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t. We assess in this paper the 
apability of a pressure 
orre
tion s
heme to
ompute irregular solutions ( i.e. solutions with sho
ks) of the homogeneous model forbarotropi
 two-phase �ows. This s
heme is designed to inherit the stability properties ofthe 
ontinuous problem: the unknowns (in parti
ular the density and the mass fra
tion yof the dispersed phase) are kept within their physi
al bounds, and the entropy of the systemis 
onserved, thus providing and un
onditional stability property. In addition, the s
hemekeeps the velo
ity and pressure 
onstant through 
onta
t dis
ontinuities (whi
h, here, aredis
ontinuities of y like, for instan
e, a gas/liquid interfa
e). To this aim, the massbalan
e and the transport equation for y are 
oupled in an original pressure 
orre
tion step.The spa
e dis
retization is staggered, using either the Marker-And Cell (MAC) s
hemeor non
onforming low-order �nite element approximations; in either 
ase, �nite volumete
hniques are used for all the 
onve
tion terms. Numeri
al experiments performed hereaddress the solution of various Riemann problems, often 
alled in this 
ontext "sho
k tubeproblems". They show that, provided that a su�
ient numeri
al dissipation is introdu
edin the s
heme, it 
onverges to the (weak) solution to the 
ontinuous problem. Observedorders of 
onvergen
e as a fun
tion of the mesh and time step at 
onstant CFL numbervary with the studied 
ases and the CFL number, and range from 0.5 to 1.5 for the velo
ityand the pressure; in most 
ases, the density and y 
onverge with a 0.5 order. Finally, thes
heme shoes a satisfa
tory behaviour up to CFL numbers far greater than 1.
1



W. Kheriji, R. Herbin and J.-C. Lat
hé1 INTRODUCTIONWe 
onsider in this paper a perturbation of the non-vis
ous homogeneous two-phase�ow model, let say a liquid phase and a gas phase, whi
h reads:
∂tρ + div(ρ u) = 0, (1)
∂tz + div(z u) = 0, (2)
∂t(ρ u) + div(ρ u ⊗ u) + ∇p − µ (∆u +

1

3
∇divu) = 0, (3)where ∂t is the time derivative, ρ, u and p are the (average) density, velo
ity and pressurein the �ow, z stands for the partial density of the gas phase and µ is a small positiveparameter. The problem is de�ned over an open bounded 
onne
ted subset Ω of R

d, d ≤ 3,and over a �nite time interval (0, T ). We suppose that suitable initial and boundary
onditions are provided for ρ, u and z ; in parti
ular, the pres
ribed values for ρ and
z are supposed to be positive, and ρ, u and z are supposed to be pres
ribed at thein�ow boundaries. The �rst two equations, (1) and (2), are the mixture and the gas massbalan
e, respe
tively, and the third equation (3) is the mixture momentum balan
e. Thedensity of the �uid ρ is supposed to be given by:

ρ = (1 − α) ρℓ + α ρg, α =
z

ρg

or ρ =
1

y

ρg

+
1 − y

ρℓ

, (4)where ρg and ρℓ are the phasi
 (gas and liquid, respe
tively) densities, α is 
alled the voidfra
tion (the volume of gas per spe
i�
 volume), and y = z/ρ is the gas mass fra
tion (thegas mass per spe
i�
 mass). We suppose that the �ow is barotropi
 (i.e. that the phasi
densities depend on the pressure only), and, more pre
isely, that ρℓ is 
onstant and ρg isgiven by a fun
tion of the pressure:
ρg = ̺g(p), (5)where ̺ is de�ned and in
reasing over [0, +∞), ̺(0) = 0 and lims→+∞ ρ(s) = +∞.We now re
all some estimates whi
h are satis�ed, at least formally, by the solution ofSystem (1)-(3). Equation (1) shows that ρ remains non-negative at all time. Repla
ing yby its de�nition in the gas mass balan
e (2) and using the mass balan
e (1), we get:

∂t(ρy) + ∇ · (ρy u) = ρ
(

∂ty + u · ∇y
)

