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Abstract. A novel two-dimensional numerical scheme for the compressible Euler equa-
tions on dynamic meshes is presented. The proposed approach allows to perform compu-
tations on moving meshes with adaptation, which is required to preserve the mesh spacing
for large boundary displacement. At each time level, the new mesh is obtained by a suitable
combination of “elastic” deformation, edge-swapping, grid refinement and de-refinement.
The grid modifications—including topology modification due to edge-swapping or the in-
sertion/deletion of new grid nodes—are interpreted at the flow solver level as continuous
(in time) deformations of suitably-defined node-centred finite volumes. The solution over
the new mesh is obtained without explicitly resorting to interpolation techniques, since
the definition of suitable interface velocities allows one to determine the new solution by
simple integration of the Arbitrary Lagrangian-Eulerian formulation of the flow equations.
Moreover, n-step Backward Differencing Formulæ can be implemented in a straightforward
manner, without the need of performing backward interpolation over the n-th previous
grids. Numerical simulations of the opening process of the flap in a two-element high-lift
configurations are carried out to test the proposed technique. Numerical results includes
also the computation of dynamic loads on the airfoil due to the opening of a spoiler, in
which the flow-field is characterized by unsteady flow separation at the movable surface
trailing edge.
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1 INTRODUCTION

The correct investigation of hinge moments during the opening of control surfaces such
as aileron, high-lift devices and spoilers is of the utmost importance in the preliminary
design of aircraft, not only for the overall aerodynamic behaviour, but also for the general
aircraft sizing. To improve the current design of these kind of aerodynamic appendices,
high fidelity (Computational Fluid Dynamics) CFD models can be used. Additionally,
movable surfaces are used as means for aeroelastic control systems,1 so time accurate
CFD simulation may be required for the correct assessment of the unsteady aerodynamic
loads.

The numerical simulation of compressible flows around moving bodies is a very com-
plex task, since the computational domain is continuously changing its shape. So, a new
grid complying with the modified geometry must be build at each time level. For small
displacements it is usually sufficient to deform the initial grid into the new geometry,
without changing the grid topology; very efficient algorithms have been obtained in these
cases.2,3 The computational mesh moves during the simulation so, the standard finite
volume Eulerian formulation of the flow equations must be dropped in favour of the Ar-
bitrary Lagrangian–Eulerian (ALE) approach, in which the control volumes are allowed
to change in shape and position as time evolves.4 When large deformation of topology
changes are required, grid deformation techniques cannot be used anymore, since they
would lead to poor grid quality and possibly to invalid negative-volume elements. Over-
set grid techniques can be successfully applied in this case.5 This approach requires to
adopt complex interpolation algorithms between the different grids representing the do-
main and user intervention is often required. An alternative technique is the complete
mesh regeneration, or re-meshing, which requires to interpolate the solution over the new
grid at each time level.6 Moreover, in order to use multi-step high-order time integration
schemes, such as the Backward Difference Formulæ, re-interpolation is needed to com-
pute the backward solutions at each time level over the current grid. Consequently, the
computational burden of this approach could be very large.

In order to circumvent the difficulties of both overset grid and re-interpolation tech-
niques, a method based on mesh deformation with local edge swapping has been pro-
posed.7 This method guarantees high quality grids also in the case of large grid displace-
ments and changes in the topology, without resorting to re-meshing. Modifications of the
grid topology due to swapping are interpreted as grid deformations, thus the solution at
the current time level is computed by employing standard ALE techniques.

The main hitch of the method proposed by Muffo et al.7 is in the decrease of grid quality
as the movement proceeds. Furthermore, there is no direct control of grid spacing: for
example the preservation of a fine region around a moving body. Therefore arbitrary
large movements are not allowed and some cases of interest, where a local control of size
of the elements is required (e.g. flap or spoiler extraction), could not be easily tackled. In
the present work simple mesh adaptation techniques are introduced to obtain a complete
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(a) Edge swapping (b) Node insertion (c) Node deletion

Figure 1: Grid adaptation techniques: edge-swapping for mesh quality improvement (a), node insertion
for grid refinement (b) node deletion for grid de-refinement (c).

control on grid spacing. The interpretation of grid operations as continuous deformation,
first introduced by Muffo et al.,7 is here extended to the case of node insertion and
deletion. Resorting again to the ALE formulation, no interpolation scheme is needed and
high order time integration schemes can be implemented easily. This results in a novel
strategy for the simulation of unsteady aerodynamics on moving domains with variable
connectivity and number of nodes.

