
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal,14-17 June 2010

UNCERTAINTY QUANTIFICATION BASED ON FORWARD
SENSITIVITY ANALYSIS IN SISYPHE (ECCOMAS CFD 2010)

Jan Riehme∗, Rebekka Kopmann†, and Uwe Naumann∗

∗Dept. of Computer Science, University of Hertfordshire
College Lane, Hatfield AL10 9AB, UK

and
LuFG Informatik 12: Software and Tools for Computational Engineering,

RWTH Aachen University, 52056 Aachen, Germany
e-mail: {riehme, naumann}@stce.rwth-aachen.de

†Bundesanstalt für Wasserbau
Kußmaulstr. 17, 76176 Karlsruhe, Germany

e-mail: rebekka.kopmann@baw.de

Key words: algorithmic/automatic differentiation, reliability analysis, morphodynamic
simulation

Abstract. We present a tangent-linear version of the two-dimensional morphodynamic
model Sisyphe1 generated by algorithmic (also known as automatic) differentiation. Our
group has been developing a differentiation-enabled research prototype[16] of the NAG2

Fortran compiler for several years. The resulting differentiated variant of Sisyphe is used
to calculate the sensitivities of the evolution with respect to different input parameters,
which are assumed to be uncertain. These sensitivities allow to perform a first-order
reliability analysis that estimates the uncertainties regarding chosen input parameters[10].

In a laboratory experiment, the development from a initial flat bed to a sloped cross
section in a 180 degree bend is predicted with respect to four different input parameters.
The results of the reliability analysis allow a ranking of the uncertain input parameters
concerning their level of uncertainty. Moreover, instead of calculating just a single value
for the evolution at one point in time and space, a probability distribution of the evolution
is derived from the morphodynamic model. The method is shown to be applicable to real-
world cases demonstrated for a 10 km long stretch of the river Danube.

We have observed a good qualitative match with results from Monte-Carlo simulations.
The analysis of quantitative discrepancies are the subject of ongoing work. For the labo-
ratory experiment the Monte-Carlo simulation took roughly 5 hours of computation time,
since 100 model evaluations were required. In contrast, for the first-order reliability anal-
ysis method one evaluation of the sensitivities of the model is sufficient, taking only 22
minutes.

1developed at E.D.F. Laboratoire National D’Hydraulique et Département Environnement;
www.edf.com

2Numerical Algorithms Group Ltd.; www.nag.com

1

Jan Riehme, Rebekka Kopmann, Uwe Naumann

1 INTRODUCTION

Uncertainties are unavoidable in numerical modelling due to the deficient description
of the physical processes and the imprecision of model parameters. In morphodynamic
modelling input parameters are uncertain due to measurement errors, natural variability,
or unsatisfactory parameterisation. However, the propagation of uncertainties in the input
data might have serious influence on the simulation results. Therefore, it is necessary to
quantify their contributions to the model results in order to appraise their reliability.

Probability distributions of output variables with respect to the uncertainty of input
parameters can be computed by a special variant of the widely used Monte Carlo method.
Naturally Monte Carlo methods require an enormous number of model evaluations, where
a single evaluation can take days or weeks even in modern parallel computing environ-
ments.

The First-Order Reliability Analysis Method approximates the desired probability dis-
tributions by a single evaluation of the sensitivities of output variables with respect to
the uncertain input parameters. However, the advantage of a lower computational effort
comes at the cost of a significant effort required to derive a version of the model that
can compute sensitivities. Hand coding the sensitivity model is time consuming and error
prone, especially for larger codes such as Sisyphe [18]. Moreover, keeping the sensitivity
model in sync with the ongoing development of the model code itself is usually a major
effort.

Compilers for algorithmic (or automatic) differentiation augment the original model
with sensitivity computing code semi-automatically with often minimal intervention by
the user. New versions of the model are differentiated by reapplying the compiler.

The outline of the paper is as follows: Section 2 gives a short introduction to reliability
analysis and the Monte Carlo Confidence Limit method used for comparison, followed
by the First-Order Reliability Analysis Method that requires the differentiation of the
model. Section 3 introduces the concept of algorithmic differentiation and delineates the
differentiation of the model by the differentiation-enabled NAG Fortran compiler [16].
Applications, observations, and results are given in Section 4 followed by conclusions.

2 RELIABILITY ANALYSIS

Morphodynamic modelling is often used to forecast long-term and large-scale phenom-
ena like river bed erosion of a river stretch. It is not uncommon for the evaluation of such
more-dimensional models to take days or even more computing time. As the input data
contain uncertainties due to measurement errors or natural variability rating the trust-
worthiness of those expensive results of more-dimensional model evaluations is coming
more and more in focus. Hence information about the effect of the various uncertainties
in the input parameters on the model results is required. Reliability analysis can be used
to quantify the influence of uncertain input parameters on the state variables.

In this paper the TELEMAC modelling system is used for calculating the two-dimensio-

2

Jan Riehme, Rebekka Kopmann, Uwe Naumann

Figure 1: CDF and confidence limits CLmin
and CLmax for confidence level α = 68%.

nal free-surface flow (Telemac-2D [8]) and
the sediment transport (Sisyphe [18]).
Both modules are coupled internally to
capture the interaction between hydrody-
namics and morphodynamics. For long-
term modelling it could be useful to run
Sisyphe stand alone in order to speed up
the model evaluations. In that case the
hydrodynamics will be read from disc or it
is assumed to be in steady state. In this
case the influence of the morphodynamics
on the hydrodynamics is not taken into ac-
count properly. The approach is built on
the assumption that for small changes of
the river bottom the missing interaction
will not falsify the results. For comparison
the confidence limits of the bottom evolu-
tion calculated by Sisyphe are computed
by the First-Order Reliability Analysis Method and the Monte Carlo Confidence Limit
method. Both methods are briefly described in sections 2.1 and 2.2.

