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W. Kheriji, R. Herbin and J.-C. Lathé1 INTRODUCTIONWe onsider in this paper a perturbation of the non-visous homogeneous two-phase�ow model, let say a liquid phase and a gas phase, whih reads:
∂tρ + div(ρ u) = 0, (1)
∂tz + div(z u) = 0, (2)
∂t(ρ u) + div(ρ u ⊗ u) + ∇p − µ (∆u +

1

3
∇divu) = 0, (3)where ∂t is the time derivative, ρ, u and p are the (average) density, veloity and pressurein the �ow, z stands for the partial density of the gas phase and µ is a small positiveparameter. The problem is de�ned over an open bounded onneted subset Ω of R

d, d ≤ 3,and over a �nite time interval (0, T ). We suppose that suitable initial and boundaryonditions are provided for ρ, u and z ; in partiular, the presribed values for ρ and
z are supposed to be positive, and ρ, u and z are supposed to be presribed at thein�ow boundaries. The �rst two equations, (1) and (2), are the mixture and the gas massbalane, respetively, and the third equation (3) is the mixture momentum balane. Thedensity of the �uid ρ is supposed to be given by:

ρ = (1 − α) ρℓ + α ρg, α =
z

ρg

or ρ =
1

y

ρg

+
1 − y

ρℓ

, (4)where ρg and ρℓ are the phasi (gas and liquid, respetively) densities, α is alled the voidfration (the volume of gas per spei� volume), and y = z/ρ is the gas mass fration (thegas mass per spei� mass). We suppose that the �ow is barotropi (i.e. that the phasidensities depend on the pressure only), and, more preisely, that ρℓ is onstant and ρg isgiven by a funtion of the pressure:
ρg = ̺g(p), (5)where ̺ is de�ned and inreasing over [0, +∞), ̺(0) = 0 and lims→+∞ ρ(s) = +∞.We now reall some estimates whih are satis�ed, at least formally, by the solution ofSystem (1)-(3). Equation (1) shows that ρ remains non-negative at all time. Replaing yby its de�nition in the gas mass balane (2) and using the mass balane (1), we get:

∂t(ρy) + ∇ · (ρy u) = ρ
(

∂ty + u · ∇y
)

= 0.Let us suppose that ρ does not vanish (whih is not neessarily true at the ontinuouslevel, sine divu is not bounded in L∞(Ω), but will be true at the disrete level). Thenthis relation implies that y satis�es a maximum priniple. So, if the initial and boundaryonditions for ρ and z are suh that y ∈ [ε, 1] at t = 0, where 0 < ε ≤ 1 (whih exludes2



W. Kheriji, R. Herbin and J.-C. Lathépurely liquid zones at the initial time), we obtain that y remains in the interval [ε, 1]at all times. From the seond form of (4) and the fat that ρ > 0, we an dedue that
ρ ∈ [min(ρℓ, ρg), max(ρℓ, ρg)] and, now from the �rst form of (4), α ∈ (0, 1], so ρg > 0 and,sine ̺g is one-to-one from (0, +∞) to itself, the pressure p is well de�ned and positive.Let us now de�ne the funtion P, from (0, +∞) to R, as a primitive of s 7→ ℘g(s)/s

2,where ℘g = ̺−1
g . Then, if we suppose that the veloity is presribed to zero at theboundary, the solution to System (1)-(3) satis�es:

d

dt

∫

Ω

[1

2
ρ |u|2 + zP(̺g(p))

]