2 GRID DISPLACEMENT AND ADAPTATION

In dynamic mesh simulations the internal or domain elements are to be modified to
comply with the motion of the boundary elements. The displacement of the internal
element nodes can be obtained using different strategies. In non-structured meshes, the
most common approaches are based on the so-called elastic analogy. For example, Batina
represents each side of the grid as a spring with a nonlinear stiffness proportional to the
edge length,8 whereas Degand and Farhat introduced additional torsional springs at each
vertex.2 The grid deformation algorithm used in this work resorts to a representation of
domain element as deformable continuum bodies. The adoption of a local Young modulus
proportional to the minimal dimension of each element results in a robust method. In
this way small elements are stiff and tend to move rigidly, leaving the burden to absorb
the required deformations on the larger elements, usually located far from the regions of
interest.3

When large boundary movements occur distorted and tangled elements may appear,
leading to large numerical errors, and it becomes necessary to adopt a technique to improve
the mesh quality. A very simple, but extremely effective, technique to improve the quality
of triangular meshes, without inserting new vertices, is the edge swapping technique.9

Edge swapping has been used in connection with deforming meshes in order to reduce
element stretching disconnecting two vertices that move with different velocity, allowing
large domain deformations.7,10

For very large grid displacements, as it is the case of the opening of aerodynamic
surfaces, mesh deformation and edge swapping alone are not sufficient to maintain high
quality together with a suitable grid spacing. In these cases a different approach is needed:
e.g. complete regeneration, local remeshing or element refinement/derefinement. To re-
duce the complexity of the mesh adaptation scheme, the use of simple elementary oper-
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ations, such as nodes insertion/deletion, has been preferred to total or partial remeshing
which usually involves a larger computational burden. In Fig. 1 the implemented tech-
niques are schematically illustrated: edge swapping, mesh refinement, that is performed
inserting a node in the centre of mass of the triangle, and mesh derefinement, which
requires to reconstruct the connectivity inside the nodes patch surrounding the deleted
vertex. Refinement and derefinement procedures are both followed by an edge swapping
cycle: indeed, the used node insertion technique alone does not consent to reduce the max-
imum edge of a triangle, whereas the connectivity reconstruction subsequent to a node
deletion does not necessarily represent the one that maximize the local quality amongst
the possible configurations.

In the present work, the local dimensions of the grid element are linearly proportional to
the distance from boundaries. Defining a suitable size function hb(x) for every boundary,
e.g. far field or body surface, the dimension to be imposed to the reticulation will be
chosen as h(x) = minb∈B hb(x), where B is the set of boundaries that discretize ∂Ω.

3 EDGE-BASED FINITE VOLUME ALE SOLVER

The Euler equations for compressible inviscid flows in an Arbitrary Lagrangian Eulerian
(ALE) framework11,12 reads

d

dt

∫

C(t)

u+

∮

∂C(t)

[

f(u)− uv
]

·n = 0, ∀C(t) ⊆ Ω(t), (1)

where u, u = (ρ,m, Et)T ∈ R
+×R

3, being ρ the density of mass, m the linear momentum
vector and Et the total energy per unit volume. The solution is sought for in the spatial
domain Ω ∈ R

2 of boundary ∂Ω and ∀ t ∈ R
+. System (1) is to be made complete by

specifying suitable initial and boundary conditions.13 In Eq. (1), f = (fx, fy)
T ∈ R

4×R
2 is

the flux function defined as f(u) =
(

m, m⊗m/ρ+P (u) I2,
[

Et+P (u)
]

ρ/m
)T

, where P is

the fluid pressure, Id indicates the identity matrix of dimensions d×d, the scalar product
in Eq. (1) is computed as f(u) ·n = fxnx + fyny. The vector n = n(s, t) = (nx, ny)

T

is the outward unit normal to the boundary ∂C(t) of the control volume C(t) and it is
a function of the curvilinear coordinate s along ∂C and of the time as well. The term
uv = (ρv,m⊗ v, Etv)T, with v = v(s, t) the local velocity of ∂C(t), keeps into account
the flux contribution due to the movement of the control volume C(t).

