conceptual modifications. For instance, the bed-
load sediment transport functions proposed in [7, 8] can also be handled by the proposed
finite volume method.

3 SOLUTION PROCEDURE

As pointed out in [2], the bed-load involves different physical mechanisms occurring
within different time scales according to their time response to the hydrodynamics. In
practice, the sediment transport of the bed occurs on a transport time scale much longer
than the flow time scale, compare for example [6, 2, 3]. It is therefore desirable to
construct numerical schemes that preserve stability for all time scales and for all forms
of sediment discharges. In the present work, to numerically solve the equations (1) we
apply a method early developed in [3, 2] for solving sediment transport equations without
accounting for erosion-deposition effects. The method was also investigated by the authors
in [4] for shallow water flows on fixed beds. Our focus in the current study is to check
the performance of the method for solving morphodynamic models involving erosion and
deposition of sediments. Therefore, we briefly describe the numerical method and we refer
the reader to [4, 3, 2] for more details.

The system (1) can be reformulated in an advective form as

∂W
∂t

+ B(W)
∂W
∂x

= G(W), (9)
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where

B(W) =
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.

Let us discretize the spatial domain into control volumes [xi−1/2, xi+1/2] with uniform
size ∆x = xi+1/2 − xi−1/2 and divide the temporal domain into subintervals [tn, tn+1]
with uniform size ∆t. The proposed finite volume method consists of a predictor and
corrector satges. In this approach, the physical variables Wn

i+1/2 are used to compute the

averaged states in the predictor stage, while the conservative variables Wn+1
i are updated

in the corrector stage. In the preditor stage an operator splitting is used to compute the
intermediate states as

W ∗
i = W n

i + ∆tG(W n
i ),

(10)
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2

,

with R is the matrix of right eigenvectors of A, Λ is the diagonal matrix with eigenvalues
of B as its elements. In (10) sgn [B] denotes the sign matrix of B defined by

sign

(
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2
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2
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2
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,
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and ν(V ∗i , V
∗
i+1) is approximated by the Roe’s average state
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.

In the corrector stage, the solution is updated as

W n+1
i = W n

i −
∆t

∆x

(
F (W n

i+ 1
2
)− F (W n

i− 1
2
)
)

+ ∆tSn
i (11)

A detailed formulation for the sign matrix in (10) and for the approximation of the source
term Sn

i are given in [1] and will not be repeated here. It should be stressed that the
discretization of the source term in [4, 3, 2] was reconstructed such that the well-known
C-property is satisfied.

4 A NUMERICAL EXAMPLE

To verify the finite volume method we consider the test example of dam-break flow
over movable beds studied in [5]. Here, the experiment is carried out in a rectangular
channel 1.2 m long, 0.2 m wide, and 0.7 m deep. The dam is represented by a sluice
gate located in the middle of the test channel. The upstream initial water depth is set
to 0.1 m and the dam-break wave was released by rapidly lifting the sluice gate, see
[5] for a detailed description of the experiment. The sediment porosity is p = 0.28,
the constant A = 0.00215, the mesh spacing ∆x = 0.005 m and results are displayed
at time t = 0.404 s. The initial conditions are displayed in Figure 1. In Figure 2 we
present the simulated results obtained for the bed-load and the water surface. The erosion
magnitude and wavefront location are well predicted by the numerical model. As expected,
a hydraulic jump is formed near the initial dam place and propagates upstream. However,
the location of the hydraulic jump is accurately predicted by the numerical model.

5 CONCLUDING REMARKS

A coupled model of shallow water flow and suspended sediment equations was used to
simulate erosion and deposition of sediments. To solve the model we have implemented
a finite volume method using a predictor and corrector stages. The method is simple,
robust and can be implemented for large system of species transport in flow field driven
by water flows. The method captures the correct bed-load dynamics and shows it ability
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Figure 1: Initial conditions used in the computations.
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Figure 2: Computed results at different simulation times.

8



F. Benkhaldoun, S. Sari and M. Seaid

to resolve sediment transport in the shallow water flows under extreme hydrodynamical
and morphological regimes. Further studies, using two-dimensional models should be
performed.
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