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Abstract. We assess in this paper the capability of a pressure correction scheme to
compute irreqular solutions (i.e. solutions with shocks) of the homogeneous model for
barotropic two-phase flows. This scheme is designed to inherit the stability properties of
the continuous problem: the unknowns (in particular the density and the mass fraction y
of the dispersed phase) are kept within their physical bounds, and the entropy of the system
15 conserved, thus providing and unconditional stability property. In addition, the scheme
keeps the velocity and pressure constant through contact discontinuities (which, here, are
discontinuities of y like, for instance, a gas/liquid interface). To this aim, the mass
balance and the transport equation fory are coupled in an original pressure correction step.
The space discretization is staggered, using either the Marker-And Cell (MAC) scheme
or nonconforming low-order finite element approximations; in either case, finite volume
techniques are used for all the convection terms. Numerical experiments performed here
address the solution of various Riemann problems, often called in this context "shock tube
problems”. They show that, provided that a sufficient numerical dissipation is introduced
in the scheme, it converges to the (weak) solution to the continuous problem. Observed
orders of convergence as a function of the mesh and time step at constant CFL number
vary with the studied cases and the CFL number, and range from 0.5 to 1.5 for the velocity
and the pressure; in most cases, the density and y converge with a 0.5 order. Finally, the
scheme shoes a satisfactory behaviour up to CFL numbers far greater than 1.
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1 INTRODUCTION

We consider in this paper a perturbation of the non-viscous homogeneous two-phase
flow model, let say a liquid phase and a gas phase, which reads:

Op +div(pu) =0, (1)

Oz + div(zu) =0, (2)
1

O(pu)+divipu®@u) + Vp — p (Au + §Vdivu) =0, (3)

where 0, is the time derivative, p, u and p are the (average) density, velocity and pressure
in the flow, z stands for the partial density of the gas phase and p is a small positive
parameter. The problem is defined over an open bounded connected subset 2 of R¢, d < 3,
and over a finite time interval (0,7"). We suppose that suitable initial and boundary
conditions are provided for p, w and z ; in particular, the prescribed values for p and
z are supposed to be positive, and p, u and z are supposed to be prescribed at the
inflow boundaries. The first two equations, (1) and (2), are the mixture and the gas mass
balance, respectively, and the third equation (3) is the mixture momentum balance. The
density of the fluid p is supposed to be given by:

(1 ) oo + z 1
p=U—q)prTapg, &=— or p=-——"7_,
! Pyg ﬁ_i_l_y
Pg Pe

: (4)

where p, and p, are the phasic (gas and liquid, respectively) densities, « is called the void
fraction (the volume of gas per specific volume), and y = z/p is the gas mass fraction (the
gas mass per specific mass). We suppose that the flow is barotropic (i.e. that the phasic
densities depend on the pressure only), and, more precisely, that p, is constant and p, is
given by a function of the pressure:

Py = 04(P), (5)

where o is defined and increasing over [0, 4+00), 0(0) = 0 and lim,_, o, p(s) = +00.

We now recall some estimates which are satisfied, at least formally, by the solution of
System (1)-(3). Equation (1) shows that p remains non-negative at all time. Replacing y
by its definition in the gas mass balance (2) and using the mass balance (1), we get:

A(py) +V - (pyu) = p Oy +u-Vy) = 0.

Let us suppose that p does not vanish (which is not necessarily true at the continuous
level, since divu is not bounded in L>°(Q2), but will be true at the discrete level). Then
this relation implies that y satisfies a maximum principle. So, if the initial and boundary
conditions for p and z are such that y € [¢,1] at ¢ = 0, where 0 < ¢ <1 (which excludes
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purely liquid zones at the initial time), we obtain that y remains in the interval [e, 1]
at all times. From the second form of (4) and the fact that p > 0, we can deduce that
p € [min(py, py), max(pe, py)] and, now from the first form of (4), a € (0, 1], so p, > 0 and,
since g, is one-to-one from (0, 4+00) to itself, the pressure p is well defined and positive.