The finite volume discrete counterpart of the Euler Eq. (1) is obtained by selecting
a finite number of non overlapping volumes Ci(t) ⊂ Ω(t), such that

⋃

i Ci(t) ≡ Ω(t).
According to the node-centered approach considered here, each finite volume Ci surrounds
a single node i of the triangulation of Ω, as shown in Fig. 2. Over each finite volume,
Eq. (1) reads

d[Vi ui]

dt
= −

∮

∂Ci

[

f(u)− uv
]

·ni, ∀i ∈ K, (2)

where K is the set of all nodes of the triangulation, Vi is the volume (area in two dimen-
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Figure 2: Left: edge associated with the finite volume interface ∂Cik = ∂Ci ∩ ∂Ck and metric vector ηik

(integrated normal) in two spatial dimensions. The two shaded regions are the finite volumes Ci and
Ck; dashed lines indicate the underlying triangulation. Right: geometrical interpretation of the interface
velocity as the area swept by the finite volume interface during the time step (only the portion of the
interface i-k associated with element i-j-k is shown.)

sions) of C and ni = ni(s, t) denotes the outward normal with respect to the volume Ci,
see Fig. 2. The unknown u is approximated over Ci by its average value ui = ui(t). The
right hand side of (2) is now rearranged to put into evidence the boundary contribution,
namely,

∮

∂Ci

[

f(u)− uv
]

·ni =
∑

k∈Ki, 6=

∫

∂Cik

[

f(u)− uv
]

·ni +

∫

∂Ci∩∂Ω

[

f(u)− uv
]

·ni, (3)

where Ki, 6= = {k ∈ K : k 6= i|∂Ci∩∂Ck 6= ∅} is the set of the indexes k of the finite volumes
Ck sharing a portion of their boundary with Ci, Ci excluded. The set ∂Cik = ∂Ci ∩ ∂Ck
is the cell interface between the volumes Ci and Ck (Fig. 2, left). Each interface ∂Cik is
associated to the corresponding edge i-k connecting nodes i and k of the triangulation of Ω.
A suitable (approximate) integrated numerical flux Φ ∈ R

5, representing the flux across
the cell interface ∂Ci ∩ ∂Ck, is now introduced.14 Considering a centered approximation
of the unknown and of the flux function at the cell interfaces, the domain contributions
read
∫

∂Cik

[f(u)− uv
]

·ni ≃
f(ui) + f(uk)

2
·

∫

∂Cik

ni −
ui + uk

2

∫

∂Cik

v ·ni = −Φ(ui, uk, νik, η̂ik, ηik),

where ηik is the integrated outward normal, ηik its magnitude and η̂ik = ηik/ηik, and
where νik is the integrated interface velocity, that is,

ηik(t) =

∫

∂Cik

ni and νik(t) =

∫

∂Cik

v ·ni. (4)
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In Fig. 2, right, the geometrical interpretation of the integrated surface velocity as the
area swept by the interface during the time step is depicted. Over the boundary portion
∂Ci ∩ Ω, u = ui and the boundary contribution in (3) simplifies to

∫

∂Ci∩∂Ω

[

f(u)− uv
]

·ni ≃ f(ui) ·

∫

∂Cik

ni − ui

∫

∂Cik

v ·ni = −Φ
∂(ui, νi, ξ̂i, ξi), (5)

where ξi is the integrated outward normal, ξi is its magnitude and ξ̂i = ξi/ξi, and where
νi is the integrated interface velocity of the i-th boundary node, with

ξi(t) =

∫

∂Ci∩∂Ω

ni and νi(t) =

∫

∂Ci∩∂Ω

v ·ni . (6)