2.1 Monte Carlo Confidence Limit Method

In the Monte Carlo Confidence Limit (MCCL) method [17] the confidence limits are de-
termined approximatively. For a given confidence level α they are obtained from a usually

Figure 2: EDF (staircase) as an approx-
imation of the CDF.

unknown cumulative distribution function
(CDF). Figure 1 shows an exemplary CDF and
its confidence limits for a confidence level of
α = 68%. In order to get the values of the confi-
dence limits for the confidence level α the CDF
has to be inverted in the two points (1± α)/2.
An empirical distribution function (EDF) that
approximates the unknown CDF is computed
from the results of N model evaluations. Con-
fidence limits are computed by inverting the
EDF. The EDF is a staircase function with step
length of 1/N as shown in Figure 2.

If the number N of model evaluations per-
formed is big enough, then the EDF converges
to the CDF (law of large numbers). In case of
infinitely many simulation runs the approxima-
tion error of the EDF

3

Jan Riehme, Rebekka Kopmann, Uwe Naumann

errEDF =
1

N
(1)

tends to zero. Additionally, there is a statistical error of the CDF itself, which can be
derived from the central limit theorem as

errCDF =

√
1− α2

4N
. (2)

This error dominates the approximation error errEDF for large values of N

N � 2

(1− α)
(3)

and is normally (Gaussian) distributed.
The number N of simulations required by the MCCL method is independent of the

number of uncertain parameters. It depends on the chosen confidence level α only. So the
value of N should be chosen as a tradeoff between maximising the confidence level α and
the available computing time. For the practically most relevant confidence level α = 95%
at least N = 100 simulation runs must be performed [17].

A design of experiment generator [17] is used to generate N different input parameter
sets forming a probability distribution in the space of the input parameters. The N
simulations transform this probability distribution into the space of the output values.
Each output value (for example, the evolution in time and space) can be seen as a single
random number while its CDF determines the confidence limits.

2.2 First-Order Reliability Analysis Method

The First-Order Reliability Analysis Method (FORM) originates from structure and
risk analysis [19] and was also used in various hydraulic engineering fields [12, 13]. It was
adapted to the needs in morphodynamic simulations. The FORM applied to morpho-
dynamic simulation to compute confidence limits of the evolution E of the river bottom
with respect to one uncertain input parameter ω consists of three steps:

1. The statistical distribution of the uncertain parameter ω must be known or must
be assumed. Only a Gaussian distribution is valid here. For a complete description
of the Gaussian distribution, the mean value <ω> and the standard deviation σω
of the uncertain parameter ω must be specified.

2. The sensitivities, which are the partial derivatives ∂E/∂ω of the state variable E
with respect to the uncertain parameter ω, must be computed at the evaluation
point ω =<ω>. Multiplying these sensitivities with the standard deviation σω of
the uncertain parameter ω gives the standard deviation σEω of the state variable:

σEω = σω ·
∂E

∂ω

∣∣∣∣
ω=<ω>

(4)

4

Jan Riehme, Rebekka Kopmann, Uwe Naumann

3. From the standard deviation σEω the confidence limits connected to a given con-
fidence level α can be computed. For normally distributed ω and a confidence
level of α = 95% the confidence limits are given by CLmin = E − 2 · σEω and
CLmax = E + 2 · σEω. Consequently, the confidence interval for E has a width of
4 · σEω.

The evolution of the river bottom E is the only state variable in our setup. Several input
parameters are considered as uncertain: friction coefficient ks, mean grain size dm, slope
coefficient β, and others.

The computation of independent confidence limits for a set of uncertain parameters
requires a separate application of the FORM or of the MCCL method for each parameter.
In nearly all cases the number of uncertain parameters is orders of magnitudes smaller
than the number of simulations required by the MCCL method. If compound confidence
levels for a set of uncertain parameters are desired a single application of the FORM or
of the MCCL method is sufficient. However, every application of the FORM requires one
model evaluation with sensitivities in contrast to N model runs for the MCCL method.

3 AUTOMATIC SENSITIVITIES FOR SISYPHE

Algorithmic differentiation (AD) [7] is a method for computing derivatives of functions
implemented as numerical simulation programs. Refer to [2, 3, 4, 5] for an impressive
collection of successful applications of AD to a wide variety of real-world applications.
Information on tools, publications, and applications can be obtained from the communities
web portal

www.autodiff.org .

In this paper we focus on to the so-called tangent-linear or forward mode of AD as in our
morphodynamic simulations the number of input variables is relatively small compared to
the number of output variables. In optimisation scenarios the situation is different: Many
input variables are mapped into only a few (or a single) output value(s), and sensitivities
(gradients or even higher-order derivatives) of the outputs with respect to a potentially
very large number of inputs are required. To compute these derivatives efficiently the
adjoint or reverse mode of AD is required. See, for example, [7] for details.

