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Abstract. A method for extracting coherent vorticity sheets and current sheets out
of three-dimensional homogeneous magnetohydrodynamic (MHD) turbulence, called the
CVCE method, is proposed and compared with linear Fourier filtering (LFF) method. The
CVCE method is based on the orthogonal wavelet decomposition of the vorticity and cur-
rent density fields. Thresholding the wavelet coefficients allows both fields to be split into
coherent and incoherent parts. The LFF method is based on the Fourier decomposition,
which decomposes a given field into large- and small-scale contributions. These methods
are applied to direct numerical simulation (DNS) data of three-dimensional homogeneous
MHD turbulence in a periodic box. It is found that the coherent structures extracted by
using the CVCE method, represented by a few percent of the number of degrees of freedom
of the DNS field, well preserve the vorticity sheets and current density sheets present in the
DNS field. The incoherent vorticity and current density are shown to be structureless. On
the other hand, the large-scale fields obtained by the LFF method, represented by almost
the same number of degrees of freedom as that for the coherent fields, do not well preserve
the vorticity sheets and current density sheets present in the DNS field. The small-scale
vorticity and current density fields contain organized structures similar to those present
in the DNS field. We examine the contributions of these coherent, incoherent, large-scale
and small-scale fields and compare their statistics with the DNS field.
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1 INTRODUCTION

Understanding the role of coherent structures in turbulence is a prerequisite for ac-
curate and physically-based modeling of turbulence. The structures are not distributed
homogeneously and turbulent fields exhibit spatial intermittency. This means that the
spatial support of coherent structures decreases with scale, as a result, the nonlinear ac-
tivity becomes localized at small scale. To be able to benefit from this property, a suitable
representation of such intermittent fields should take into account this lacunarity.

The wavelet transform decomposes a given field into scale-space contributions, which
allows for a sparse representation of intermittent data. For the intermittent data, the small
scale contributions have significant values only in active regions and are nonsignificant
in weak regions. If the nonsignificant contributions are negligible in the dynamics of
turbulence, the amount of wavelet coefficients can thus be significantly reduced before
reconstructing the flow field in physical space. For a review on applications of wavelet
methods to turbulence we refer to Refs. 1 and 2.

The coherent vorticity extraction (CVE) method introduced for two- and three-dimen-
sional hydrodynamic (HD) turbulence3,4,5 is one of the most useful tools for the extrac-
tion of coherent vortices from HD turbulence together with a significant reduction of the
number of degrees of freedom. It is based on orthonormal wavelets which yield a non-
redundant representation and for which fast transformation algorithms are available6.
The CVE method allows us to divide the vorticity field into two orthogonal parts, co-
herent and incoherent vorticity. The coherent vorticity reconstructed from few wavelet
coefficients of vorticity, whose moduli are above a threshold, which is motivated from
denoising theory7, contains the coherent vortex tubes, and exhibits statistics similar to
those of the total vorticity. The incoherent vorticity reconstructed from the remaining
large majority of the wavelet coefficients corresponds to an almost uncorrelated random
background. The CVE method was applied to direct numerical simulation (DNS) data of
three-dimensional homogeneous isotropic turbulence in a periodic box4,5, 8. Only about
3% of the wavelet coefficients of vorticity represent the coherent vortex tubes, and they
well preserve statistics of the DNS data. Farge et al. compared the CVE method with
linear Fourier filtering (LFF) one, using the spectral cutoff filter4. The CVE method is
shown to be more efficient than the LFF method for extracting the coherent vortex tubes
out of the turbulent flow. The CVE method has great potential for application to other
types of intermittent fields, since it is based only on the flow intermittency.

Recently, the CVE method has been generalized to extract coherent vorticity sheets
and coherent current sheets out of three-dimensional homogeneous magnetohydrodynamic
(MHD) turbulence9. We call the method Coherent Vorticity sheet and Current sheet
Extraction (CVCE) method. The method was applied to DNS data of incompressible
MHD turbulence without mean magnetic field in a 2π periodic box. The coherent vorticity
and current density fields preserve both the vorticity sheets and the current sheets present
in the DNS field, while retaining only a few percent of the number of degrees of freedom.
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The incoherent vorticity and current density are shown to be structureless and of mainly
dissipative nature.

In the present study, we summarize the statistics of the coherent and incoherent fields
obtained by the CVCE method, and compare the CVCE method with the LFF method.

2 EXTRACTION OF COHERENT STRUCTURE

In this section, we briefly summarize the CVCE method9, and describe the LFF
method.

2.1 CVCE method

A wavelet-based nonlinear filtering method for extracting coherent vorticity and co-
herent current density from three-dimensional homogeneous MHD turbulent field, called
the CVCE method, was proposed9. The coherent vorticity and coherent current density
are defined by ‘what remains after denoising’.

Both fields, vorticity ω and current density j, are first decomposed into orthogonal
wavelet series. Then we split each field into coherent and incoherent contributions in
wavelet space by applying nonlinear thresholding. The coherent vorticity field ωc is
reconstructed from the wavelet coefficients whose moduli are larger than a given threshold.
The coherent current density field jc is obtained in the same way as in the case of ωc. The
threshold value for the current density field can be different from that for the vorticity
field. The incoherent fields are obtained by means of simple subtraction, ωi = ω − ωc

and j i = j − jc. The coherent and incoherent contributions for each field thus obtained
are orthogonal, which ensures a separation of the total kinetic and magnetic enstrophies,
defined as Zu = ⟨ω,ω⟩/2 and Zb = ⟨j, j⟩/2, into Zu = Zu

c + Zu
i and Zb = Zb

c + Zb
i ,

respectively. Here, Zu
c = ⟨ωc,ωc⟩/2, Zu

i = ⟨ωi,ωi⟩/2, Zb
c = ⟨jc, jc⟩/2, and Zb

i = ⟨j i, j i⟩/2.
Hereafter, the superscript u stands for the velocity field and b for the magnetic field,
corresponding to the vorticity and current density fields, respectively.