A high-resolution integrated numerical flux based on the Total Variation Diminishing
(TVD) approach is used.15 The second order approximation ΦII

ik is replaced by the first
order Roe flux Φ

I
ik near flow discontinuities.16 The switch is controlled by the the limiter

of van Leer.17,18 For a general, namely, not centred approximation of the numerical fluxes,
one finally obtains

d

dt
[Vi ui] =

∑

k∈Ki, 6=

Φ(ui, uk, νik, η̂ik, ηik) + Φ
∂(ui, νi, ξ̂i, ξi), ∀i ∈ K (7)

In the next section, time discretization of the above Euler equations is detailed.

3.1 TIME INTEGRATION FOR DYNAMIC ADAPTIVE GRIDS

The fully discrete form of the Euler equations (1) is now derived. As a preliminary
step, the definitions (4)b and Eq. (6)b are first recast in a differential form by introducing

Vi,ik(t0, t) =

∫ t

t0

∫

∂Cik(t)

v(xs, t) ·n(xs, t) and Vi,∂(t0, t) =

∫ t

t0

∫

∂Ci∩∂Ω

v(xs, t) ·n(xs, t) ,

(8)
where Vi,ik(t0, t) represent the volume swept by the piece of boundary ∂Cik in the time
interval [t0, t), see Fig. 2. Therefore, one has

dVi,ik

dt
= νik(t) and

dVi,∂

dt
= νi(t) .

The ordinary differential equations above are now used to complement system (6) to give


































d

dt
[Vi ui] =

∑

k∈Ki, 6=

Φ(ui, uk, νik, η̂ik, ηik) + Φ
∂(ui, νi, ξ̂i, ξi),

dVi,ik

dt
= νik ,

dVi,∂

dt
= νi ,

∀i ∈ K

∀k ∈ Ki,6=

(9)
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The above ODE system can be solved by means of standard integration techniques, as
detailed in the following. It is remarkable that the so-called Geometric Conservation Law19

(GCL) is automatically fulfilled by definitions (4)b and Eq. (6). Indeed, one immediately
has

dVi

dt
=

∮

∂Ci

v ·ni =
∑

k∈Ki, 6=

dVi,ik

dt
+

dVi,∂

dt
= 0.

Discretizing the time domain with a constant time step ∆t, it is possible to compute the
solution u at time tn+1 using a Backward Differences Formulæ (BDF) scheme of order
m+ 1 to perform an integration of Eq. (9), namely






















































m
∑

p=−1

apV
n−p
i u

n−p
i =





∑

k∈Ki, 6=

Φ(ui, uk, νik, η̂ik, ηik)
n+1 + Φ

∂(ui, νi, ξ̂i, ξi)
n+1



 ∆t

m−1
∑

p=−1

αp∆V n−p
i,ik = νn+1

ik ∆t

m−1
∑

p=−1

αp∆V n−p
i,∂ = νn+1

i ∆t

∀i ∈ K

∀k ∈ Ki,6=

(10)
where Φ( · , · )n+1 is a short hand for Φ( · n+1 , ·

n+1 ), all quantities are assumed to be
known at time levels previous of n+ 1 and the grid-dependent quantities V n+1

i , η̂n+1
ik ,

ηn+1, ξ̂
n+1

i and ξn+1
i are computed from the (known) positions of the grid nodes at time

level n+ 1. In Eq. (10) ap represent the standard m + 1 order BDF coefficients and
αp =

∑p

r=−1 ar.
The nonlinear system (10) for the fluid variables u at time level n+ 1 is solved here

by means of a modified Newton method, in which the Jacobian of the integrated flux
function is approximated by that of the first-order scheme, and by resorting to a dual
time-stepping technique,20 to improve the conditioning number of the Jacobian matrix.