3.1 Tangent-Linear Mode AD

A (Fortran) code is considered as an implementation of a nonlinear multivariate vector
function

y = F (x, z), F : IRn+ñ → IRm. (5)

The goal is to compute directional derivatives (“tangents”) of F (x, z), that is, products
of the Jacobian matrix

F ′ = F ′(x, z) ≡
(
∂yj
∂xi

)j=1,...,m

i=1,...,n

(6)

5

Jan Riehme, Rebekka Kopmann, Uwe Naumann

containing the sensitivities (partial derivatives) of all active outputs (or dependent vari-
ables) y = (y1, . . . , ym)T with respect to the active inputs x = (x1, . . . , xn)T (or indepen-
dent variables) with a vector ẋ ∈ IRn. The vector z ∈ IRñ contains all passive inputs,
that is, variables that y depends on but whose impact on y is of no interest in the given
context. We are looking for ways to evaluate the tangent-linear model (TLM) of y = F (x)
defined as

ẏ = Ḟ (x, ẋ, z) ≡ F ′(x, z) · ẋ, ẏ ∈ IRm . (7)

Note that the TLM is evaluated numerically at the evaluation point (x, z) specified by
the values of the input variables of the model.3

Finite difference quotients (FD) can be used to compute an approximation of the TLM
as follows:

ẏ ≈ F (x + h · ẋ, z)− F (x, z)

h
. (8)

The quality of this approximation depends to a large extend on the user’s ability to
pick the “right” value for h. For complex simulations this search amounts to trial and
error. Moreover the objective remains unclear since the quality of a given approximation
cannot be evaluated without knowledge of exact values. Trusting FD approximations
of derivatives can be dangerous. Refer, for example, to [9] for further discussion of this
method. An impressive illustration of the harm inflicted by approximate derivatives in
the context of a matrix-free Truncated Newton algorithm [6] for unconstrained nonlinear
optimisation can be found in [15]. Sensitivities by AD are exact up to machine precision.
No truncation errors are introduced.

Conceptually, AD considers the function F as a decomposition into a sequence of p
elementary assignments

for j = n+ñ+ 1, . . . , n+ ñ+ p

vj = ϕj(vi)i≺j
(9)

evaluating a single basic arithmetic operation (+, −, ∗, . . .) or intrinsic function (sin, cos,
exp, . . .). Equation (9) is also referred to as the code list of the given implementation of
F. The relation i ≺ j denotes a direct dependence of vj on vi as an argument of ϕj. The
TLM in Equation (7) is obtained by augmenting the code list of F with statements for
propagating the vector ẋ through the code list (after initialising v̇j = ẋj, j = 1, . . . , n):

for j = n+ñ+ 1, . . . , n+ ñ+ p

v̇j =
∑
i≺j

∂ϕj
∂vi

(vk)k≺j · v̇i

vj = ϕj(vi)i≺j .

(10)

3AD computes sensitivities numerically at the runtime of the differentiated code. No symbolic differ-
entiation is performed. The function F must not be known explicitely, it might be given as an numerical
approximation code only. In case of the morphodynamic model discussed in the present paper the function
F is a bedload transport equation solved by a Finite Element Method implemented in Sisyphe.

6

Jan Riehme, Rebekka Kopmann, Uwe Naumann

1 v1 = x v̇1 = ẋ
2 v2 = z v̇2 = 0
3 v3 = v1 + v2 v̇3 = v̇1 + v̇2

4 v4 = sin(v3) v̇4 = cos(v3) · v̇3

5 v5 = cos(v1) v̇5 = − sin(v1) · v̇1

6 v6 = v4 · v5 v̇6 = v4 · v̇5 + v̇4 · v5

7 y = v6 ẏ = v̇6

Table 1: Code list (column 2) and tangent-linear code list (columns 2,3) for the example
function in Equation (11).

The partial derivatives of the elemental functions ϕj are given by the well-known differen-
tiation rules. Moreover, the computation of v̇j as a function of v̇i exploits the chain rule of
differential calculus. Griewank and Walther [7] show that the computational cost W (Ḟ)
of evaluating a TLM of F is bounded by W (Ḟ) = c ·W (F) with c ∈ [2, 5/2], where W (F)
denotes the costs of evaluating F . Moreover a TLM of F will allocate roughly twice the
memory occupied by F .

To illustrate tangent-linear mode AD a simple example is considered. Let F be given
as

y = F (x, z) = sin(x+ z) ∗ cos(x) (11)

with active input x ∈ IR, passive input z ∈ IR, and active output y ∈ IR. The second
column of Table 1 represents the code list of a possible implementation of Equation (11).
The code list in Equation (9) is surrounded by code representing the initialisation with
the input values (rows 1,2), and the extraction of the output value y (row 7). The third
column of Table 1 contains the additional code propagating the directional derivative of
the input ẋ towards the desired directional derivative ẏ of the output variable y.

The initial assignment of ẋ to their representatives v̇i, i = 1, . . . , n is called seeding,
whereas the retrieval of the directional derivatives of the outputs from the tangent-linear
code list is often referred to as harvesting.

3.2 The Differentiation-Enabled NAG Fortran Compiler

The differentiation-enabled NAG Fortran compiler [16] (from now on simply referred to
as “the compiler”) is developed as a joint effort of RWTH Aachen University, the Univer-
sity of Hertfordshire, and the Numerical Algorithm Group Ltd. The compiler generates
tangent-linear and adjoint versions of Fortran codes. In the compiler’s internal represen-
tation all floating-point variables are replaced by a derived data-type compad type. The
compiler provides a set of modules (compad module’s) that define several compad type’s.
The AD-mode of the compiler (overloaded tangent-linear, tangent-linear, adjoint, second-
order adjoint, tape based adjoints, . . .) is chosen by command line options, which select
a specific compad module. Every compad module provides overloaded operators and in-
trinsic functions implementing the AD functionality for its own compad type as well as

7

Jan Riehme, Rebekka Kopmann, Uwe Naumann

combinations of the compad type with the various intrinsic data types such as real or
integer.

