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Abstract. We introduce a multilayer model to solve three-dimensional sediment transport
by wind-driven shallow water flows. The proposed multilayer model avoids the expensive
Navier-Stokes equations and obtains stratified horizontal flow velocities as vertical veloc-
ities are relatively small and the flow is still within the shallow water regime. To model
the bedload transport we consider an Exner equation for morphological evolution account-
ing for the velocity field on the bottom layer. As a numerical solver, we apply a kinetic
scheme using the finite volume discretization. Preliminary numerical results are presented
to demonstrate the performance of the proposed model and to confirm its capability to pro-
vide efficient simulations for sediment transport by wind-driven shallow water flows.
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1 Introduction

The main concern of morphodynamics is to determine the evolution of bed levels for
hydrodynamic systems such as rivers, estuaries, bays and other nearshore regions where
water flows interact with the bed geometry. Example of applications include among
others, beach profile changes due to severe wave climates, seabed response to dredging
procedures or imposed structures, and harbour siltation. The ability to design numerical
methods able to predict the morphodynamic evolution of the coastal seabed has a clear
mathematical and engineering relevances [8, 9, 10, 11, 12, 13]. In practice, morphodynamic
problems involve coupling between a hydrodynamic model, which provides a description of
the flow field leading to a specification of local sediment transport rates, and an equation
for bed level change which expresses the conservative balance of sediment volume and
its continual redistribution with time. In the current study, the hydrodynamic model is
described by a multi-layer shallow water equations and the sediment transport is modelled
by the Exner equation.

Morphodynamic coupling between classical shallow water system and Exner equation
has been recently studied in some works [4, 5]. Here we would like to extend this coupling
strategy to a multilayer shallow water model. The interest of the multilayer approach lies
in the possibility to obtain a detailed description of the velocity in the flow while keeping
a relative simplicity and a great robustness in the numerical procedure.On one hand and
as opposed to what happens for classical shallow water model the multilayer approach
allows us to consider quite complex flows as wind driven circulation in a closed basin (lake,
estuary...). On the other hand and as opposed to what happens when 3d incompressible
hydrostatic free surface Navier-Stokes equations are considered (as it is often the case in
oceannographic community) the multilayer model allows us to consider a 2d problem in
a fixed domain. Moreover the hyperbolic structure of the system and its link with the
classical shallow water model gives some keys to design very robust numerical procedures.
Some numerical evidences of the abilities of the model to reproduce physical behavior
were obtain in [3].

In this paper, first the governing equations for the morphodynamic problems are formu-
lated. Thereafter, the solution procedure employed to solve the morphodynamic problems
is presented and some preliminary results obtained for multilayer models are discussed.
Concluding remarks end the paper.

2 Governing Equations for Sediment Transport Problems

In this section we describe the physical model used for modelling the sediment trans-
port by wind-driven shallow water flows. Here, the Multilayer Saint-Venant equations
are briefly recast for the hydrodynamics followed with a short description of the Exner
equation for the morphodynamics.
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2.1 Multilayer Saint-Venant Equations

The governing equations are obtained starting from the three-dimensional hydrostatic
incompressible Navier-Stokes equations by considering a vertical P0 type discretization of
the horizontal velocity. This vertical discretization defines some layers in the flow and the
equations are vertically integrated on each layer separately. A global mass equation for
the whole flow is obtained by adding all the layer mass equations. It is coupled with N
momentum equations, one for each of the N layers introduced in the vertical discretization.
We refer to [3] for a detailed derivation of the model. We notice that the layers do not
refer to physical interface between unmiscible fluids but to a meshless discretization of the
flow. Hence the possibility of water exchange between the layers is included in the model.
The great interest of the strategy we present is to preserve an accurate description of the
velocity profile but to deal with a 2d x − y fluid model and thus to avoid the difficult
question of meshing a 3d moving domain for which the free surface may present very
sharp profiles - dam break problems, hydraulic jumps. For simplicity we consider in this
paper the 1d version of the model. Hence the equations of the multilayer shallow water
system with are given by