Let us now define the function P, from (0, +00) to R, as a primitive of s — p,(s)/s?,
where p, = gg_l. Then, if we suppose that the velocity is prescribed to zero at the
boundary, the solution to System (1)-(3) satisfies:

d

G |l lul +=Ple, )] de <o. ©)

The quantity zP(o,(p)) is often called the Helmotz energy, 3 p|u|* the kinetic energy and
their sum is the total energy of the system. Since the function P is increasing, Inequality
(6) provides an estimate on the solution.

When p = 0, System (1)-(3) is hyperbolic, with a well-known wave structure. Solution
to Riemann problems always involves a contact discontinuity, and two additional waves,
which are either shock or rarefaction waves. Through the contact discontinuity, the pres-
sure and velocity are kept constant, and z, p or y are discontinuous. The existence of this
wave may be inferred by just checking that, provided this is consistent with initial and
boundary conditions, a solution to the system with constant velocity and pressure exists:
indeed, from the first form of (4), it may be seen that p and z are linked by an affine
relation with constant (with a constant pressure) coefficients; (1) and (2) then boil down
to the same transport equation (with a constant velocity) and (3) is trivially satisfied.

The use of pressure correction schemes for single phase flow, even without theoretical
bound, seems to be widespread (see e.g. [0| for the seminal work and [11| for a compre-
hensive introduction), because this kind of scheme, usually partly implicit, preserve some
stability with respect to the time step together with introducing a decoupling of the equa-
tions sufficient to hope to solve the nonlinear sytems produced by the scheme. Extensions
to multi-phase flows are scarcer, and seem to be restricted to iterative algorithms, often
similar in spirit to the usual SIMPLE algorithm for incompressible flows |13, 10, &|]. In
this paper, we perform a numerical study of a non-iterative pressure-correction scheme
introduced in [1] which enjoys the following properties:

(7) the scheme has at least one solution, and any solution satisfies the "discrete-maximum-
based" estimates listed above: p > 0, the gas mass fraction y satisfies a discrete
maximum principle, and p > 0.

(74) the scheme is unconditionally stable, in the sense that its solution(s) satisfy a discrete
analogue of Inequality (6),

(7i7) the pressure and velocity are kept constant through contact discontinuities.
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In addition, the scheme is conservative for p and z. It boils down to the usual projection
scheme for incompressible flows (obtained in the present framework when y = 0 or,
asymptotically, when the function p, varies more and more slowly). Its accuracy was
assessed for smooth solutions in [1].

The aim of the present paper is to check the convergence and accuracy of this scheme for
weak solutions with discontinuities. It is organized as follows. We first present the scheme
(Section 2). Then we compute various Riemann problems, first monophasic (y = 1)
(Section 3.1) then diphasic: we address first a flow involving only a contact discontinuity
and shocks (Section 3.2.1), and finally a flow with rarefaction waves (Section 3.2.2).

2 THE SCHEME
2.1 Time semi-discretization

Let us consider a partition 0 =ty < t; < ... <ty =T of the time interval (0,7"), which
is supposed uniform for the sake of simplicity. Let 0t =¢,,; — ¢, forn=0,1,...,N —1
be the constant time step. In a time semi-discrete setting, denoting by p~! and «° initial
guesses for the density and velocity, the algorithm proposed in this paper is the following.

0 - Initialization — Compute p° by solving :
0_ -1
% + div(p°u®) = 0. (7)

Then, for n > 0:

1 - Prediction step — Solve for @™

n ~n+l n—1 u”

w" —p
5t

p

1
+div(p" " @) + Vp" —p (Aw"T + 3 Vdiva"t!) = 0. (8)

2 - Pressure correction step  Solve for p»!, un*! pntl and 2"+

untl — ,&n-i-l
Yt - ) =0, (9%)
n+l _ n
r__r 5 g div(p" ™t w1 =0, (9b)
n+l _ n
% + diV(Zn+1 ’U,n+1) = 0, (9C)
pn-i-l — Q(pn-i-l’ Zn-l—l)‘ (9d)
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Step 1 is the usual prediction step for the velocity, which consists in solving the mo-
mentum balance equation with the beginning-of-step pressure. Step 2 is the pressure
correction step. For its solution, Equations (9a) and (9b) are combined to obtain a non-
linear elliptic problem for the pressure, which reads in the time semi-discrete setting:

1
V(p"+1 _ pn>] — _g diV(pn+1ﬂn+1),

with p" ™ = o(p

pn-l—l _ pn i pn—l—l
P —an
ot p (10)

n—l—l7 zn—l—l).