dx ≤ 0. (6)The quantity zP(̺g(p)) is often alled the Helmotz energy, 1
2
ρ |u|2 the kineti energy andtheir sum is the total energy of the system. Sine the funtion P is inreasing, Inequality(6) provides an estimate on the solution.When µ = 0, System (1)-(3) is hyperboli, with a well-known wave struture. Solutionto Riemann problems always involves a ontat disontinuity, and two additional waves,whih are either shok or rarefation waves. Through the ontat disontinuity, the pres-sure and veloity are kept onstant, and z, ρ or y are disontinuous. The existene of thiswave may be inferred by just heking that, provided this is onsistent with initial andboundary onditions, a solution to the system with onstant veloity and pressure exists:indeed, from the �rst form of (4), it may be seen that ρ and z are linked by an a�nerelation with onstant (with a onstant pressure) oe�ients; (1) and (2) then boil downto the same transport equation (with a onstant veloity) and (3) is trivially satis�ed.The use of pressure orretion shemes for single phase �ow, even without theoretialbound, seems to be widespread (see e.g. [6℄ for the seminal work and [14℄ for a ompre-hensive introdution), beause this kind of sheme, usually partly impliit, preserve somestability with respet to the time step together with introduing a deoupling of the equa-tions su�ient to hope to solve the nonlinear sytems produed by the sheme. Extensionsto multi-phase �ows are sarer, and seem to be restrited to iterative algorithms, oftensimilar in spirit to the usual SIMPLE algorithm for inompressible �ows [13, 10, 8℄. Inthis paper, we perform a numerial study of a non-iterative pressure-orretion shemeintrodued in [4℄ whih enjoys the following properties:

(i) the sheme has at least one solution, and any solution satis�es the "disrete-maximum-based" estimates listed above: ρ > 0, the gas mass fration y satis�es a disretemaximum priniple, and p > 0.
(ii) the sheme is unonditionally stable, in the sense that its solution(s) satisfy a disreteanalogue of Inequality (6),

(iii) the pressure and veloity are kept onstant through ontat disontinuities.3



W. Kheriji, R. Herbin and J.-C. LathéIn addition, the sheme is onservative for ρ and z. It boils down to the usual projetionsheme for inompressible �ows (obtained in the present framework when y = 0 or,asymptotially, when the funtion ̺g varies more and more slowly). Its auray wasassessed for smooth solutions in [4℄.The aim of the present paper is to hek the onvergene and auray of this sheme forweak solutions with disontinuities. It is organized as follows. We �rst present the sheme(Setion 2). Then we ompute various Riemann problems, �rst monophasi (y = 1)(Setion 3.1) then diphasi: we address �rst a �ow involving only a ontat disontinuityand shoks (Setion 3.2.1), and �nally a �ow with rarefation waves (Setion 3.2.2).2 THE SCHEME2.1 Time semi-disretizationLet us onsider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), whihis supposed uniform for the sake of simpliity. Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1be the onstant time step. In a time semi-disrete setting, denoting by ρ−1 and u0 initialguesses for the density and veloity, the algorithm proposed in this paper is the following.0 - Initialization � Compute ρ0 by solving :
ρ0 − ρ−1

δt
+ div(ρ0u0) = 0. (7)Then, for n ≥ 0:1 - Predition step � Solve for ũn+1:

ρn ũn+1 − ρn−1 un

δt
+div(ρn un ⊗ ũn+1)+∇pn−µ (∆ũn+1 +

1

3
∇divũn+1) = 0. (8)2 - Pressure orretion step � Solve for pn+1, un+1, ρn+1 and zn+1

ρn un+1 − ũn+1

δt
+ ∇(pn+1 − pn) = 0, (9a)

ρn+1 − ρn

δt
+ div(ρn+1 un+1) = 0, (9b)

zn+1 − zn

δt
+ div(zn+1 un+1) = 0, (9)

ρn+1 = ̺(pn+1, zn+1). (9d)4



W. Kheriji, R. Herbin and J.-C. LathéStep 1 is the usual predition step for the veloity, whih onsists in solving the mo-mentum balane equation with the beginning-of-step pressure. Step 2 is the pressureorretion step. For its solution, Equations (9a) and (9b) are ombined to obtain a non-linear ellipti problem for the pressure, whih reads in the time semi-disrete setting:
ρn+1 − ρn

δt2
− div

[ ρn+1

ρn
∇(pn+1 − pn)

]

= −
1

δt
div(ρn+1ũn+1),with ρn+1 = ̺(pn+1, zn+1).