In the case of dynamic adaptive grids of interest here, the modification to the mesh
connectivity, i.e. Ki,6= = Ki, 6=(t), and number of nodes, i.e. K = K(t), can be interpreted
as continuous deformation of suitably defined finite volume.7 A brief overview of this
interpretation is given in the following:

With reference to Fig. 3, during edge swapping, the interface ∂Cik associated to the
removed edges collapses to a single point in the time interval [tn, tn+1), starting from the
pre-swap configuration.7 During such operation ∂Cik sweeps a non null volume ∆V n+1

ik

and this implies a non null interface velocity, see the second equation of system (9).
Moreover the interface ∂Cjℓ associated to the inserted edge sweeps a non null volume
∆V n+1

jℓ , in order to generate the new grid configuration, starting from a single point. The
geometrical interpretation of topological modifications leads to the correct computation
of the volumes swept by the interfaces that satisfy Eq. (3.1).
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(b) tn < t < tn+1
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(c) tn+1

Figure 3: Interpretation of the edge swapping as continuous finite volumes deformation. Refinement. (a)
Initial state. (b) Intermediate state (c) Final state.

j1

j2

j3

(a) tn

j1

j2

j3

(b) tn < t < tn+1

j1

j2

j3

ja

(c) tn+1

Figure 4: Interpretation of the node insertion as continuous finite volumes deformation. Refinement. (a)
Initial state. (b) Refinement of the central triangle, with insertion of node ja. Interfaces ∂C12, ∂C13 and
∂C23 sweeps a zero volume. (c) Final state.
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(a) tn

j1

j3j4

j2j5
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Figure 5: Interpretation of the node deletion as continuous finite volumes deformation. Refinement. (d)
Initial state, jr is the node to be removed. (e) Node jr collapses on j4 with deletion of part of C4. (f)
Cell Cr is annihilated then node jr is removed and every edge that was connected with jr is removed. (g)
Regeneration of the part of C4 that is inside the patch. (h) Final configuration .

Fig. 4 illustrates a possible way of interpreting the node insertion operation as a con-
tinuous deformation of the finite volumes performed in the time interval [tn, tn+1). At
time tn, the inserted cell Ca has null-volume, the interfaces ∂Cak sweep the volume ∆V n+1

ak

and then stop in the final configuration at time tn+1. As in the case of the edge swapping
the correct calculation of swept volumes allows to satisfy the GCL.

In Fig. 5 a possible ALE interpretation of the node deletion procedure is given. The r-
th finite volume collapses on node j4, it is removed and then the finite volumes geometry
is regenerated in accordance with the new topology. The swept volumes so calculated
allows to compute νn+1

rk associated to the interfaces of the removed cell and the related
ALE fluxes: indeed, a null interface entails null Euler fluxes and generally non-null ALE
fluxes. Since the numerical flux across ∂Crk is approximated by the solution u

n+1
r of the

removed cell and with the solution u
n+1
k of any adjacent cell, it is therefore necessary to

keep into account the conservation equation associated to a deleted node. Adopting a
m+ 1 order BDF scheme, the conservation equation for a deleted node reads

a0[Vrur]
n+a1[Vrur]

n−1+ · · ·+am+1[Vrur]
n−m−1 = ∆t

∑

k∈K
[n−m,n+1)
r,6=

Φ(un+1
r , un+1

k , νn+1
rk , η̂n+1

rk , 0) .

(11)
Since the left hand side (the time derivative) is known and ηrk = 0, Eq. (11) is an algebraic
equation of balance for ALE fluxes and it is therefore not related with the Euler equations.
Due to the fact that the r-th node is no longer part of the mesh, the value of un+1

r seems
to be useless but it is indeed necessary to correctly balance the ALE fluxes exchanged
with the other cells. Indeed un+1

r appears as well at the right hand side of equations for
the nodes belonging to K[n−m,n+1)

r,6= , whose cells still discretize Ω.
The above consideration on the mesh adaptation procedure allows to take into edge

swapping and node insertion/deletion into the time integration procedure as follows. From
Eq. (3) it follows that to a removed edge/interface ∂Cik, such as ηn+1

ik = 0, is associated
a null contribution of standard Euler fluxes and a non-null contribution of ALE fluxes
that are explicitly function of νik, but not of ηik. Thus to a removed edge is associated a
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non null ALE flux, i.e. Φ(ui, uk, νik, η̂ik, 0)
n+1, if the related integrated interface velocity

differs from zero. Introducing now the set of node Kn+1 = K(tn+1) of the triangulation
of Ω(tn+1), Nn