Note that, with the space discretization chosen here, this equations must be established
by making the manipulations necessary to derive it (i.e. multipplying the first equation
by p"1/p", taking its divergence and substracting to the second relation) at the algebraic

level [1].

Two things are unusual in this algorithm. The first one is the time-shift of the densities
in the prediction step; its motivation lies in the fact that it is necessary for the convection
operator to vanish for constant velocities (i.e. 4" = 1) to ensure the conservation of the
kinetic energy |3, 1]. Second, the pressure correction step, in a rather unusual way, couples
the mixture and dispersed phase mass balance; this coupling preserves the affine relation
between p"*! and "™ through the equation of state, with coefficient only depending
on the pressure (taken at the same time level). Thus, as in the continuous case, both
equations boil down to only one relation when the pressure is constant; consequently, the
arguments necessary to obtain solutions with constant velocity and pressure (i.e. contact
discontinuity waves) still hold at the discrete level.

2.2 Discrete spaces and unknowns

The scheme has been developped (and actually works) with unstructured (in particular
simplicial) discretizations, and for 2D and 3D cases. However, since our aim here is to
solve 1D Riemann problems, wo choose, for the sake of conciseness, to only describe
the case of 2D structured meshes. For the same reasons, we restrict the presentation
to the Rannacher-Turek element, but a finite volume MAC discretization would also be
implemented.

Let M be a decomposition of the domain €2 into rectangles, supposed to be regular
in the usual sense of the finite element literature (e.g. |2]). By £ and £(K) we denote
the set of all edges o of the mesh and of the element K € M respectively. The set of
edges included in the boundary of € is denoted by & and the set of internal ones (i.e.
E \ Eext) is denoted by &y. For each internal edge of the mesh 0 = K|L, ng, stands for
the normal vector to o, oriented from K to L. By |K| and |o| we denote the measure,
respectively, of the control volume K and of the edge o.

The velocity and the pressure are discretized using the so-called Rannacher and Turek
element [12]. The approximation for the velocity is thus non-conforming (discrete func-
tions are discontinuous through an edge, but the jump of their integral is imposed to be
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zero), the degrees of freedom are located at the center of the edges of the mesh, and we
choose the version of the element where they represent the average of the velocity through
an edge. The set of degrees of freedom reads:

{u,;, 0 €&, 1<i<d}.

We denote by cp((,i) the vector shape function associated to u, ;, which, by definition, reads

gogi) = ¢, e®, where ¢, is the Rannacher-Turek scalar shape function and e® is the it
vector of the canonical basis of R¢, and we define u, by u, = Zle Uy e . With these

definitions, we have the identity:

d
u = Z Zu"ﬂ' oW () = Zug oo (x), forae. x e Q.

oef =1 oef

Let £p C &t be the set of edges where the velocity is prescribed, let say to u = up.
Then, as usual, these Dirichlet boundary conditions are built-in in the definition of the
discrete space:

)

1
\V/O'GgD, fOI']_SZSd, UJZ’:W /,U'D,ia
o o

where up; stands for the ith component of up.

The pressure, and the other variables p, y and z are piecewise constant, and their
degrees of freedom are:
{pK7 PK, YK and ZK, K e M}

2.3 Space discretization

We now describe the space discretization of each equation of the time semi-discrete
algorithm, and choose to present the equations of the projection step in their original
form, i.e. before the derivation of the elliptic problem for the pressure, which may be
found in |1]. Indeed, note that this operation is purely algebraic, in the sense that it
transforms a nonlinear algebraic system into another nonlinear algebraic system which is
strictly equivalent to the first one, and thus has no impact on the properties of the scheme
(besides, of course, the efficiency issue).