The TLM discussed in this paper is based on the compad type defined in Figure 3a
that combines the value (component val ≡ vi) with its directional derivative (component
drv ≡ v̇i) in one entity. The corresponding module compad scalar module defines over-
loaded operators and intrinsic functions that combine both steps of the TLM defined in
Equation (10). As an example, the code fragment in Figure 3b shows the implementation
of the tangent-linear sine function. It computes the value r%val of the output variable
r (line 5) alongside with the propagation of the directional derivative x%drv of the input
variable x towards the directional derivative r%drv of the output (line 4). Therefore x%drv
is multiplied by the partial derivative of sin evaluated at x%val, that is, cos(x%val).

1 TYPE compad_type

2 SEQUENCE

3 DOUBLE PRECISION :: val = 0.D0

4 DOUBLE PRECISION :: drv = 0.D0

5 END TYPE compad_type

(a) Definition of compad type

1 ELEMENTAL FUNCTION sin_ct(x) RESULT(r)

2 TYPE(compad_type), INTENT(in) :: x

3 TYPE(compad_type) :: r

4 r%drv = x%drv * COS(x%val)

5 r%val = SIN(x%val)

6 END FUNCTION sin_ct

(b) Overloaded sine function

1 SUBROUTINE f(x,z,y)

2 DOUBLE PRECISION :: x, z

3 DOUBLE PRECISION :: y

4
5 y = SIN(x+z) * COS(x)

6
7 END SUBROUTINE f

(c) Code to be differentiated

1 PROGRAM p

2 USE compad_scalar_module

3 IMPLICIT NONE

4 TYPE(compad_type) :: x, z, y

5 x = 1.1D0 ; z = 3.D0

6 CALL SEED(x, 1)

7 CALL F(x, z, y)

8 PRINT *,’V:’,VALUE(y),’ D:’,DERIV(y)

9 END PROGRAM p

(d) Active driver program

Figure 3: Example codes

Figure 3c shows a possible Fortran implementation of the simple example in Equa-
tion (11). This code gets differentiated in overloaded tangent-linear mode automatically
by compiling with the options -AD TLM SCALAR, and -AD OVERLOAD. In the resulting ob-
ject code the variables x, z, and y are of type compad type (Figure 3a). The operators
(*, +, assignment) and intrinsic functions (sin, cos) in line 5 are resolved during the
(AD-enabled) compilation to overloaded versions defined in compad scalar module.

A driver program (Figure 3d) calls the differentiated code. Therefore the module
compad scalar module is included (line 2), and variables are declared as compad type

(line 4). Assignments (line 5) are overloaded: The value on the right hand side is assigned
to the val-component of the compad type variable on the left, and the drv-component is
set to 0. The directional derivative of the active input x is seeded by calling a subroutine
from the compad scalar module (line 6) that assigns the value of the second argument
(1) to the drv-component of the first argument. Calling the differentiated code (line 7)

8

Jan Riehme, Rebekka Kopmann, Uwe Naumann

is followed by diagnostic output.
The driver program must be compiled and linked with the additional option -AD DRIVER

to get access to the contents of compad scalar module. An executable is build by linking
driver, differentiated code, and compad scalar module. Execution results in the value
F (x, z) and its derivative dF (x, z)/dx at point (x, z)T = (1.1, 3)T printed onto the screen:

V: -0.3711673238301428 D: 0.4685166713003768

Overloaded operators in the TLM introduce a significant runtime overhead: In the
original model arithmetic operations and intrinsic functions are handled directly within
the processor by operations coded in hardware. Replacing these intrinsic operations by
overloaded operators introduces subroutine calls. Moreover intermediate results that are
needed in subsequent operations (Table 1: v3 used by v4) might be held within processor
registers for the intrinsic operations, whereas the arguments for overloaded operators are
stored on the stack. Thus the theoretical slowdown factor c ∈ [2, 5/2] (see Section 3.1)
introduced by the additional computation of directional derivatives turns out to be higher
if overloaded operators are used to implement the TLM. We observe a factor of roughly
5 between the runtime of the original model and the associated overloaded TLM.

The overhead of calling overloaded operators can be reduced by a second transformation
stage in the compiler: Overloaded operators from the compad module are replaced by code
that implements the differentiation rules directly within the internal representation of the
compiler. Thereby the need of calling a subroutine for every arithmetic operation is
removed and the slowdown factor can be reduced to its theoretical limit.

3.3 Tangent-Linear Model of Sisyphe

The two-dimensional morphodynamic model Sisyphe [18] consists of roughly 100000
lines of Fortran code. Differentiating the code with the compiler yields a dramatic change
in meaning and content of the code: The data type of variables, constants, and arguments
of subprograms might be changed. New variables, arguments, or even new subprograms
are created. Operators and intrinsic functions are replaced by overloaded versions. More-
over, our compiler introduces a large number of identifiers by including a compad module.
Name clashes4 and other ambiguities might require intervention by hand.

Another more serious problem arises from changing the data type of floating-point
variables to compad type: In the differentiated version of the code any data transfer
statement (READ, WRITE, PRINT) with a variable of type compad type will transfer twice as
much data (two components of compad type) as in the non-differentiated version. Hence,
inputs files are invalidated and the structure of output files is changed. The compiler
offers the command line option -AD DEACTIVATE IO to restrict compad type variables in

4For example, in Fortran there is no problem in naming a variable sum. However, inclusion of
a compad module will introduce an overloaded version of the intrinsic function sum for vectors of
compad type giving sum a second, conflicting meaning.