∂h

∂t
+

M∑
λ=1

λα
∂ (huα)

∂x
= 0,

(1)
∂ (huα)

∂t
+

∂

∂x

(
hu2

α + hpα

)
= −gh

∂B

∂x
+ Fα, α = 1, 2, . . . ,M,

where h(t, x) is the water height of the flow, uα(t, x) is the local water velocity for the
αth layer, B(x) is the bottom topography and g the gravitational acceleration. In (1), λα

denotes the relative size of the αth layer such that

M∑
α=1

λα = 1.

The pressure term pα is defined as

pα =
ghα

2
+ pα+1/2, pα+1/2 =

M∑
β=α+1

ghβ,

and Fα is the external force acting on the layer α and accounting on the friction and
momentum exhange effects. Thus

Fα = Fb + Fw + Fµ + Fu + Fp, α = 1, 2, . . . ,M, (2)

where the three first terms are related to friction effects and the two last ones are related
to the momentum exchanges between the layers that are defined through the vertical P0

discretization of the flow. Term Fu is related to advection process whereas term Fp takes
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into account pressure effect. The bed friction forcing term Fb is acting only on the lower
layer and the wind-driven forcing term Fw is acting only on the upper layer. They are
given by

Fb = −δ1α
τb

ρw

, Fw = δMα
τω

ρw

, (3)

with δkα represents the Kronecker delta, ρw the water density, τb and τω are respectively,
the bed shear stress and the shear of the blowing wind defined by the water and wind
velocities as

τb = ρwCbu1|u1|, τω = ρwCωω|ω|, (4)

where Cb is the bed friction coefficient, which may be either constant or estimated as
Cb = g/C2

z , where Cz = h
1/6
1 /nb is the Chezy constant, with nb being the Manning

roughness coefficient at the bed, ω is the velocity of wind at 10 m above water surface
and Cw is the coefficient of wind friction defined as [6]

Cw = ρa (0.75 + 0.067|ω|)× 10−3,

where ρa is the air density. The vertical kinematic eddy viscosity term Fµ takes into
account the friction between neighbouring layers and is defined as

Fµ = 2µ (1− δMα)
uα+1 − uα

hα+1 + hα

− 2µ (1− δ1α)
uα − uα−1

hα + hα−1

, (5)

where µ is the kinematic eddy viscosity. The advection term Fu is given by

Fu = uα+1/2Gα+1/2 − uα−1/2Gα−1/2, (6)

where uα+1/2 is the velocity at the interface between neighbouring the αth and (1 + α)th
layers, and Gα+1/2 is a mass exchange term between the αth and (1 + α)th layers. This
mass exchange term can be computed as

Gα+1/2 =
α∑

β=1

λβ
∂h

∂t
+

α∑
β=1

λβ
∂ (huβ)

∂x
=

α∑
β=1

λβ

∂ (huβ)

∂x
−

N∑
γ=1

λγ
∂ (huγ)

∂x

 , (7)

and the interface velocity is computed by a simple upwinding following the sign of the
mass exchange term as

uα+1/2 =

 uα, if Gα+1/2 ≥ 0,

uα+1, if Gα+1/2 < 0.
(8)

Finally the pressure term Fp is given by

Fp = Sα+1/2 − Sα−1/2 (9)
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where the term Sα+1/2 can be seen as an apparent topography for the (1+α)th layer since
it is defined by

Sα+1/2 = pα+1/2

α∑
β=1

λβ
∂h

∂x
. (10)

Note that for a single layer Saint-Venant problem, the model (1) reduces to

∂H

∂t
+

∂ (Hu)

∂x
= 0,

(11)
∂ (Hu)

∂t
+

∂

∂x

(
Hu2 +

1

2
gH2

)
= −gH

∂B

∂x
− τb

ρw

+
τω

ρw

,

where H is still the water depth but u the water velocity of the whole flow.