We begin with the mass balances, 7.e. the second and third equations the projection
step. The are obtained by an upwind finite volume discretization of (9b):

K]

VK € M, = (i = i)+ > ol ur ong plt =0,
cel(K
K cE(5) (11)
= (23 — 2 + Z lo| utt - n, 2 =0,
ceé(K)
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where p*! (resp. z"™!) is the upwind approximation of p"™! (resp. z"*1) at the edge o,
the definition of which we now recall for the sake of completeness. For an internal edge
o = K|L, p?*' (vesp. 207') stands for pii (vesp. zjth) if w*! - m, > 0 and for p}*!
(resp. z7T1) otherwise; for an external edge o € E(K), pi*! (resp. 27*!) is equal to pjt!

(resp. zj:t) if the flow is directed outward  (i.e. u"*'-n, > 0) or given by the boundary

conditions otherwise. This approximation ensures that p"*' > 0 as soon as p" > 0 and
the density is prescribed to a positive value at inflow boundaries. In addition, if we set

Yttt = 2ot and Y = 27 /ph, we may recast the second equation of (11) as:
|K| ( n+1, n+1 n,n Z n+1 n+1l, n+1 __ 0 12
W Pk Yx — pKyK) + |U| U, "No Py o ) ( )

cel(K)

"1 the upwind approximation of y"*! at the edge o. This relation

thus yields that ¢! satisfies a discrete maximum principle by standard arguments [9].

where we recognize in y ntl

The velocity prediction equation is approximated by a combination of a dual mesh
finite volume technique, for the time derivative term and convection term and a finite
element technique for the other terms. We define the dual mesh as follows. For any
K € M and any face 0 € £(K), let D, be the cone of basis ¢ and of opposite vertex the
mass center of K. The volume Dg , is referred to as the half-diamond mesh associated
to K and 0. For 0 € &, 0 = K|L, we now define the diamond mesh D, associated to o
by Dy = Dg » U Dy ,; for an external edge o € Eqe N E(K), D, is just the same volume
as Dy ,. We denote by ¢ = D,| D, the face separating two diamond meshes D, and D,
(see Figure 1).

Figure 1: Notations for control volumes and diamond cells.
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With these notations, the discretization of the momentum balance equation reads:

Vo e E\Ep, for 1 <i<d,

|DU| -n ~n+l —n—1 n ~n+1 n+1
(St (pcr oz po‘ crz Z F +:U’ Z V’U, VLPU) (13)
e€€(Dy) KeM
T Z/dwu"“ div @ — Z/p V-l =0,
KeM K KeM

where p? and p?~! stands for an approximation of the density on the edge o at time "
and t"~! respectively (which must not be identified with the approximation of the density
used in the mass balance and denoted by p%), F?, is the discrete mass flux through the
dual edge € outward D,, and u"Jrl stands for an approximation of 'u,"+1 on € wich may
be chosen centered or upwind. In the centered case, for an internal side ¢ = D,|D,:, we
thus get a7 = (al;' + a'')/2 while, in the upwind case, we have /" = )" if
F', >0 and u?’jl = u",t.l otherwise. The main motivation to implement a finite volume
approximation for the first two terms is to obtain a discrete equivalent of the kinetic
energy theorem, which holds in the case of homogeneus Dirichlet boundary conditions

and reads:

S o s YR, w

c€€int 665 Dg) (14)

—n ‘~n+1|2 —Z—l ‘UZ 2:|.
1nt

For this result to be valid, the necessary condition is that the convection operator vanishes
for a constant velocity, i.e. that the following discrete mass balance over the diamond cells
is satisfied |1, 3]

Dol 1
Yo € Ein, n_ S FL =0
(S t 5t (po pcr )+ £,0
568(D0)

This governs the choice for the definition of the density approximation p, and the mass
fluxes F.,. The density p, is defined by a weighted average: Vo € &y, 0 = K|L,
|Dy| po = | Dkl px + |Dro| pr and Vo € Ex \ Ep, 0 € E(K), py = pr. The flux F.,
through the dual edge € of the half diamond cell D, is computed as the flux through ¢
of a constant divergence lifting of the mass fluxes through the edges of the primal cell K,
i.e. the quantities (|o|uy - Ny py)oce(x) appearing in the discrete mass balance (11). For
a detailed construction of this approximation, we refer to [1].