= 0.Let us suppose that ρ does not vanish (whi
h is not ne
essarily true at the 
ontinuouslevel, sin
e divu is not bounded in L∞(Ω), but will be true at the dis
rete level). Thenthis relation implies that y satis�es a maximum prin
iple. So, if the initial and boundary
onditions for ρ and z are su
h that y ∈ [ε, 1] at t = 0, where 0 < ε ≤ 1 (whi
h ex
ludes2



W. Kheriji, R. Herbin and J.-C. Lat
hépurely liquid zones at the initial time), we obtain that y remains in the interval [ε, 1]at all times. From the se
ond form of (4) and the fa
t that ρ > 0, we 
an dedu
e that
ρ ∈ [min(ρℓ, ρg), max(ρℓ, ρg)] and, now from the �rst form of (4), α ∈ (0, 1], so ρg > 0 and,sin
e ̺g is one-to-one from (0, +∞) to itself, the pressure p is well de�ned and positive.Let us now de�ne the fun
tion P, from (0, +∞) to R, as a primitive of s 7→ ℘g(s)/s

2,where ℘g = ̺−1
g . Then, if we suppose that the velo
ity is pres
ribed to zero at theboundary, the solution to System (1)-(3) satis�es:

d

dt

∫

Ω

[1

2
ρ |u|2 + zP(̺g(p))

]

dx ≤ 0. (6)The quantity zP(̺g(p)) is often 
alled the Helmotz energy, 1
2
ρ |u|2 the kineti
 energy andtheir sum is the total energy of the system. Sin
e the fun
tion P is in
reasing, Inequality(6) provides an estimate on the solution.When µ = 0, System (1)-(3) is hyperboli
, with a well-known wave stru
ture. Solutionto Riemann problems always involves a 
onta
t dis
ontinuity, and two additional waves,whi
h are either sho
k or rarefa
tion waves. Through the 
onta
t dis
ontinuity, the pres-sure and velo
ity are kept 
onstant, and z, ρ or y are dis
ontinuous. The existen
e of thiswave may be inferred by just 
he
king that, provided this is 
onsistent with initial andboundary 
onditions, a solution to the system with 
onstant velo
ity and pressure exists:indeed, from the �rst form of (4), it may be seen that ρ and z are linked by an a�nerelation with 
onstant (with a 
onstant pressure) 
oe�
ients; (1) and (2) then boil downto the same transport equation (with a 
onstant velo
ity) and (3) is trivially satis�ed.The use of pressure 
orre
tion s
hemes for single phase �ow, even without theoreti
albound, seems to be widespread (see e.g. [6℄ for the seminal work and [14℄ for a 
ompre-hensive introdu
tion), be
ause this kind of s
heme, usually partly impli
it, preserve somestability with respe
t to the time step together with introdu
ing a de
oupling of the equa-tions su�
ient to hope to solve the nonlinear sytems produ
ed by the s
heme. Extensionsto multi-phase �ows are s
ar
er, and seem to be restri
ted to iterative algorithms, oftensimilar in spirit to the usual SIMPLE algorithm for in
ompressible �ows [13, 10, 8℄. Inthis paper, we perform a numeri
al study of a non-iterative pressure-
orre
tion s
hemeintrodu
ed in [4℄ whi
h enjoys the following properties:

(i) the s
heme has at least one solution, and any solution satis�es the "dis
rete-maximum-based" estimates listed above: ρ > 0, the gas mass fra
tion y satis�es a dis
retemaximum prin
iple, and p > 0.
(ii) the s
heme is un
onditionally stable, in the sense that its solution(s) satisfy a dis
reteanalogue of Inequality (6),