(10)Note that, with the spae disretization hosen here, this equations must be establishedby making the manipulations neessary to derive it (i.e. multipplying the �rst equationby ρn+1/ρn, taking its divergene and substrating to the seond relation) at the algebrailevel [4℄.Two things are unusual in this algorithm. The �rst one is the time-shift of the densitiesin the predition step; its motivation lies in the fat that it is neessary for the onvetionoperator to vanish for onstant veloities (i.e. ũn+1 = 1) to ensure the onservation of thekineti energy [3, 1℄. Seond, the pressure orretion step, in a rather unusual way, ouplesthe mixture and dispersed phase mass balane; this oupling preserves the a�ne relationbetween ρn+1 and zn+1 through the equation of state, with oe�ient only dependingon the pressure (taken at the same time level). Thus, as in the ontinuous ase, bothequations boil down to only one relation when the pressure is onstant; onsequently, thearguments neessary to obtain solutions with onstant veloity and pressure (i.e. ontatdisontinuity waves) still hold at the disrete level.2.2 Disrete spaes and unknownsThe sheme has been developped (and atually works) with unstrutured (in partiularsimpliial) disretizations, and for 2D and 3D ases. However, sine our aim here is tosolve 1D Riemann problems, wo hoose, for the sake of oniseness, to only desribethe ase of 2D strutured meshes. For the same reasons, we restrit the presentationto the Rannaher-Turek element, but a �nite volume MAC disretization would also beimplemented.Let M be a deomposition of the domain Ω into retangles, supposed to be regularin the usual sense of the �nite element literature (e.g. [2℄). By E and E(K) we denotethe set of all edges σ of the mesh and of the element K ∈ M respetively. The set ofedges inluded in the boundary of Ω is denoted by Eext and the set of internal ones (i.e.
E \ Eext) is denoted by Eint. For eah internal edge of the mesh σ = K|L, nKL stands forthe normal vetor to σ, oriented from K to L. By |K| and |σ| we denote the measure,respetively, of the ontrol volume K and of the edge σ.The veloity and the pressure are disretized using the so-alled Rannaher and Turekelement [12℄. The approximation for the veloity is thus non-onforming (disrete fun-tions are disontinuous through an edge, but the jump of their integral is imposed to be5



W. Kheriji, R. Herbin and J.-C. Lathézero), the degrees of freedom are loated at the enter of the edges of the mesh, and wehoose the version of the element where they represent the average of the veloity throughan edge. The set of degrees of freedom reads:
{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.We denote by ϕ

(i)
σ the vetor shape funtion assoiated to uσ,i, whih, by de�nition, reads

ϕ
(i)
σ = ϕσ e(i), where ϕσ is the Rannaher-Turek salar shape funtion and e(i) is the ithvetor of the anonial basis of R

d, and we de�ne uσ by uσ =
∑d

i=1 uσ,i e
(i). With thesede�nitions, we have the identity:

u =
∑

σ∈E

d
∑

i=1

uσ,i ϕ(i)
σ (x) =

∑

σ∈E

uσ ϕσ(x), for a.e. x ∈ Ω.Let ED ⊂ Eext be the set of edges where the veloity is presribed, let say to u = uD.Then, as usual, these Dirihlet boundary onditions are built-in in the de�nition of thedisrete spae:
∀σ ∈ ED, for 1 ≤ i ≤ d, uσ,i =

1

|σ|

∫

σ

uD,i,where uD,i stands for the ith omponent of uD.The pressure, and the other variables ρ, y and z are pieewise onstant, and theirdegrees of freedom are:
{pK , ρK , yK and zK , K ∈ M}.2.3 Spae disretizationWe now desribe the spae disretization of eah equation of the time semi-disretealgorithm, and hoose to present the equations of the projetion step in their originalform, i.e. before the derivation of the ellipti problem for the pressure, whih may befound in [4℄. Indeed, note that this operation is purely algebrai, in the sense that ittransforms a nonlinear algebrai system into another nonlinear algebrai system whih isstritly equivalent to the �rst one, and thus has no impat on the properties of the sheme(besides, of ourse, the e�ieny issue).We begin with the mass balanes, i.e. the seond and third equations the projetionstep. The are obtained by an upwind �nite volume disretization of (9b):

∀K ∈ M,
|K|

δt
(ρn+1

K − ρn
K) +

∑

σ∈E(K)

|σ| un+1
σ · nσ ρn+1

σ = 0,

|K|

δt
(zn+1

K − zn
K) +

∑

σ∈E(K)

|σ| un+1
σ · nσ zn+1

σ = 0,
(11)