K
= dim(Kn) and Nn+1

K
= dim(Kn+1), then the total number of the inserted

nodes during the time interval [tn, tn+1) is NA = Nn+1
K

− Nn
K
. The presence of NA new

finite volumes imposes to write NA new balance equations, thus the first equation of
system Eq. (10) is to be solved for all i ∈ Kn+1, but no further modifications of the
numerical scheme are required. It is to be noted that, for the a-th cell that has been
added at step n + 1, the totality of metric quantities associated to time steps previous
than n + 1 are null, i.e. V n−r

a = 0, V n−r
a = 0, ηn−r

ak = 0 and ∆V n−r
ak = 0 for all r ≥ 0.

Therefore the knowledge of the values of un−r
a for r ≥ 0 is unessential. Equation (11)

becomes a trivial identity only when νn+1
rk = 0, ∀k ∈ K[n−m,n+1)

r, 6= . Thus m + 2 time
steps after the node removal the equation can be erased from the system. Introducing
K[n−m,n+1) = {k /∈ Kn+1 : ∃Vk(t) 6= 0, t ∈ [tn−m, tn+1)}, as the sets of nodes removed not
before than tn−m, and K[n−m,n+1] = Kn+1∪K[n−m,n+1) it is possible to recast system (10) for
grids with variable number of nodes as



















































m
∑

p=−1

apV
n−p
i u

n−p
i =

[

∑

k∈Kn+1
i, 6=

Φ(ui, uk, νik, η̂ik, ηik)
n+1

+
∑

k∈K
[n−m,n+1)
i, 6=

Φ(ui, uk, νik, η̂ik, 0)
n+1

]

∆t

m−1
∑

p=−1

αp∆V n−p
i,ik = νn+1

ik ∆t

∀i ∈ K[n−m,n+1]

∀k ∈ K[n−m,n+1]

i,6=

(12)

System (12) has to be completed with proper boundary terms and IVC, as it has been
done in system (10).

4 RESULTS

In the present section, numerical results of unsteady flows over dynamic adaptive grids
are reported. These are the case of an oscillating airfoil moving inside a still grid and the
opening of a spoiler from a two-dimensional airfoil.

4.1 Oscillating airfoil

In Fig. 6 the initial and final computational grid used in the simulation of the translating
and oscillating NACA0012 airfoil enclosed in fixed-shape external boundary are shown.
This test case is the two-dimensional counterpart of the motion of a rotorblade tip which
performs a half revolution around the axis.

In Fig. 7 the CL−α curve of the NACA0012 airfoil atM = 0.755 is shown. The compu-
tations were performed using the second- and third-order BDF time integration schemes
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Figure 6: Computational grids for translating NACA0012 airfoil. Top: initial grid. Bottom: final grid
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Figure 7: Lift coefficient versus incidence at M∞=0.755. 32 steps per period.
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and no adaptation. The TVD space integration scheme was used. The reference solu-
tion has been calculated in a reference moving with the airfoil. With both adopted BDF
schemes, the results agree fairly well with the available reference ones thus demonstrating
the validity of the proposed approach.

4.2 Opening of a spoiler

This test case considers the opening phase of a spoiler put on the on the upper surface
of an airfoil. Spoilers are control surface used to decrease lift and increase drag in order
to control the aircraft roll or as air-brakes. Steady state numerical simulation of three
dimensional wings with open spoilers on has been performed using complex chimera tech-
niques.5,21 However, the time accurate dynamic simulation of the spoiler opening, even
in two spatial dimensions it is a very challenging problem from the numerical standpoint.
Such kind of simulation can be of interest, since spoilers are considered as possible device
for vibration and flutter control22 or separation control.23

For this test case a spoiler on a NACA 0012 airfoil is considered, applying an upward
rotation ∆θ = 35 deg. with the following smooth time law

θ =
∆θ

2

[

1− cos

(

K

2tref
min(t, T )