(iii) the pressure and velo
ity are kept 
onstant through 
onta
t dis
ontinuities.3
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héIn addition, the s
heme is 
onservative for ρ and z. It boils down to the usual proje
tions
heme for in
ompressible �ows (obtained in the present framework when y = 0 or,asymptoti
ally, when the fun
tion ̺g varies more and more slowly). Its a

ura
y wasassessed for smooth solutions in [4℄.The aim of the present paper is to 
he
k the 
onvergen
e and a

ura
y of this s
heme forweak solutions with dis
ontinuities. It is organized as follows. We �rst present the s
heme(Se
tion 2). Then we 
ompute various Riemann problems, �rst monophasi
 (y = 1)(Se
tion 3.1) then diphasi
: we address �rst a �ow involving only a 
onta
t dis
ontinuityand sho
ks (Se
tion 3.2.1), and �nally a �ow with rarefa
tion waves (Se
tion 3.2.2).2 THE SCHEME2.1 Time semi-dis
retizationLet us 
onsider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), whi
his supposed uniform for the sake of simpli
ity. Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1be the 
onstant time step. In a time semi-dis
rete setting, denoting by ρ−1 and u0 initialguesses for the density and velo
ity, the algorithm proposed in this paper is the following.0 - Initialization � Compute ρ0 by solving :
ρ0 − ρ−1

δt
+ div(ρ0u0) = 0. (7)Then, for n ≥ 0:1 - Predi
tion step � Solve for ũn+1:

ρn ũn+1 − ρn−1 un

δt
+div(ρn un ⊗ ũn+1)+∇pn−µ (∆ũn+1 +

1

3
∇divũn+1) = 0. (8)2 - Pressure 
orre
tion step � Solve for pn+1, un+1, ρn+1 and zn+1

ρn un+1 − ũn+1

δt
+ ∇(pn+1 − pn) = 0, (9a)

ρn+1 − ρn

δt
+ div(ρn+1 un+1) = 0, (9b)

zn+1 − zn

δt
+ div(zn+1 un+1) = 0, (9
)

ρn+1 = ̺(pn+1, zn+1). (9d)4
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héStep 1 is the usual predi
tion step for the velo
ity, whi
h 
onsists in solving the mo-mentum balan
e equation with the beginning-of-step pressure. Step 2 is the pressure
orre
tion step. For its solution, Equations (9a) and (9b) are 
ombined to obtain a non-linear ellipti
 problem for the pressure, whi
h reads in the time semi-dis
rete setting:
ρn+1 − ρn

δt2
− div

[ ρn+1

ρn
∇(pn+1 − pn)

]

= −
1

δt
div(ρn+1ũn+1),with ρn+1 = ̺(pn+1, zn+1).

(10)Note that, with the spa
e dis
retization 
hosen here, this equations must be establishedby making the manipulations ne
essary to derive it (i.e. multipplying the �rst equationby ρn+1/ρn, taking its divergen
e and substra
ting to the se
ond relation) at the algebrai
level [4℄.Two things are unusual in this algorithm. The �rst one is the time-shift of the densitiesin the predi
tion step; its motivation lies in the fa
t that it is ne
essary for the 
onve
tionoperator to vanish for 
onstant velo
ities (i.e. ũn+1 = 1) to ensure the 
onservation of thekineti
 energy [3, 1℄. Se
ond, the pressure 
orre
tion step, in a rather unusual way, 
ouplesthe mixture and dispersed phase mass balan
e; this 
oupling preserves the a�ne relationbetween ρn+1 and zn+1 through the equation of state, with 
oe�
ient only dependingon the pressure (taken at the same time level). Thus, as in the 
ontinuous 
ase, bothequations boil down to only one relation when the pressure is 
onstant; 
onsequently, thearguments ne
essary to obtain solutions with 
onstant velo
ity and pressure (i.e. 
onta
tdis
ontinuity waves) still hold at the dis
rete level.2.2 Dis
rete spa
es and unknownsThe s
heme has been developped (and a
tually works) with unstru
tured (in parti
ularsimpli
ial) dis
retizations, and for 2D and 3D 
ases. However, sin
e our aim here is tosolve 1D Riemann problems, wo 
hoose, for the sake of 
on
iseness, to only des
ribethe 
ase of 2D stru
tured meshes. For the same reasons, we restri
t the presentationto the Ranna
her-Turek element, but a �nite volume MAC dis
retization would also beimplemented.Let M be a de
omposition of the domain Ω into re
tangles, supposed to be regularin the usual sense of the �nite element literature (e.g. [2℄). By E and E(K) we denotethe set of all edges σ of the mesh and of the element K ∈ M respe
tively. The set ofedges in
luded in the boundary of Ω is denoted by Eext and the set of internal ones (i.e.
E \ Eext) is denoted by Eint. For ea
h internal edge of the mesh σ = K|L, nKL stands forthe normal ve
tor to σ, oriented from K to L. By |K| and |σ| we denote the measure,respe
tively, of the 
ontrol volume K and of the edge σ.The velo
ity and the pressure are dis
retized using the so-
alled Ranna
her and Turekelement [12℄. The approximation for the velo
ity is thus non-
onforming (dis
rete fun
-tions are dis
ontinuous through an edge, but the jump of their integral is imposed to be5
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hézero), the degrees of freedom are lo
ated at the 
enter of the edges of the mesh, and we
hoose the version of the element where they represent the average of the velo
ity throughan edge. The set of degrees of freedom reads:
{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.We denote by ϕ