9

Jan Riehme, Rebekka Kopmann, Uwe Naumann

I/O statements to their value component automatically. It also provides a set of macros for
accessing the components of compad type. Those have to be incorporated into the source
code by hand if data transfer is executed by external libraries (for example, NETCDF5)
or if the program can restart an interrupted program execution from previously stored
snapshots. To ensure correctness of the tangent-linear code snapshots must also contain
directional derivatives.

3.4 Tangent-Linear Model of Sisyphe and First-Order Reliability Analysis

Sisyphe computes the evolution E ∈ IRm of the river bottom on a grid of m nodes from
a vector x of n uncertain parameters and a vector z of ñ other inputs:

E = E(x, z) =

E1(x, z)
E2(x, z)

...
Em(x, z)

 , E : IRn+ñ → IRm . (12)

In Section 4.1 four input parameters are assumed to be uncertain: parameter for secondary
currents α, slope coefficient β, friction coefficient ks, and the mean grain size dm.6 Hence,

x = (α, β, dm, ks)
T ∈ IR4 . (13)

Computing confidence limits of E with respect to a specific uncertain parameter, for
instance α, by the FORM requires to compute the standard deviation

σEα = σα ·
∂E

∂α

∣∣∣∣
α=<α>

(14)

of E with respect to α (see Section 2.2, Equation (4)). Therefore the standard deviation
σα of α is multiplied with the partial derivatives of E with respect to α at the evaluation
point α =<α>. Both mean value <α> and standard deviation σα of the uncertain
parameter must be given (Section 4.1, Table 2).

The generated TLM of Sisyphe computes products of the Jacobian matrix of the bottom

evolution E = E(x, z) = E(α, β, dm, ks, z) with a seed vector ẋ =
(
α̇, β̇, ḋm, k̇s

)T
:

Ė(x, ẋ, z) = E ′(x, z) · ẋ =

∂E1(x,z)

∂α
∂E1(x,z)

∂β
∂E1(x,z)
∂dm

∂E1(x,z)
∂ks

∂E2(x,z)
∂α

∂E2(x,z)
∂β

∂E2(x,z)
∂dm

∂E2(x,z)
∂ks

...
...

...
...

∂Em(x,z)
∂α

∂Em(x,z)
∂β

∂Em(x,z)
∂dm

∂Em(x,z)
∂ks

α̇

β̇
˙dm
k̇s

 . (15)

5www.unidata.ucar.edu/software/netcdf/
6The letter m in dm does not refer to the dimension of E.

10

Jan Riehme, Rebekka Kopmann, Uwe Naumann

Hence evaluating the TLM of Sisyphe (Equation (15)) with xα = (<α>, β, dm, ks)
T and

seed vector ẋα = (σα, 0, 0, 0)T computes the desired standard deviation (Equation (14))
of E with respect to the uncertain parameter α:

σEα = σα ·
∂E

∂α

∣∣∣∣
α=<α>

= Ė(xα, ẋα, z) . (16)

Computing standard deviations of E with respect to other uncertain inputs require addi-
tional evaluations of the TLM of Sisyphe with x and ẋ set accordingly.

Compound confidence levels for a set of uncertain parameters are obtained by specifying
mean values and standard deviations for all desired uncertain inputs. In Section 4.1 the
compound dependency of the bottom evolution E with respect to all four uncertain inputs
is computed by evaluating the TLM of Sisyphe (Equation (15)) with

xT = (<α>,<β>,<dm>,<ks>) and ẋT = (σα, σβ, σdm , σks) . (17)

4 APPLICATIONS AND RESULTS

4.1 Laboratory Experiment with 180◦ Bend

In a hydraulic model of a 180◦ bend a flat bottom was developed due to a 5 hours
hydrograph (see Figure 4, and [20] for further details). The underlying discretisation
consists of more than 1800 nodes. This experiment is used to validate the sediment
transport module Sisyphe with respect to the effect of secondary currents. The results of
the coupled hydrodynamic / morphodynamic model are reasonably satisfying for a depth
averaged model (see Figure 5).

The FORM is applied to compute confidence limits of the bottom evolution concern-
ing the following four parameters: parameter for secondary currents α, slope coefficient
β, friction coefficient ks, and the mean grain size dm. The sensitivities of the bottom
evolution E with respect to each uncertain input parameter required by the FORM are
calculated with the differentiated version of Sisyphe.

Figure 4: Hydrograph (5 hours) of the 180◦ bend experiment.

11

Jan Riehme, Rebekka Kopmann, Uwe Naumann

Figure 5: Comparison of the normalised bottom evolution from the physical model (black
isolines) and the numerical model (coloured areas) for the 180◦ bend experiment.

The four input parameters are defined independently as uncertain by assigning the
corresponding mean value from Table 2 as their initial value together with seeding their
sensitivity component with the standard deviation given in Table 2 (see Section 3.4 for
details). Figure 6 shows the standard deviations σEdm , σEks, σEβ, and σEα of the bottom

Input parameter Mean value Standard deviation
parameter of secondary currents α 7.0 1.0

slope coefficient β 1.3 0.4
friction coefficient ks 3.0 mm 0.1 mm
mean grain size dm 1.0 mm 0.1 mm

Table 2: Mean values and standard deviation for the four uncertain input parameters
used in the 180◦ bend experiment.

evolution E with respect to the uncertain input parameters dm, ks, β, and α respectively.
For the chosen configuration the bottom evolution E is most sensitive to the mean grain
size dm (Figure 6a). The impact of the slope coefficient β and of the friction coefficient ks
is 5 times smaller (Figures 6b and 6c). The coefficient for the effect of secondary currents
α has a surprisingly small influence (Figure 6d) on the bottom evolution E.