The discretization of (9a) is consistent with that of the momentum balance (13), i.e
we use a mass lumping technique for the unsteady term and a standard finite element
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formulation for the gradient of the pressure increment:

Vo € En, for 1 < i <d,
Do ke n L n n )
|6t|p0(ua,—l_l_uo‘,—l_l)_ Z /(p +1_p)V(P(().) d.]}':O
Kem”’ K

3 NUMERICAI EXPERIMENTS

In this section, we assess the behaviour of the scheme, for various Riemann problems
(often called also "shock tube problems"), the solution of which can be computed ana-
lytically. These problems are hyperbolic (i.e. the system of PDES is (1)-(3) with x = 0),
monodimensional, and their initial solution is composed by two uniform states (the left
(L) and right (R) states), separated by a discontinuity, located by convention at the origin
x = 0. We take benefit of the fact that the pressure correction scheme is able to keep
y = 1 at any time, if the initial and boundary conditions allow it, to first begin with a
single phase flow, namely the solution of the so-called "Sod shock tube" problem. Next,
we turn to two-phase flows, namely "two-fluid shock tube" model problems.

The computations presented here are performed with the ISIS code |7], built from
the software component library PELICANS [11], both under development at IRSN and
available as free softwares. This computer code is devoted to the solution of 2D or 3D
problems (as the scheme presented in previous sections), so we are lead to define an
equivalent 2D problem, designed to boil down to the addressed 1D Riemann problem.
The domain € is rectangular, and the mesh is composed of only one horizontal stripe of
meshes (see Figure 2). We impose a symmetry condition to the velocity at the top and
bottom of the domain 2 (i.e y-velocity u, = 0 and Vu, -t = 0, where ¢ is a unit tangent
vector to the boundary 0f2), which is satisfied by a solution invariant with respect to the
second coordinate. At the left side of the domain, we impose the value (ur,0) to the
velocity uw and the value 2z to the partial gas density z. At the right side of the domain,
we prescribe Neumann boundary condition, with a surface forcing term equal to —pgr n,
where n is the unit outward normal vector to the boundary 0f).

As described above, for the velocity convection term in the momentum balance equa-
tion, the approximation of the velocity at the edges of the dual mesh (see Figure 3) may
be chosen centered or upwind; we will refer to the first option in the following as the cen-
tered cheme (even if upwinding is used in the discrete mass balances), and to the second
one as the upwind scheme.
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PM,YM,PM | PK,YK,DPK
g ug/ o

Figure 2: Rectangle finite volume mesh M

N — < N N
I ' N\D, I
Q (N [4e [ (N R
I D, D\ Dy I
[ [ o N\ [

Figure 3: Dual finite volume mesh

3.1 Sod shock tube

We present here the numerical results for the well-known monophasic Sod shock tube;
here, the (computed) gas mass fraction is y = 1, which reduces the homogeneous model to
the isothermal Euler equations. In this flow, the wave structure consists of a rarefaction
wave travelling to the left and a shock travelling to the right. The (1D) continuous problem
is posed over the interval (—2, 3) and, for the computation, we take Q = (—2,3) x[0,0.01].
The two initial constant states are given by:

(2),=(o) (), (G)

The equation of state is given by p = pRT, the parameters R and T being adjusted to
produce RT = 1.

Numerical experiments show that, as may be expected, the scheme does not seem
to converge if we let © = 0 and the centered approximation in the momentum balance
equation; indeed, we observe in this case, especially for the velocity, the usual odd-even
decoupling characteristic of the behaviour of the centered scheme for the convection equa-
tion. For any other option, i.e. either if we keep an artificial residual viscosity or if we use
the upwind approximation, convergence to the (weak) solution of the continuous problem
seems to be achieved.