(i)
σ the ve
tor shape fun
tion asso
iated to uσ,i, whi
h, by de�nition, reads

ϕ
(i)
σ = ϕσ e(i), where ϕσ is the Ranna
her-Turek s
alar shape fun
tion and e(i) is the ithve
tor of the 
anoni
al basis of R

d, and we de�ne uσ by uσ =
∑d

i=1 uσ,i e
(i). With thesede�nitions, we have the identity:

u =
∑

σ∈E

d
∑

i=1

uσ,i ϕ(i)
σ (x) =

∑

σ∈E

uσ ϕσ(x), for a.e. x ∈ Ω.Let ED ⊂ Eext be the set of edges where the velo
ity is pres
ribed, let say to u = uD.Then, as usual, these Diri
hlet boundary 
onditions are built-in in the de�nition of thedis
rete spa
e:
∀σ ∈ ED, for 1 ≤ i ≤ d, uσ,i =

1

|σ|

∫

σ

uD,i,where uD,i stands for the ith 
omponent of uD.The pressure, and the other variables ρ, y and z are pie
ewise 
onstant, and theirdegrees of freedom are:
{pK , ρK , yK and zK , K ∈ M}.2.3 Spa
e dis
retizationWe now des
ribe the spa
e dis
retization of ea
h equation of the time semi-dis
retealgorithm, and 
hoose to present the equations of the proje
tion step in their originalform, i.e. before the derivation of the ellipti
 problem for the pressure, whi
h may befound in [4℄. Indeed, note that this operation is purely algebrai
, in the sense that ittransforms a nonlinear algebrai
 system into another nonlinear algebrai
 system whi
h isstri
tly equivalent to the �rst one, and thus has no impa
t on the properties of the s
heme(besides, of 
ourse, the e�
ien
y issue).We begin with the mass balan
es, i.e. the se
ond and third equations the proje
tionstep. The are obtained by an upwind �nite volume dis
retization of (9b):

∀K ∈ M,
|K|

δt
(ρn+1

K − ρn
K) +

∑

σ∈E(K)

|σ| un+1
σ · nσ ρn+1

σ = 0,

|K|

δt
(zn+1

K − zn
K) +

∑

σ∈E(K)

|σ| un+1
σ · nσ zn+1

σ = 0,
(11)

6
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héwhere ρn+1
σ (resp. zn+1

σ ) is the upwind approximation of ρn+1 (resp. zn+1) at the edge σ,the de�nition of whi
h we now re
all for the sake of 
ompleteness. For an internal edge
σ = K|L, ρn+1

σ (resp. zn+1
σ ) stands for ρn+1

K (resp. zn+1
K ) if un+1

σ · nσ ≥ 0 and for ρn+1
L(resp. zn+1

L ) otherwise; for an external edge σ ∈ E(K), ρn+1
σ (resp. zn+1

σ ) is equal to ρn+1
K(resp. zn+1

K ) if the �ow is dire
ted outward Ω (i.e. un+1
σ ·nσ ≥ 0) or given by the boundary
onditions otherwise. This approximation ensures that ρn+1 > 0 as soon as ρn > 0 andthe density is pres
ribed to a positive value at in�ow boundaries. In addition, if we set