A typical cross section in a bend has steep water at the outer bend and shallow water
at the inner bend. An increased friction coefficient or coefficient of secondary currents
increase the slope in the cross sections. Note the negative values at the outer bend and

12

Jan Riehme, Rebekka Kopmann, Uwe Naumann

positive values at the inner bend in Figures 6b and 6d. In contrast an increased mean
grain size or slope effect will decrease the slope effect of the cross sections. Note the
positive values at the outer bend and negative values at the inner bend in Figures 6a
and 6c. After 5 hours the computed bottom evolution shows 3 cm erosion at the outer

(a) (b) (c) (d)
Figure 6: Standard deviation of the bottom evolution E in the 180◦ bend experiment con-
sidering a Gaussian distribution of the (a) mean grain size dm (with a standard deviation
of 0.1 mm), (b) friction coefficient ks (0.1 mm), (c) slope coefficient β (0.1 mm), and (d)
parameter of second currents (0.1 mm).

bank and 3 cm sedimentation at the inner bank. The calculated sensitivities are relatively
large. The 95 % confidence limits are twice the value of the standard deviation. Hence a
confidence interval of ±1.5 cm is found, which is half of the maximum bottom evolution
value.

The compound dependency of the bottom evolution E with respect to all 4 uncertain
input parameters α, β, ks, and dm are calculated by an additional application of the
FORM. The compound 95% confidence limit for the bottom evolution E (see Figure 7)
at the 90◦ cross section is significantly smaller than that at 180◦. Moreover, at the inner
part of the channel the simulation is far less uncertain than at the boundaries.

4.1.1 Comparison with the MCCL Method

The results of the FORM obtained by using exact sensitivities provided by a tangent-
linear version of Sisyphe are validated against the MCCL method with 100 simulation
runs. Figure 8 shows the compound 95% confidence interval of the bottom evolution E
considering the four uncertain parameters α, β, ks, and dm. While both methods show
a good qualitative match the quantitative information differ significantly. In particular,
the FORM shows higher uncertainties (factor 4) in the resulting bottom evolution at the
boundaries. The reasons remain unclear so far. Other models have shown much better
matching results ([10], [11]). AD allows to compute local sensitivities at the evaluation

13

Jan Riehme, Rebekka Kopmann, Uwe Naumann

(a) cross section 90◦ (b) cross section 180◦

Figure 7: Simulated normalised evolution (red line) at cross section 90◦ (a) and at 180◦

(b) for the 180◦ bend experiment. The grey lines mark the compound 95% confidence
limits for the following 4 uncertain input parameters: parameter for secondary currents
α, slope coefficient β, friction coefficient ks, and the mean grain size dm.

point with machine accuracy. With the standard deviation specified in Table 2 the FORM
computes confidence limits for a rather large interval by multiplying the obtained sensitiv-
ity information with the standard deviation of the uncertain parameter. This introduces
a so far unspecified approximation error. On the other hand, Monte Carlo methods are
approximation processes. They have a smoothing effect on the approximated function.
Evaluation of the model at selected points might miss structurally important areas.

Until now TLM-Sisyphe, the tangent-linear version of Sisyphe, cannot be coupled with
Telemac-2D directly as no tangent-linear version of Telemac-2D is currently available7. As
a workaround the hydrodynamics required by TLM-Sisyphe is pre-calculated by a coupled
run of the Sisyphe and Telemac-2D and is written to disc every 180 seconds of simulation
time. The morphodynamics computed by TLM-Sisyphe within the FORM requires a ten
times smaller time step than the hydrodynamics. Thus every hydrodynamic state read
from disc is followed by the extrapolation of the nine missing states. This approximation
of the hydrodynamics might be the main reason for the observed discrepancies between
the compound 95% confidence limits obtained by the FORM and the MCCL method. A
deeper investigation of the effect of the hydrodynamic interpolation is subject of ongoing
work.

In numerical morphodynamic modelling the computing time spent for evaluating the
models is crucial due to long-term large-scale questions. A single evaluation of a model
can easily take days or weeks. In the 180◦ bend experiment 100 simulation runs can be

7The development of TLM-Telemac-2D is the subject of a new project starting in summer 2010.

14

Jan Riehme, Rebekka Kopmann, Uwe Naumann

(a) Confidence interval by MCCL (b) Confidence interval by FORM
Figure 8: Compound 95% confidence interval of the bottom evolution E considering four
uncertain input parameters α, β, ks, and dm for the 180◦ bend experiment calculated
with MCCL (a) and FORM (b).

performed for the MCCL method within 200 minutes. The subsequent statistical inter-
pretation of the results takes an additional 100 minutes. The code is compiled using the
highly optimising Intel Fortran compiler (Options used: -O3 -ftz -fno-alias -align

-override limits; Compilation with -O4 took too much time).
The runtime of the FORM is clearly dominated by the evaluation of the TLM generated

by the differentiation-enabled NAG Fortran compiler (Options used: -O4). 22 minutes
are spent overall to compute the confidence intervals with the FORM, which amounts to
only 7.33% of the runtime of the MCCL method. Moreover, the differentiation-enabled
NAG Fortran compiler currently uses the GNU gcc compiler to generated binary code.
On our target architectures gcc’s optimisation capabilities turn our to lack behind those
of the Intel compiler suite.