A numerical solution at ¢ = 1 obtained with 2000 meshes, 6t = 0.00125 and a residual
viscosity of p = 0.001 is presented in Figure 4, together with the exact solution. Using
v = 1.6 (which approximately corresponds to the velocity of the faster wave, namely the
shock) as velocity range, these numerical parameters correspond to CFL= v dt/h = 0.8.

10
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The influence of the artificial viscosity on the accuracy of the scheme is then checked.
We observe on Figure 5 and Figure 6 that, as expected, taking too large viscosities yields
inaccurate results, because the solved problem is too far from the original one, and that,
with a too low value of the viscosity, the control on the solution is lost. In between, we
observe a plateau, which shows that the accuracy of the scheme is rather robust with
respect to the artificial viscosity. The optimal value for p decreases with the time and
space steps. Comparing Figures 5 and 6, we note that the plateau is wider for CFL=9.6,
but the overall shape of the curves remains essentially similar for both CFL numbers.

We end this study by reporting the accuracy of the scheme as a function of the time
and space step, with two constant CFL numbers, for the centered and upwind scheme;
for the first option, the viscosity is given the constant value p = 0.001, and p = 0 (here
and everywhere hereafter) for the upwind option.. For the centered scheme, the observed
orders of convergence are about 0.5 and 1 at CFL=0.8 and 9.6 respectively, for both the
velocity and the pressure. For the upwind scheme, the order of convergence is 0.75 in any
case.

1.2 . — . 1 . — :
numerical ——— numerical ——
1 act 0.9 exact
08
08 { 0.7
2 { S o6}
S8 o6} g
T £ o5
04 ! ] 04
02 } 03t
' 1 02t ; 1
0 | | | | | § 0.1 | | | | | | | w
-2 -15 -1 05 0 05 1 15 2 25 3 . -2 -15 -1 05 0 05 1 15 2 25 3
X X

Figure 4: Sod shock tube problem - Numerical solution at ¢ = 1 with the centered scheme (1 = 0.001),
2000 meshes and 6t = 0.00125 (i.e. CFL—0.8).

11
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0.01
2 o
5 0.01 %
T ¢
> o
k] k]
E £ o001}
g g
5 <
5 0.001 ‘ 5
- g —
- X - b
. . . . 0.0001 . X . .
le-05 0.0001 0.001 0.01 0.1 le-05 0.0001 0.001 0.01 0.1
viscosity viscosity
Figure 5: Sod shock tube problem - Error at ¢ = 1, in L' norm (in space) for the velocity (left) and
pressure (right) for three meshes, as a function of the artificial viscosity p, with CFL= 0.8 (centered
scheme).
T 0.01 .
h=0.01 —— h=0.01 ——
h=0.005 h=0.005
- h=0.0025 = o h=0.0025 -
8
g i
b 0.01 | =
o o ~
€ £ - e
\8— é \.///
S : 5 0001} .
o} " o] i
— —
0.001 ]
1e-05 le-04 0.001 0.01 0.1 1e-05 le-04 0.001 0.01 0.1
viscosity viscosity
Figure 6: Sod shock tube problem - Error at ¢ = 1, in L' norm (in space) for the velocity (left) and

pressure (right) for three meshes, as a function of the artificial viscosity p, with CFL= 9.6 (centered
scheme).
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centered CFL=9.6 —=— centered CFL=9.6 —=—
001 F centered CFL=0.8 i centered CFL=0.8
upwind CFL=9.6 -~ upwind CFL=9.6 -~
upwind CFL=0.8 upwind CFL=0.8

0.001 | s ]

0.001 x 1

X

L1 error norm of velocity
L1 error norm of pressure

: 1le-04 :
0.001 0.01 0.001 0.01

space step space step

Figure 7: Sod shock tube problem - Error at ¢ = 1, in L' norm (in space) for the velocity (left) and
pressure (right), as a function of the mesh size, with fixed CFL numbers.
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3.2 Two-fluid shock tube

We present here the numerical results for the two-fluid shock tube. The contin-
uous problem is posed over (—3,2) and we use a computational rectangular domain
Q= [-3,2] x [0,0.01]. The equation of state is given by:

_ _RTpipy
petpy—p
where the parameters R and T are adjusted to produce RT = 10 and the liquid density
is set constant py = 0.8. We perform two tests, where the initial left and right constant
states are chosen in order to yield two different flow structures: a contact discontinuity (in

both cases), propagating between two shock waves in the first case, and two rarefaction
waves in the second one.