yn+1
K = zn+1

K /ρn+1
K and yn

K = zn
K/ρn

K , we may re
ast the se
ond equation of (11) as:
|K|

δt
(ρn+1

K yn+1
K − ρn

Kyn
K) +

∑

σ∈E(K)

|σ| un+1
σ · nσ ρn+1

σ yn+1
σ = 0, (12)where we re
ognize in yn+1

σ the upwind approximation of yn+1 at the edge σ. This relationthus yields that yn+1 satis�es a dis
rete maximum prin
iple by standard arguments [9℄.The velo
ity predi
tion equation is approximated by a 
ombination of a dual mesh�nite volume te
hnique, for the time derivative term and 
onve
tion term and a �niteelement te
hnique for the other terms. We de�ne the dual mesh as follows. For any
K ∈ M and any fa
e σ ∈ E(K), let DK,σ be the 
one of basis σ and of opposite vertex themass 
enter of K. The volume DK,σ is referred to as the half-diamond mesh asso
iatedto K and σ. For σ ∈ Eint, σ = K|L, we now de�ne the diamond mesh Dσ asso
iated to σby Dσ = DK,σ ∪ DL,σ; for an external edge σ ∈ Eext ∩ E(K), Dσ is just the same volumeas DK,σ. We denote by ε = Dσ|Dσ′ the fa
e separating two diamond meshes Dσ and Dσ′(see Figure 1).

Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=

K
|Lε = D

σ |D
σ ′

Figure 1: Notations for 
ontrol volumes and diamond 
ells.7
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héWith these notations, the dis
retization of the momentum balan
e equation reads:
∀σ ∈ E \ ED, for 1 ≤ i ≤ d,

|Dσ|

δt
(ρ̄n

σ ũn+1
σ,i − ρ̄n−1

σ un
σ,i) +

∑

ε∈E(Dσ)

F n
ε,σ ũn+1

ε,i + µ
∑

K∈M

∫

K

∇ũn+1 · ∇ϕ(i)
σ )

+
µ

3

∑

K∈M

∫

K

div ũn+1 div ϕ(i)
σ −

∑

K∈M

∫

K

pn ∇ · ϕ(i)
σ = 0,

(13)
where ρ̄n

σ and ρ̄n−1
σ stands for an approximation of the density on the edge σ at time tnand tn−1 respe
tively (whi
h must not be identi�ed with the approximation of the densityused in the mass balan
e and denoted by ρn

σ), F n
ε,σ is the dis
rete mass �ux through thedual edge ε outward Dσ, and ũn+1

ε,i stands for an approximation of ũn+1
i on ε wi
h maybe 
hosen 
entered or upwind. In the 
entered 
ase, for an internal side ε = Dσ|Dσ′ , wethus get ũn+1

ε,i = (ũn+1
σ,i + ũn+1

σ′,i )/2 while, in the upwind 
ase, we have ũn+1
ε,i = ũn+1

σ,i if
F n

ε,σ ≥ 0 and ũn+1
ε,i = ũn+1

σ′,i otherwise. The main motivation to implement a �nite volumeapproximation for the �rst two terms is to obtain a dis
rete equivalent of the kineti
energy theorem, whi
h holds in the 
ase of homogeneus Diri
hlet boundary 
onditionsand reads:
∑

σ∈Eint

[ |Dσ|

δt
(ρ̄n

σ ũn+1
σ − ρ̄n−1

σ un
σ) +

∑

ε∈E(Dσ)

F n
ε,σ ũn+1

ε

]

· uσ ≥

1

2

∑

σ∈Eint

|Dσ|

δt

[

¯̺n
σ |ũn+1

σ |2 − ¯̺n−1
σ |un

σ|
2
]

.
(14)For this result to be valid, the ne
essary 
ondition is that the 
onve
tion operator vanishesfor a 
onstant velo
ity, i.e. that the following dis
rete mass balan
e over the diamond 
ellsis satis�ed [1, 3℄:

∀σ ∈ Eint,
|Dσ|

δt
(ρ̄n

σ − ρ̄n−1
σ ) +

∑

ε∈E(Dσ)