The evaluation of the original model with the NAG Fortran compiler required 4:15
minutes. Consequently, the TLM with overloaded operators suffers from a slowdown
factor of approximately 5.2 with respect to the original model.

4.2 Mühlham Bend (River Danube)

A computational more complex test case is a 10 km long stretch of the river Danube
including a 270◦ bend (see Figure 9). Nearly 105 grid elements are used for the discretiza-
tion with mean node distances of about 6 m in the river channel and up to 30 m at the

15

Jan Riehme, Rebekka Kopmann, Uwe Naumann

flood planes.

Figure 9: River Danube model area with a 270 ◦ bend of Mühlham.

The following 10 parameters are assumed to be uncertain: active layer thickness AL,
coefficient for the slope effect β, the coefficient for the bedload formulation of Meyer-Peter
& Müller MPM , coefficient for the secondary current effect α, friction coefficient ks, and
the grain sizes dm1 .. dm5 of 5 classes. See Table 3 for their values and standard deviation,
again assuming a Gaussian distribution.

In the FORM of this complex system a direct or at least frequent coupling between
hydrodynamics and morphodynamics is essential for simulating a natural hydrograph.
The large number of elements in this model makes it impossible to precompute and store
on disc a sufficient number of hydrodynamic states by the coupled non-AD version of
Sisyphe and Telemac-2D. Thus TLM-Sisyphe is not running with a natural hydrograph,
but with steady state conditions at a mean discharge of 650 m3/s. For this discharge
a mean bottom evolution is expected, so that a coupling to the hydrodynamics could
be avoided. The continuity equation is solved within the TLM-Sisyphe version. In the
literature [18] it is assumed that solving the motion equation by Telemac-2D is required if
the bottom evolution reaches more than 10% of the water depth. Unfortunately, this state
is reached after 12 hours simulation time. So the reliability analysis could only applied
for this short period, because TLM-Telemac-2D is not yet available (see Section 4.1.1).

Nevertheless the result of the compound 95 % confidence interval of bottom evolution
concerning all 10 uncertain parameters (see Figure 10a) shows the same qualitative be-
haviour as a reliability analysis performed with the MCCL method on a 9-day artificial
hydrograph with two high water periods each day (see Figure 10b). The quantitative
results are not comparable due to the following three aspects:

• The different hydrodynamic situation: 12 hours, uncoupled hydrodynamic and mor-
phodynamic, steady state conditions (FORM) in contrast to 9 days, coupled hydro-

16

Jan Riehme, Rebekka Kopmann, Uwe Naumann

Input parameter Mean value Standard deviation
active layer thickness AL 0.1 0.02

slope coefficient β 1.3 0.4
MPM factor 4.0 0.3

parameter of secondary currents α 10.0 3.0
friction coefficient ks 50.0 mm 10.0 mm
mean grain size dm1 0.5 mm 0.1 mm
mean grain size dm2 2.5 mm 0.3 mm
mean grain size dm3 10.0 mm 1.0 mm
mean grain size dm4 24.0 mm 4.0 mm
mean grain size dm5 48.0 mm 4.0 mm

Table 3: Mean values and standard deviation for the chosen uncertain input parameters
in Mühlham bend experiment (river Danube).

dynamic and morphodynamic, artificial hydrograph with two high water periods
per day (MCCL).

• In the MCCL method each area with the same friction coefficient is handled as
an extra parameter. So instead of 1 uncertain friction coefficient ks in case of the
FORM there 4 different friction coefficients ks{1,...,4} are taken into account for the
river channel, the groynes, an area with a nature experiment and a sandbank with
trees with the MCCL method.

• Furthermore, the chosen probability distribution is in most cases double Gaussian
and not a simple Gaussian distribution.

As expected mainly from the different hydrodynamics the bottom evolution deviation is
higher in case of the MCCL method than in the FORM. There is no discussion of the
consumed computing time due the different simulation time horizons (12 hours and 9
days).

5 CONCLUSIONS AND OUTLOOK

We have computed confidence limits of the bottom evolution E with respect to several
uncertain input parameters by the First-Order Reliability Analysis Method at a fraction
of the computational cost of the Monte Carlo Confidence Limit method.

A good qualitative match between results of the FORM and the MCCL method was
observed. Substantial differences in the underlying evaluation scenarios might be respon-
sible for the qualitative differences observed:

• TLM-Sisyphe morphodynamics is not coupled to Telemac-2D hydrodynamics, since
there is no TLM of Telemac-2D so far. By interpolating the missing hydrodynamic
information from certain precomputed stages an additional approximation error is

17

Jan Riehme, Rebekka Kopmann, Uwe Naumann

(a) Compound 95% confidence interval, FORM (b) Compound 95% confidence interval, MCCL
Figure 10: Compound 95% confidence interval of bottom evolution of the Mühlham exper-
iment (a) concerning 10 uncertain input parameters after 12 h mean discharge computed
by the FORM, and (b) 13 uncertain input parameters after 9 days hydrograph obtained
by the MCCL method.

introduced (180◦ bend, Section 4.1.1). Assuming steady state conditions for the
hydrograph results in a different hydrodynamical scenario (Mühlham, Section 4.2).

• For the MCCL method four friction coefficients were used, instead of a uniform
friction coefficient in the FORM (Mühlham, Section 4.2).

We are confident that once we can run identical experiments we will get comparable
results by the FORM with much less computational effort than in the MCCL method.