6



W. Kheriji, R. Herbin and J.-C. Lathéwhere ρn+1
σ (resp. zn+1

σ ) is the upwind approximation of ρn+1 (resp. zn+1) at the edge σ,the de�nition of whih we now reall for the sake of ompleteness. For an internal edge
σ = K|L, ρn+1

σ (resp. zn+1
σ ) stands for ρn+1

K (resp. zn+1
K ) if un+1

σ · nσ ≥ 0 and for ρn+1
L(resp. zn+1

L ) otherwise; for an external edge σ ∈ E(K), ρn+1
σ (resp. zn+1

σ ) is equal to ρn+1
K(resp. zn+1

K ) if the �ow is direted outward Ω (i.e. un+1
σ ·nσ ≥ 0) or given by the boundaryonditions otherwise. This approximation ensures that ρn+1 > 0 as soon as ρn > 0 andthe density is presribed to a positive value at in�ow boundaries. In addition, if we set

yn+1
K = zn+1

K /ρn+1
K and yn

K = zn
K/ρn

K , we may reast the seond equation of (11) as:
|K|

δt
(ρn+1

K yn+1
K − ρn

Kyn
K) +

∑

σ∈E(K)

|σ| un+1
σ · nσ ρn+1

σ yn+1
σ = 0, (12)where we reognize in yn+1

σ the upwind approximation of yn+1 at the edge σ. This relationthus yields that yn+1 satis�es a disrete maximum priniple by standard arguments [9℄.The veloity predition equation is approximated by a ombination of a dual mesh�nite volume tehnique, for the time derivative term and onvetion term and a �niteelement tehnique for the other terms. We de�ne the dual mesh as follows. For any
K ∈ M and any fae σ ∈ E(K), let DK,σ be the one of basis σ and of opposite vertex themass enter of K. The volume DK,σ is referred to as the half-diamond mesh assoiatedto K and σ. For σ ∈ Eint, σ = K|L, we now de�ne the diamond mesh Dσ assoiated to σby Dσ = DK,σ ∪ DL,σ; for an external edge σ ∈ Eext ∩ E(K), Dσ is just the same volumeas DK,σ. We denote by ε = Dσ|Dσ′ the fae separating two diamond meshes Dσ and Dσ′(see Figure 1).

Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=

K
|Lε = D

σ |D
σ ′

Figure 1: Notations for ontrol volumes and diamond ells.7



W. Kheriji, R. Herbin and J.-C. LathéWith these notations, the disretization of the momentum balane equation reads:
∀σ ∈ E \ ED, for 1 ≤ i ≤ d,

|Dσ|

δt
(ρ̄n

σ ũn+1
σ,i − ρ̄n−1

σ un
σ,i) +

∑

ε∈E(Dσ)

F n
ε,σ ũn+1

ε,i + µ
∑

K∈M

∫

K

∇ũn+1 · ∇ϕ(i)
σ )

+
µ

3

∑

K∈M

∫

K

div ũn+1 div ϕ(i)
σ −

∑

K∈M

∫

K

pn ∇ · ϕ(i)
σ = 0,

(13)
where ρ̄n

σ and ρ̄n−1
σ stands for an approximation of the density on the edge σ at time tnand tn−1 respetively (whih must not be identi�ed with the approximation of the densityused in the mass balane and denoted by ρn

σ), F n
ε,σ is the disrete mass �ux through thedual edge ε outward Dσ, and ũn+1

ε,i stands for an approximation of ũn+1
i on ε wih maybe hosen entered or upwind. In the entered ase, for an internal side ε = Dσ|Dσ′ , wethus get ũn+1

ε,i = (ũn+1
σ,i + ũn+1

σ′,i )/2 while, in the upwind ase, we have ũn+1
ε,i = ũn+1

σ,i if
F n

ε,σ ≥ 0 and ũn+1
ε,i = ũn+1

σ′,i otherwise. The main motivation to implement a �nite volumeapproximation for the �rst two terms is to obtain a disrete equivalent of the kinetienergy theorem, whih holds in the ase of homogeneus Dirihlet boundary onditionsand reads:
∑

σ∈Eint

[ |Dσ|

δt
(ρ̄n

σ ũn+1
σ − ρ̄n−1

σ un
σ) +

∑

ε∈E(Dσ)