F n
ε,σ = 0.This governs the 
hoi
e for the de�nition of the density approximation ρ̄σ and the mass�uxes Fε,σ. The density ρ̄σ is de�ned by a weighted average: ∀σ ∈ Eint, σ = K|L,

|Dσ| ρ̄σ = |DK,σ| ρK + |DL,σ| ρL and ∀σ ∈ Eext \ ED, σ ∈ E(K), ρ̄σ = ρK . The �ux Fε,σthrough the dual edge ε of the half diamond 
ell DK,σ is 
omputed as the �ux through εof a 
onstant divergen
e lifting of the mass �uxes through the edges of the primal 
ell K,i.e. the quantities (|σ|uσ · nσ ρσ)σ∈E(K) appearing in the dis
rete mass balan
e (11). Fora detailed 
onstru
tion of this approximation, we refer to [1℄.The dis
retization of (9a) is 
onsistent with that of the momentum balan
e (13), i.e.we use a mass lumping te
hnique for the unsteady term and a standard �nite element8



W. Kheriji, R. Herbin and J.-C. Lat
héformulation for the gradient of the pressure in
rement:
∀σ ∈ Eint, for 1 ≤ i ≤ d,

|Dσ|

δt
ρ̄n

σ (un+1
σ,i − ũn+1

σ,i ) −
∑

K∈M

∫

K

(pn+1 − pn) ∇ · ϕ(i)
σ dx = 0.3 NUMERICAl EXPERIMENTSIn this se
tion, we assess the behaviour of the s
heme, for various Riemann problems(often 
alled also "sho
k tube problems"), the solution of whi
h 
an be 
omputed ana-lyti
ally. These problems are hyperboli
 (i.e. the system of PDES is (1)-(3) with µ = 0),monodimensional, and their initial solution is 
omposed by two uniform states (the left(L) and right (R) states), separated by a dis
ontinuity, lo
ated by 
onvention at the origin

x = 0. We take bene�t of the fa
t that the pressure 
orre
tion s
heme is able to keep
y = 1 at any time, if the initial and boundary 
onditions allow it, to �rst begin with asingle phase �ow, namely the solution of the so-
alled "Sod sho
k tube" problem. Next,we turn to two-phase �ows, namely "two-�uid sho
k tube" model problems.The 
omputations presented here are performed with the ISIS 
ode [7℄, built fromthe software 
omponent library PELICANS [11℄, both under development at IRSN andavailable as free softwares. This 
omputer 
ode is devoted to the solution of 2D or 3Dproblems (as the s
heme presented in previous se
tions), so we are lead to de�ne anequivalent 2D problem, designed to boil down to the addressed 1D Riemann problem.The domain Ω is re
tangular, and the mesh is 
omposed of only one horizontal stripe ofmeshes (see Figure 2). We impose a symmetry 
ondition to the velo
ity at the top andbottom of the domain Ω (i.e y-velo
ity uy = 0 and ∇ux · t = 0, where t is a unit tangentve
tor to the boundary ∂Ω), whi
h is satis�ed by a solution invariant with respe
t to these
ond 
oordinate. At the left side of the domain, we impose the value (uL, 0) to thevelo
ity u and the value zL to the partial gas density z. At the right side of the domain,we pres
ribe Neumann boundary 
ondition, with a surfa
e for
ing term equal to −pR n,where n is the unit outward normal ve
tor to the boundary ∂Ω.As des
ribed above, for the velo
ity 
onve
tion term in the momentum balan
e equa-tion, the approximation of the velo
ity at the edges of the dual mesh (see Figure 3) maybe 
hosen 
entered or upwind; we will refer to the �rst option in the following as the 
en-tered 
heme (even if upwinding is used in the dis
rete mass balan
es), and to the se
ondone as the upwind s
heme.