2.2 Exner Equation

To update the bed-load in the multilayer system (1), we used the Exner equation given
by

(1− p)
∂B

∂t
+

∂Q

∂x
= 0, (12)

where p is the sediment porosity assumed to be constant and the sediment discharge Q
can be evaluated by the simple formula introduced in [10]

Q(u1) = Au1 |u1|m , (13)

with u1 is the velocity of the lowest layer, m and A are coefficients usually obtained from
experiments taking into account the grain diameter and the kinematic viscosity of the
sediment. In practice, the values of the coefficient A are between 0 and 1 depending
on the interaction between the sediment transport and the water flow. Another formula
frequently used for the sediment discharge Q is given in [11]

Q(u1, h1) = 8
√

g(s− 1)d3
50

 n2
bu

2
1

(s− 1)d50h
1
3
1

− 0.047

 3
2

, (14)

where the grain specific gravity s = ρs

ρw
, with ρs is the sediment density. Note that most of

existing formulations for sediment transport models are empirical to differing extents and
have been derived from experiments and measured data. It should be stressed that the
method described in this paper can be applied to other forms of sediment transport fluxes
without major conceptual modifications. For instance, the bed-load sediment transport
functions proposed in [8, 9] can also be handled by the proposed multi-layer model. Notice
that the parameters nb, d50, ρs, p and A appeared in above equations are user-defined
constants in the sediment transport model. In practice, the selection of these coefficients
are problem dependent and their discussion is postponed for section 4 where numerical
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examples will be presented. In the following we refer as the coupled multilayer system
when we consider the solution h, uα, z of the system of the N + 2 equations (1) and
(12) and we refer as the coupled single-layer system when we consider the solution h, u, z
of the system of 3 equations (11)-(12). We refer to [4, 5] for a detailed analysis of the
single-layer coupled system when the fluid model is the classical single-layer shallow water
system (11). The theoretical analysis of the multilayer coupled system will be performed
in a future work. We refer to [3] for an analysis of the multilayer system (1) when the
bottom does not evolve in time.

3 Solution Procedure

In this section we describe the numerical method that is used to solve the coupled
multilayer model. Two strategies can be used. The first one is referred as the quasi-
steady approach. The fluid model is first solved on a fixed bottom until a steady state is
reached. Then the bottom is updated by using in the Exner equation (12) the stationary
flow velocity that was computed in the fluid step and we start again with the fluid problem
but with considering the new bottom profile. The interest of this method is to make
independent the numerical procedures that are used for the solution of fluid and bottom
problems. The main drawbacks are the difficulty to estimate the right time step in the
Exner equation and the limitation to deal with transient flow as dam break problems.
The other possible strategy is to consider a coupled problem where all of the variables
h, uα, z are updated at each time step.

In [3] a numerical strategy is presented for the discretization of the multilayer system
(1). This strategy is mostly based on a kinetic interpretation of the model. The kinetic for-
mulations were first introduced for other fluid models [7, 1] but is particularly interesting
in the multilayer context since it is a way to provide a stable numerical scheme without
requiring the computation of the eigenvalues of the (exact or approximated) Jacobian
matrix. The advection source term Fu can be included in the kinetic interpretation and
we use relation (7) to discretize it by using the kinetic fluxes. The real and apparent Fp

topographic source terms can be handled out by the use of an extension of the hydrostatic
reconstruction procedure that was introduced in [2]. We use a simple implicit solver to
deal with the friction source terms. In order to derive a numerical strategy for the coupled
fluid-bottom problem we have to introduce a kinetic interpretation of the Exner equation
(12). Let us first briefly recall the kinetic interpretation of the fluid model. We consider
here the simple case of the classical single-layer shallow water system (11) but the ideas
are the same for the multilayer case (1) and the details can be found in [3]. We introduce
a kinetic velocity ξ and an even probability χ(ξ) with second momentum equal to unity.
We define the related kinetic function Mf

Mf (ξ, h, u) =
h

c
χ

(
ξ − u

c

)
, c =

√
gh

2
. (15)