F n
ε,σ ũn+1

ε

]

· uσ ≥

1

2

∑

σ∈Eint

|Dσ|

δt

[

¯̺n
σ |ũn+1

σ |2 − ¯̺n−1
σ |un

σ|
2
]

.
(14)For this result to be valid, the neessary ondition is that the onvetion operator vanishesfor a onstant veloity, i.e. that the following disrete mass balane over the diamond ellsis satis�ed [1, 3℄:

∀σ ∈ Eint,
|Dσ|

δt
(ρ̄n

σ − ρ̄n−1
σ ) +

∑

ε∈E(Dσ)

F n
ε,σ = 0.This governs the hoie for the de�nition of the density approximation ρ̄σ and the mass�uxes Fε,σ. The density ρ̄σ is de�ned by a weighted average: ∀σ ∈ Eint, σ = K|L,

|Dσ| ρ̄σ = |DK,σ| ρK + |DL,σ| ρL and ∀σ ∈ Eext \ ED, σ ∈ E(K), ρ̄σ = ρK . The �ux Fε,σthrough the dual edge ε of the half diamond ell DK,σ is omputed as the �ux through εof a onstant divergene lifting of the mass �uxes through the edges of the primal ell K,i.e. the quantities (|σ|uσ · nσ ρσ)σ∈E(K) appearing in the disrete mass balane (11). Fora detailed onstrution of this approximation, we refer to [1℄.The disretization of (9a) is onsistent with that of the momentum balane (13), i.e.we use a mass lumping tehnique for the unsteady term and a standard �nite element8



W. Kheriji, R. Herbin and J.-C. Lathéformulation for the gradient of the pressure inrement:
∀σ ∈ Eint, for 1 ≤ i ≤ d,

|Dσ|

δt
ρ̄n

σ (un+1
σ,i − ũn+1

σ,i ) −
∑

K∈M

∫

K

(pn+1 − pn) ∇ · ϕ(i)
σ dx = 0.3 NUMERICAl EXPERIMENTSIn this setion, we assess the behaviour of the sheme, for various Riemann problems(often alled also "shok tube problems"), the solution of whih an be omputed ana-lytially. These problems are hyperboli (i.e. the system of PDES is (1)-(3) with µ = 0),monodimensional, and their initial solution is omposed by two uniform states (the left(L) and right (R) states), separated by a disontinuity, loated by onvention at the origin

x = 0. We take bene�t of the fat that the pressure orretion sheme is able to keep
y = 1 at any time, if the initial and boundary onditions allow it, to �rst begin with asingle phase �ow, namely the solution of the so-alled "Sod shok tube" problem. Next,we turn to two-phase �ows, namely "two-�uid shok tube" model problems.The omputations presented here are performed with the ISIS ode [7℄, built fromthe software omponent library PELICANS [11℄, both under development at IRSN andavailable as free softwares. This omputer ode is devoted to the solution of 2D or 3Dproblems (as the sheme presented in previous setions), so we are lead to de�ne anequivalent 2D problem, designed to boil down to the addressed 1D Riemann problem.The domain Ω is retangular, and the mesh is omposed of only one horizontal stripe ofmeshes (see Figure 2). We impose a symmetry ondition to the veloity at the top andbottom of the domain Ω (i.e y-veloity uy = 0 and ∇ux · t = 0, where t is a unit tangentvetor to the boundary ∂Ω), whih is satis�ed by a solution invariant with respet to theseond oordinate. At the left side of the domain, we impose the value (uL, 0) to theveloity u and the value zL to the partial gas density z. At the right side of the domain,we presribe Neumann boundary ondition, with a surfae foring term equal to −pR n,where n is the unit outward normal vetor to the boundary ∂Ω.As desribed above, for the veloity onvetion term in the momentum balane equa-tion, the approximation of the veloity at the edges of the dual mesh (see Figure 3) maybe hosen entered or upwind; we will refer to the �rst option in the following as the en-tered heme (even if upwinding is used in the disrete mass balanes), and to the seondone as the upwind sheme.