9
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Ω Figure 3: Dual �nite volume mesh3.1 Sod sho
k tubeWe present here the numeri
al results for the well-known monophasi
 Sod sho
k tube;here, the (
omputed) gas mass fra
tion is y ≡ 1, whi
h redu
es the homogeneous model tothe isothermal Euler equations. In this �ow, the wave stru
ture 
onsists of a rarefa
tionwave travelling to the left and a sho
k travelling to the right. The (1D) 
ontinuous problemis posed over the interval (−2, 3) and, for the 
omputation, we take Ω = (−2, 3)× [0, 0.01].The two initial 
onstant states are given by:
(

ρ
u

)

L

=

(

1
0

)

,

(

ρ
u

)

R

=

(

0.125
0

)

.The equation of state is given by p = ρRT , the parameters R and T being adjusted toprodu
e RT = 1.Numeri
al experiments show that, as may be expe
ted, the s
heme does not seemto 
onverge if we let µ = 0 and the 
entered approximation in the momentum balan
eequation; indeed, we observe in this 
ase, espe
ially for the velo
ity, the usual odd-evende
oupling 
hara
teristi
 of the behaviour of the 
entered s
heme for the 
onve
tion equa-tion. For any other option, i.e. either if we keep an arti�
ial residual vis
osity or if we usethe upwind approximation, 
onvergen
e to the (weak) solution of the 
ontinuous problemseems to be a
hieved.A numeri
al solution at t = 1 obtained with 2000 meshes, δt = 0.00125 and a residualvis
osity of µ = 0.001 is presented in Figure 4, together with the exa
t solution. Using
v = 1.6 (whi
h approximately 
orresponds to the velo
ity of the faster wave, namely thesho
k) as velo
ity range, these numeri
al parameters 
orrespond to CFL= v δt/h = 0.8.10
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héThe in�uen
e of the arti�
ial vis
osity on the a

ura
y of the s
heme is then 
he
ked.We observe on Figure 5 and Figure 6 that, as expe
ted, taking too large vis
osities yieldsina

urate results, be
ause the solved problem is too far from the original one, and that,with a too low value of the vis
osity, the 
ontrol on the solution is lost. In between, weobserve a plateau, whi
h shows that the a

ura
y of the s
heme is rather robust withrespe
t to the arti�
ial vis
osity. The optimal value for µ de
reases with the time andspa
e steps. Comparing Figures 5 and 6, we note that the plateau is wider for CFL=9.6,but the overall shape of the 
urves remains essentially similar for both CFL numbers.We end this study by reporting the a

ura
y of the s
heme as a fun
tion of the timeand spa
e step, with two 
onstant CFL numbers, for the 
entered and upwind s
heme;for the �rst option, the vis
osity is given the 
onstant value µ = 0.001, and µ = 0 (hereand everywhere hereafter) for the upwind option.. For the 
entered s
heme, the observedorders of 
onvergen
e are about 0.5 and 1 at CFL=0.8 and 9.6 respe
tively, for both thevelo
ity and the pressure. For the upwind s
heme, the order of 
onvergen
e is 0.75 in any
ase.
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Figure 4: Sod sho
k tube problem - Numeri
al solution at t = 1 with the 
entered s
heme (µ = 0.001),
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hé3.2 Two-�uid sho
k tubeWe present here the numeri
al results for the two-�uid sho
k tube. The 
ontin-uous problem is posed over (−3, 2) and we use a 
omputational re
tangular domain
Ω = [−3, 2] × [0, 0.01]. The equation of state is given by:

p =
RTρlρy

ρℓ + ρy − ρ
,where the parameters R and T are adjusted to produ
e RT = 10 and the liquid densityis set 
onstant ρℓ = 0.8. We perform two tests, where the initial left and right 
onstantstates are 
hosen in order to yield two di�erent �ow stru
tures: a 
onta
t dis
ontinuity (inboth 
ases), propagating between two sho
k waves in the �rst 
ase, and two rarefa
tionwaves in the se
ond one.3.2.1 First 
ase: sho
k-
onta
t dis
ontinuity-sho
kThe two initial 
onstant states are given by:





ρ
u

y





L

=





1
5
0.3



 ,





ρ
u

y





R

=





2
1
0.8



 .The same 
onvergen
e behaviour as in the monophasi
 
ase (i.e. 
onvergen
e of theupwind s
heme or of the 
entered s
heme with a residual vis
osity and non-
onvergen
eof the 
entered s
heme with µ = 0) is observed here.A numeri
al solution at t = 0.1 with 5000 meshes, CFL = 0.75, arti�
ial vis
osity
µ = 0.002 and 
entered adve
tion term is plotted on Figure 8, together with the exa
tsolution. Taking v = 18.16 (the velo
ity of the fastest wave, namely the right sho
k), theCFL number for these numeri
al parameters is CFL=v δt/h = 0.75.Then we plot on Figure 9 the solution obtained at t = 0.1 with various CFL numbers,with the 
entered s
heme, 2500 meshes and an arti�
ial vis
osity µ = 0.002. We observethat the solution is qualitatively 
orre
t up to CFL of the order of 20, and then stronglydeteriorates, showing in parti
ular wild velo
ity and pressure os
illations at the 
onta
tdis
ontinuity.Finally, we assess the a

ura
y of the s
heme as a fun
tion of the time and spa
e step,with two 
onstant CFL numbers, for the 
entered and upwind s
heme; for the �rst option,the vis
osity is given the 
onstant value µ = 0.002. For the 
entered s
heme, the observedorders of 
onvergen
e are about 1.5 and 1. at CFL=0.75 and 9 respe
tively, for both thevelo
ity and the pressure; for ρ the order of 
onvergen
e is 0.7 for both CFL numbers,and 0.5 for y. For the upwind s
heme, the order of 
onvergen
e is 1 for both the velo
ityand the pressure and 0.5 for ρ and y, at any CFL number.14
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Figure 8: Two-phase test 1: sho
k-
onta
t dis
ontinuity-sho
k - Numeri
al solution at t = 0.1, with the
entered s
heme, 5000 meshes, CFL== 0.75 and an arti�
ial vis
osity µ = 0.002. Velo
ity (top left),pressure (top right), gas mass fra
tion (bottom left), density (bottom right)
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tion (bottom left) and density (bottom right),as a fun
tion of the mesh size, with �xed CFL numbers.
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hé3.2.2 Se
ond 
ase: rarefa
tion-
onta
t dis
ontinuity-rarefa
tionWe 
on
lude this study by 
omputing a diphasi
 test with rarefa
tion waves. The twoinitial 
onstant states are given by:




ρ
u

y





L

=





1
0
0.3



 ,





ρ
u

y





R

=





2
2
0.8



 .A numeri
al solution at t = 0.1, with 5000 meshes, δt = 0.0001, µ = 0.002 and with the
entered s
heme presented on Figure 11. It 
oin
ides with the solution.
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Figure 11: Two-phase test 2: rarefa
tion wave-
onta
t dis
ontinuity-rarefa
tion wave - Numeri
al solutionat t = 0.1, with the 
entered s
heme, 5000 meshes, δt = 0.0001 and an arti�
ial vis
osity µ = 0.002.Velo
ity (top left), pressure (top right), gas mass fra
tion (bottom left), density (bottom right)
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W. Kheriji, R. Herbin and J.-C. Lat
hé4 CONCLUSIONSIn this paper, we have assessed the 
apability of a s
heme issued from the in
om-pressible �ow 
ontext, namely a pressure 
orre
tion s
heme, to 
ompute dis
ontinuoussolutions of hyperboli
 problems. Numeri
al tests show that, provided that a su�
ientnumeri
al dissipation is introdu
ed in the s
heme, it 
onverges to the (weak) solution tothe 
ontinuous problem; in addition, it shoes a satisfa
tory behaviour up to CFL numbersfar greater than 1. Sin
e the s
heme boils down to usual proje
tion s
hemes when thedensity is 
onstant, this approa
h seems promising for the development of solvers robustwith respe
t to the �ow Ma
h number.The present work should be extended in di�erent ways. First, further numeri
al testsshould address problems in more than one spa
e dimension. Se
ond, the arti�
ial vis
osityne
essary for the s
heme to 
onverge 
ould be monitored by a posteriori indi
ators, forinstan
e following the ideas developped in [5℄. Finally, the observed 
onvergen
e shouldbe 
onforted by theoreti
al arguments, even if a 
omplete 
onvergen
e proof seems outof rea
h, be
ause of the la
k of 
ompa
tness of sequen
es of dis
rete solutions due, inparti
ular, to the absen
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