On the other hand, Monte Carlo methods have a smoothing effect on the function
they are approximating due to the fact that evaluations of the model are done only on
some sample points. Rapid changes in small domains (local behaviour of the model) or
even discontinuities may not be captured. This is the price to pay for approximating the
behaviour of the function in an interval (ω− σω, ω+ σω) instead of computing a value for
a single evaluation point.

In contrast computing sensitivities with AD is a strictly local approach: The sensi-
tivities by AD are exact up to machine precision at the current point. For nearly linear
functions in the desired input parameters the sensitivities computed by AD will be good
even over larger intervals. But for strongly non-linear models the sensitivities might
change even in small neighbourhoods of the current evaluation point significantly. Thus
the confidence level computed within FORM by multiplying the standard deviation of the
uncertain input by the sensitivity of the output (bottom evolution E here) with respect
to the uncertain input is only an approximation.

18

Jan Riehme, Rebekka Kopmann, Uwe Naumann

It might be worth looking for clever combinations of the large interval covering Monte
Carlo method (MCCL) with the locally exact information provided by the FORM based on
exact sensitivities. Hopefully one can minimise the somehow contradicting approximation
errors of both methods.

Furthermore, one might consider alternative methods for the propagation of uncertain-
ties such as the methods of moments [1], or handling the uncertainties as genuine intervals
instead of point wise. Switching to interval arithmetic will raise a number of new issues
such as the need for special interval algorithms (for instance Interval-Newton [14] instead
of Newton methods working on intervals directly).

Next steps will include a more detailed investigation of the error introduced by the
hydrodynamic approximation, and the development of the differentiated Telemac-2d ver-
sion.

REFERENCES

[1] M. Beckers and U. Naumann. Propagation of uncertainties using the method of
moment. In Proceedings of The Tenth International Conference on Computational
Structures Technology. Civil-Comp Press, 2010. Submitted.

[2] M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differen-
tiation: Techniques, Applications, and Tools, Proceedings Series. SIAM, 1996.

[3] M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors. Automatic
Differentiation: Applications, Theory, and Tools, number 50 in Lecture Notes in
Computational Science and Engineering, Berlin, 2005. Springer.

[4] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors. Automatic
Differentiation of Algorithms – From Simulation to Optimization, New York, 2002.
Springer.

[5] G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Implemen-
tation, and Application, Proceedings Series. SIAM, 1991.

[6] R. Dembo and T. Steihaug. Truncated-Newton algorithms for large-scale optimiza-
tion. Math. Prog., 26:190–212, 1982.

[7] A. Griewank and A. Walther. Evaluating Derivatives. Principles and Techniques of
Algorithmic Differentiation (Second Edition). SIAM, 2009.

[8] J.-M. Hervouet, 2007. Hydrodynamics of Free Surface Flows: Modelling with the
Finite Element Method. John Wiley & Sons (2007)

[9] C. T. Kelley. Solving Nonlinear Equations with Newton’s Methods. SIAM, Philadel-
phia, 2003.

19

Jan Riehme, Rebekka Kopmann, Uwe Naumann

[10] R. Kopmann, A. Schmidt. Reliability analysis of two-dimensional morphodynamic
results. Proceedings of International Conference on Fluvial Hydraulics, Turkey (2008)

[11] R. Kopmann, A. Schmidt. Comparison of different reliability analysis methods for a
2D morphodynamic numerical model of River Danube Proceedings of International
Conference on Fluvial Hydraulics, Braunschweig (2010) (submitted)

[12] C.S. Melching. 1992. An improved first-order reliability approach for assessing un-
certainties in hydrologic modeling, Journal of Hydrology, 132, pp157-177.

[13] Melching, C.S. 1992. II. Improved First-Order Uncertainty Method for Water-Quality
Modeling, Journal of Environmental Engineering, pp 791-805, Sept/Oct (1992)

[14] R.E. Moore, R.B. Kearfott, and M.J. Cloud. 2009. Introduction to Interval Analysis,
SIAM, Philadelphia.

[15] U. Naumann, M. Maier, J. Riehme, and B. Christianson. Automatic first- and second-
order adjoints for Truncated Newton. In M. Ganzha et al., editor, Proceedings of
IMCSIT’07: Workshop on Computer Aspects of Numerical Algorithms (CANA’07),
pages 541–555. PTI, 2007.

[16] U. Naumann and J. Riehme. A differentiation-enabled Fortran 95 compiler. ACM
Transactions on Mathematical Software, 31(4):458–474, 2005.

[17] L. Nikitina, I. Nikitin, T. Clees. 2009. Studie Zuverlässigkeitsanalyse morphody-
namischer Modelle. Abschlussbericht zum Arbeitspaket (WP) 2, Fraunhofer Institut
Algorithmen und Wissenschaftliches Rechnen (2009)

[18] K. Villaret. 2005. User Manual Sisyphe Release 5.5. HP-76/05/009/A, Department
National Hydraulics and Environment Laboratory, Electricité de France (2005)

[19] B.C. Yen,S. Cheng, and C.S. Melching. 1986. First order reliability analysis, Stochas-
tic and risk Analysis in hydraulic Engineering. International Symposium on Stochastic
Hydraulics 4, Water Recources Publication, Littleton, Colorado (1984)

[20] C. Yen, K.T. Lee. Bed Topography and Sediment Sorting in Channel Bend with
Unsteady Flow, Journal of Hydraulic Engineering, Vol.121, No. 8, (1995)

20