9
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σ

uσ
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σ
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Ω Figure 2: Retangle �nite volume mesh M
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′′

uσ
′′′

Dσ Dσ
′′

Dσ
′′′

uσ
′

ε
Dσ

′

Ω Figure 3: Dual �nite volume mesh3.1 Sod shok tubeWe present here the numerial results for the well-known monophasi Sod shok tube;here, the (omputed) gas mass fration is y ≡ 1, whih redues the homogeneous model tothe isothermal Euler equations. In this �ow, the wave struture onsists of a rarefationwave travelling to the left and a shok travelling to the right. The (1D) ontinuous problemis posed over the interval (−2, 3) and, for the omputation, we take Ω = (−2, 3)× [0, 0.01].The two initial onstant states are given by:
(

ρ
u

)

L

=

(

1
0

)

,

(

ρ
u

)

R

=

(

0.125
0

)

.The equation of state is given by p = ρRT , the parameters R and T being adjusted toprodue RT = 1.Numerial experiments show that, as may be expeted, the sheme does not seemto onverge if we let µ = 0 and the entered approximation in the momentum balaneequation; indeed, we observe in this ase, espeially for the veloity, the usual odd-evendeoupling harateristi of the behaviour of the entered sheme for the onvetion equa-tion. For any other option, i.e. either if we keep an arti�ial residual visosity or if we usethe upwind approximation, onvergene to the (weak) solution of the ontinuous problemseems to be ahieved.A numerial solution at t = 1 obtained with 2000 meshes, δt = 0.00125 and a residualvisosity of µ = 0.001 is presented in Figure 4, together with the exat solution. Using
v = 1.6 (whih approximately orresponds to the veloity of the faster wave, namely theshok) as veloity range, these numerial parameters orrespond to CFL= v δt/h = 0.8.10



W. Kheriji, R. Herbin and J.-C. LathéThe in�uene of the arti�ial visosity on the auray of the sheme is then heked.We observe on Figure 5 and Figure 6 that, as expeted, taking too large visosities yieldsinaurate results, beause the solved problem is too far from the original one, and that,with a too low value of the visosity, the ontrol on the solution is lost. In between, weobserve a plateau, whih shows that the auray of the sheme is rather robust withrespet to the arti�ial visosity. The optimal value for µ dereases with the time andspae steps. Comparing Figures 5 and 6, we note that the plateau is wider for CFL=9.6,but the overall shape of the urves remains essentially similar for both CFL numbers.We end this study by reporting the auray of the sheme as a funtion of the timeand spae step, with two onstant CFL numbers, for the entered and upwind sheme;for the �rst option, the visosity is given the onstant value µ = 0.001, and µ = 0 (hereand everywhere hereafter) for the upwind option.. For the entered sheme, the observedorders of onvergene are about 0.5 and 1 at CFL=0.8 and 9.6 respetively, for both theveloity and the pressure. For the upwind sheme, the order of onvergene is 0.75 in anyase.
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Figure 4: Sod shok tube problem - Numerial solution at t = 1 with the entered sheme (µ = 0.001),
2000 meshes and δt = 0.00125 (i.e. CFL=0.8).
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W. Kheriji, R. Herbin and J.-C. Lathé3.2 Two-�uid shok tubeWe present here the numerial results for the two-�uid shok tube. The ontin-uous problem is posed over (−3, 2) and we use a omputational retangular domain
Ω = [−3, 2] × [0, 0.01]. The equation of state is given by:

p =
RTρlρy

ρℓ + ρy − ρ
,where the parameters R and T are adjusted to produe RT = 10 and the liquid densityis set onstant ρℓ = 0.8. We perform two tests, where the initial left and right onstantstates are hosen in order to yield two di�erent �ow strutures: a ontat disontinuity (inboth ases), propagating between two shok waves in the �rst ase, and two rarefationwaves in the seond one.3.2.1 First ase: shok-ontat disontinuity-shokThe two initial onstant states are given by:
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 .The same onvergene behaviour as in the monophasi ase (i.e. onvergene of theupwind sheme or of the entered sheme with a residual visosity and non-onvergeneof the entered sheme with µ = 0) is observed here.A numerial solution at t = 0.1 with 5000 meshes, CFL = 0.75, arti�ial visosity
µ = 0.002 and entered advetion term is plotted on Figure 8, together with the exatsolution. Taking v = 18.16 (the veloity of the fastest wave, namely the right shok), theCFL number for these numerial parameters is CFL=v δt/h = 0.75.Then we plot on Figure 9 the solution obtained at t = 0.1 with various CFL numbers,with the entered sheme, 2500 meshes and an arti�ial visosity µ = 0.002. We observethat the solution is qualitatively orret up to CFL of the order of 20, and then stronglydeteriorates, showing in partiular wild veloity and pressure osillations at the ontatdisontinuity.Finally, we assess the auray of the sheme as a funtion of the time and spae step,with two onstant CFL numbers, for the entered and upwind sheme; for the �rst option,the visosity is given the onstant value µ = 0.002. For the entered sheme, the observedorders of onvergene are about 1.5 and 1. at CFL=0.75 and 9 respetively, for both theveloity and the pressure; for ρ the order of onvergene is 0.7 for both CFL numbers,and 0.5 for y. For the upwind sheme, the order of onvergene is 1 for both the veloityand the pressure and 0.5 for ρ and y, at any CFL number.14
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Figure 8: Two-phase test 1: shok-ontat disontinuity-shok - Numerial solution at t = 0.1, with theentered sheme, 5000 meshes, CFL== 0.75 and an arti�ial visosity µ = 0.002. Veloity (top left),pressure (top right), gas mass fration (bottom left), density (bottom right)
15



W. Kheriji, R. Herbin and J.-C. Lathé

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2

 v
el

oc
it

y

x

CFL=90.8
CFL=36.3
CFL=18.1

CFL=9
CFL=0.9

 20

 30

 40

 50

 60

 70

 80

 90

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2

 p
re

ss
ur

e

x

CFL=90.8
CFL=36.3
CFL=18.1

CFL=9
CFL=0.9

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2

 g
as

 m
as

s 
fr

ac
ti

on

x

CFL=90.8
CFL=36.3
CFL=18.1

CFL=9
CFL=0.9

 1

 1.5

 2

 2.5

 3

 3.5

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2

 d
en

si
ty

x

CFL=90.8
CFL=36.3
CFL=18.1

CFL=9
CFL=0.9

Figure 9: Two-phase test 1: shok-ontat disontinuity-shok - Results obtained at t = 0.1 with theentered sheme, 2500 meshes and an arti�ial visosity µ = 0.002, for various CFL numbers. Veloity(top left), pressure (top right), gas mass fration (bottom left), density (bottom right)
16



W. Kheriji, R. Herbin and J.-C. Lathé

 1e-04

 0.001

 0.01

 0.001  0.01

L
1 

er
ro

r 
no

rm
 o

f 
ve

lo
ci

ty

space step

centered CFL=9
centered CFL=0.75

upwind CFL=9
upwind CFL=0.75

 0.001

 0.01

 0.1

 1

 0.001  0.01

L
1 

er
ro

r 
no

rm
 o

f 
pr

es
su

re

space step

centered CFL=9
centered CFL=0.75

upwind CFL=9
upwind CFL=0.75

 1e-04

 0.001

 0.001  0.01

L
1 

er
ro

r 
no

rm
 o

f 
ga

s 
m

as
s 

fr
ac

ti
on

space step

centered CFL=9
centered CFL=0.75

upwind CFL=9
upwind CFL=0.75

 1e-04

 0.001

 0.01

 0.001  0.01

L
1 

er
ro

r 
no

rm
 o

f 
de

ns
it

y

space step

centered CFL=9
centered CFL=0.75

upwind CFL=9
upwind CFL=0.75

Figure 10: Two-phase test 1: shok-ontat disontinuity-shok - Error at t = 0.1 in L1 norm (in spae)for the veloity (top left), pressure (top right), gas mass fration (bottom left) and density (bottom right),as a funtion of the mesh size, with �xed CFL numbers.
17



W. Kheriji, R. Herbin and J.-C. Lathé3.2.2 Seond ase: rarefation-ontat disontinuity-rarefationWe onlude this study by omputing a diphasi test with rarefation waves. The twoinitial onstant states are given by:
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 .A numerial solution at t = 0.1, with 5000 meshes, δt = 0.0001, µ = 0.002 and with theentered sheme presented on Figure 11. It oinides with the solution.
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