We claim that (h, u) is solution of the shallow water model (11) if and only if Mf is
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solution of the kinetic equation

∂Mf

∂t
+ ξ

∂Mf

∂x
= Qf , (16)

where Qf is a kernel such that its two first integrals in ξ vanish. This property becomes
clear when considering the integration of the kinetic equation (16) against 1 and ξ since
we recover the conservative part of the shallow water system (11). We now introduce a
kinetic interpretation for the Exner equation (12). We define a new density function

Mb(ξ, z, u) = zδ

(
ξ − Q(u)

z

)
, (17)

where δ denotes the Dirac measure (which is a particular case of even probability) and
we claim that (h, u, z) is solution of the coupled water flow and bed-load model (11)-(12)
if and only if (Mf , Mb) is solution of the system of linear equations

∂Mf

∂t
+ ξ

∂Mf

∂x
= Qf ,

(18)
∂Mb

∂t
+ ξ

∂Mb

∂x
= Qb.

This kinetic interpretation is very helpful to design a simple and stable finite volume
scheme for coupled multilayer system. Let us recall the general form of an explicit finite
volume scheme for this system

Un+1
i = Un

i −
∆t

∆x

(
F n

i+1/2 − F n
i−1/2

)
,

where subscript i and superscript n refer to the space discretization and time discretization
respectively, with Fi+1/2 the numerical flux whose definition characterizes the chosen finite
volume method. In kinetic scheme this numerical flux is first designed at kinetic level for
the linear system (18). The linearity makes the choice very natural and we simply apply
an upwind scheme following the sign of the kinetic velocity ξ. Since the macroscopic
system is obtained from the kinetic equations after a simple integration procedure, we
can do the same thing for the numerical scheme and we do recover a numerical scheme
for the macroscopic system by considering a simple integration of the kinetic upwind
scheme. This strategy is quite powerful since it leads to a stable and simple numerical
scheme. Stable means the numerical scheme preserves the positivity of the water height
and simple means the kinetic interpretation does not explicitly appears in the numerical
scheme since all the computations in the integration process can be perform analytically
for reasonable choice of the probability χ, compare [1] among others. For example we
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obtain the following fluxes for the Exner equation

F n
i+1/2 = F(Un

i , Un
i+1) =



Q(un
i+1), if un

i < 0 and un
i+1 < 0,

Q(un
i ), if 0 < un

i and 0 < un
i+1,

Q(un
i ) + Q(un

i+1), if un
i+1 < 0 < un

i ,

0, if un
i < 0 < un

i+1.

We notice that this numerical flux satisfies the enforced consistancy property

F n
i+1/2 ∈

[
min

(
Q(un

i ), Q(un
i+1)

)
, max

(
Q(un

i ), Q(un
i+1)

)]
.

4 Numerical Results

We present numerical results obtained for mutli-layer model when wind-driven circu-
lations in a closed basin with movable bottom are considered. We focus on this study
because it is a quite simple case that is out of the scope of classical monolayer shallow
water system. Indeed let us note that the only stationnary state of the classical shallow
water system in this configuration is a flow at rest situation where the slope of the free
surface is in equilibrium with the wind force. This analytical result is clearly unphysical
since we expect that a circulation will take place in the basin : the surface water will be
driven by the wind while a reverse current will appear near the bottom.

We present a numerical result that is obtained for such a test case. The initial bottom
topography is a parabolic bump. In Figure 4 we present that stationary circulation that
takes place in the lake. In Figure 4 we present the initial and final topography of the
basin.

5 Concluding Remarks

In this paper we present a first numerical solution to the morphodynamic problem
when the evolution of the flow is modeled by a multilayer approach. The solution is in
qualitative agreement with the expected In a near future we would like to investigate some
other possible numerical procedure in order to solve this quite complex coupling problem.
Moreover we also have to compare the numerical results
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Figure 1: Velocity field in the basin

Figure 2: Initial and final topography of the basin
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