3.2.1 First case: shock-contact discontinuity-shock

The two initial constant states are given by:

p 1 p 2
Uu =15 , u =11
(Y 0.3 Y ) g 0.8

The same convergence behaviour as in the monophasic case (i.e. convergence of the
upwind scheme or of the centered scheme with a residual viscosity and non-convergence
of the centered scheme with 1 = 0) is observed here.

A numerical solution at ¢ = 0.1 with 5000 meshes, CFL = 0.75, artificial viscosity
# = 0.002 and centered advection term is plotted on Figure 8, together with the exact
solution. Taking v = 18.16 (the velocity of the fastest wave, namely the right shock), the
CFL number for these numerical parameters is CEL=v §t/h = 0.75.

Then we plot on Figure 9 the solution obtained at ¢ = 0.1 with various CFL numbers,
with the centered scheme, 2500 meshes and an artificial viscosity p = 0.002. We observe
that the solution is qualitatively correct up to CFL of the order of 20, and then strongly
deteriorates, showing in particular wild velocity and pressure oscillations at the contact
discontinuity.

Finally, we assess the accuracy of the scheme as a function of the time and space step,
with two constant CFL numbers, for the centered and upwind scheme; for the first option,
the viscosity is given the constant value p = 0.002. For the centered scheme, the observed
orders of convergence are about 1.5 and 1. at CFL=0.75 and 9 respectively, for both the
velocity and the pressure; for p the order of convergence is 0.7 for both CFL numbers,
and 0.5 for y. For the upwind scheme, the order of convergence is 1 for both the velocity
and the pressure and 0.5 for p and y, at any CFL number.
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Figure 8: Two-phase test 1: shock-contact discontinuity-shock - Numerical solution at ¢ = 0.1, with the
centered scheme, 5000 meshes, CFL== 0.75 and an artificial viscosity p = 0.002. Velocity (top left),
pressure (top right), gas mass fraction (bottom left), density (bottom right)
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centered scheme, 2500 meshes and an artificial viscosity p = 0.002, for various CFL numbers. Velocity
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3.2.2 Second case: rarefaction-contact discontinuity-rarefaction

We conclude this study by computing a diphasic test with rarefaction waves. The two
initial constant states are given by:

p 1 p 2
u =10 , u =1 2
(A 0.3 Yy ) s 0.8

A numerical solution at ¢t = 0.1, with 5000 meshes, 6t = 0.0001, ;4 = 0.002 and with the
centered scheme presented on Figure 11. It coincides with the solution.
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Figure 11: Two-phase test 2: rarefaction wave-contact discontinuity-rarefaction wave - Numerical solution

at t = 0.1, with the centered scheme, 5000 meshes, 6t = 0.0001 and an artificial viscosity pu = 0.002.
Velocity (top left), pressure (top right), gas mass fraction (bottom left), density (bottom right)
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4 CONCLUSIONS

In this paper, we have assessed the capability of a scheme issued from the incom-
pressible flow context, namely a pressure correction scheme, to compute discontinuous
solutions of hyperbolic problems. Numerical tests show that, provided that a sufficient
numerical dissipation is introduced in the scheme, it converges to the (weak) solution to
the continuous problem; in addition, it shoes a satisfactory behaviour up to CFL numbers
far greater than 1. Since the scheme boils down to usual projection schemes when the
density is constant, this approach seems promising for the development of solvers robust
with respect to the flow Mach number.

The present work should be extended in different ways. First, further numerical tests
should address problems in more than one space dimension. Second, the artificial viscosity
necessary for the scheme to converge could be monitored by a posteriori indicators, for
instance following the ideas developped in |5]|. Finally, the observed convergence should
be conforted by theoretical arguments, even if a complete convergence proof seems out
of reach, because of the lack of compactness of sequences of discrete solutions due, in
particular, to the absence of diffusion terms.
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