)]

,

where tref = 0.357 s, K = 0.1, the final time for the opening T = 2π
tref
K

. the asymptotic
Mach number is set to 0.3, and for the initial configuration the angle of attack is null.
The evolution of the computational grid is shown in Figure 8 from the beginning, where
the spoiler is completely closed up to the opening endpoint. The grid is updated using the
adaption scheme already presented. It must be noted that the opening of the spoiler causes
a significant change in the topology of the mesh. The results in terms of streamlines and
pressure coefficient values in the flowfield are shown in Figure 9, where the development
of a main vortex structure plus two secondary vortices behind the spoiler is shown. It
must be stressed that in the present inviscid simulations the separation point is fixed by
the sharp end of the spoiler.

Figure 10 shows the instantaneous distribution of pressure coefficient on the airfoil and
on the spoiler. The initial pressure distribution on the the lower and upper side of the
airfoil is very similar: the pressure inside the narrow slit is constant, and the air there
is essentially still. When the spoiler opening starts, a strong variation of pressure on the
lower and upper side of the control surface appears and the surface generates a negative
lift. The value of Cp along the lower side of the airfoil main body decreases slightly while
increases on the upper side. While the forward part of the main airfoil is not generating
any significant amount of force the rear part is lifting. At the end of the opening, the
pressure on the lower and the upper side of the main airfoil are significantly different and
the total lift is negative, the total force generated on the spoiler is reduced. The rear
part of the main airfoil is not generating any significant force while the forward part is
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Figure 8: Mesh around the airfoil and close-up at different time steps.tref = 0.357 s.
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Figure 9: Streamlines and pressure coefficient past the airfoil at different time steps.
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significantly down-lifting; the spoiler generates a downward force too. As the spoiler is
completely opened, the low pressure peak reaches a lower value while the overall pressure
in the area under the control surface increases. The time histories of the global airfoil
force coefficients is shown in Figure 11. During the first 3 seconds of motion the lift and
drag coefficients are essentially null. After 3 seconds, (θ ≃ 1.5 deg.) a small amount of
negative lift is generated, caused by the positive Cp experienced by the upper side. The
lift coefficient increases up to 0.2 at t/tref = 30. In this configuration the spoiler is rotated
in such way that a negative value of Cp is generated in the region right after the spoiler,
i.e. x/c = 0.8÷ 1 (see Figure 10(b)) due to the presence of a vortex induced by the flow
separation. On the other hand, a rather high value of pressure, Cp ≃ −0.3, is experienced
on the bottom, allowing the flow to perform an almost full re-compression. As the spoiler
is further rotated, the lift coefficient decreases until a -1.6 value is reached. During this
phase, the pressure on the upper side of the airfoil is reduced slightly on the tail and
increased on the nose, while the lower part of the main airfoil experiences a significant
reduction in pressure. The presence of a counter-clockwise vortex close to the airfoil
trailing edge affects significantly the flowfield not allowing a complete re-compression on
the bottom side. The rotation is completed at t/tref = 20π but the steady state is not
reached since the transient is still not damped out.

5 CONCLUSIONS

A novel flow solver for unsteady compressible flows with dynamic adaptive meshes
was presented. The proposed approach is based on the interpretation of simple mesh
adaptation techniques, namely, edge swapping, node insertion and node deletion, in terms
of the continuous modification (in time) of suitably defined finite volumes surrounding
the nodes of the triangulation. Therefore, the updated value of the unknowns at the
grid nodes is automatically recovered by using an Arbitrary Lagrangian Eulerian (ALE)
description of the flow equations, without resorting to an explicit interpolation step.

Numerical simulation of an oscillating airfoil translating within a fixed computational
mesh were presented to assess the validity of the proposed approach. As an exemplary
case, the numerical simulation of the opening process of a spoiler were carried out, to
test the capabilities of both the grid alteration algorithm and the flow solver. These
preliminary results increase the confidence of the authors on the possibility of applying
the present approach to more complex three-dimensional flows.
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and lower side of the spoiler is shifted along the y-axis for clarity.
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