Biot-Savart’s relations, uα = −∇× (∇−2ωα) and bα = −∇× (∇−2jα), (α = c, i), are
used to reconstruct the coherent velocity field uc, the incoherent velocity field ui, the
coherent magnetic field bc and the incoherent magnetic field bi from ωc, ωi, uc and ui,
respectively.

2.2 LFF method

In the LFF method, vorticity ω and current density j are decomposed into Fourier
series. The large-scale vorticity ωL and the large-scale current density jL are obtained
by retaining only the Fourier coefficients whose wavenumbers k = |k| are smaller than
the cutoff wavenumber, i.e. k < kc, where k is the wave vector. The remaining small-
scale vorticity ωS and small-scale current density jS are reconstructed from the Fourier
coefficients satisfying k ≥ kc, and are also simply obtained by ωS = ω−ωL and jS = j−jL.
Here, we determine the cutoff wavenumber kc so that the percentage of the number of the
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Fourier coefficients whose wavenumbers are smaller than kc is almost the same as that of
the wavelet coefficients representing the coherent fields extracted by the CVCE method.

3 NUMERICAL RESULTS

We first summarize the statistics of coherent and incoherent fields which were obtained
by the use of the CVCE method9. They are compared with the statistics of large- and
small-scale fields obtained by the LFF method. Both methods are applied to the DNS
data of incompressible MHD turbulence in a 2π periodic box, computed at resolution
N = 5123. The Taylor microscale Reynolds number of MHD turbulence and the Prandtl
number are 154 and 1, respectively9.

3.1 Results obtained by CVCE method

3.1.1 Visualization

Figure 1: Isosurfaces of vorticity |ω| (top) and current density |j| (bottom) of the total (left), coherent
(middle), and incoherent contributions (right). The values of the isosurfaces are taken as |ω| = ⟨ωt⟩+4σω

for the total and coherent vorticity and |j| = ⟨jt⟩+4σj for the current density. For the incoherent vorticity
and current density fields, the isosurfaces are set to |ω| = (⟨ωt⟩ + 4σω)/3 and |j| = (⟨jt⟩ + 4σj)/3,
respectively. Here, ⟨ωt⟩ and ⟨jt⟩ are the mean values of |ω| and |j| for the total vorticity and current
density fields, respectively, and σω and σj are standard deviation values of |ω| and |j|, respectively.
Subcubes of size 2563 are visualized.
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Figure 1 (left) shows isosurfaces of intense vorticity (top) and current density (bottom)
regions of the total fields (green) in the DNS data. We see vorticity and current density
sheets as in previous DNS results (e.g., Refs. 10 and 11). Note that the threshold
value used in the visualization for the vorticity field is different from that for the current
density field. We show isosurfaces of the coherent vorticity and current density (red) in
Fig. 1 (middle). The coherent vorticity and current density fields, plotted with the same
isosurface values as those of the total fields, are in good agreement with their respective
total fields. The coherent vorticity sheets and current density sheets are represented by
3.21% of the wavelet coefficients of vorticity, and by 3.16% of the wavelet coefficients
of current density, respectively. Table 1 shows that the coherent parts retain almost all
of the kinetic and magnetic energies, 93.2% of the kinetic enstrophy and 93.7% of the
magnetic enstrophy.

In contrast, the incoherent vorticity and current density are structureless, as shown in
Fig. 1 (right), respectively. Note that for the incoherent fields the values of the isosurfaces
chosen for visualization are reduced by a factor of 3, as their fluctuations are much smaller
than those of the total fields. These incoherent parts, reconstructed from the remaining
large majority of the wavelet coefficients of vorticity and current density, retain little of
the kinetic and magnetic energies: only 6.8% of the kinetic enstrophy, and 6.3% of the
magnetic enstrophy (see Table 1).

3.1.2 Probability density functions

The probability density functions (PDFs) of the velocity and magnetic fields of the
total, coherent and incoherent parts are plotted in Fig. 2 (left). The total and coherent
velocity PDFs (two wide PDFs) coincide well. The incoherent velocity PDF is quasi-
Gaussian with a strongly reduced variance compared to that of the total field. The same
observations hold for the magnetic field.

In contrast, the vorticity and current density PDFs exhibit different behavior, as shown
in Fig. 2 (right). Although the PDFs of the total and coherent fields of both vorticity
and current density almost coincide, they show stretched exponential tails which show the
intermittency that is due to the presence of coherent vorticity sheets and current density
sheets. The PDFs of the incoherent fields have exponential shapes with reduced variances
compared to those of the total fields. The skewness and flatness of the total, coherent
and incoherent fields are listed in Table 2.

coherent incoherent large scale small scale
% of kinetic enstrophy 93.2 6.8 84.0 16.0
% of kinetic energy 99.8 0.1 99.8 0.2
% of magnetic enstrophy 93.7 6.3 83.0 17.0
% of magnetic energy 99.9 0.1 99.8 0.2

Table 1: Energies and enstrophies of the total, coherent, incoherent, large-scale and small-scale fields.
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Figure 2: PDFs of the ℓth components of (top) the velocity and (bottom) the magnetic fields for the total,
coherent and incoherent fields. (left) PDFs of the ℓth components of (top) the vorticity and (bottom)
the current density fields for the total, coherent and incoherent fields. (right)

3.1.3 Energy spectra and energy fluxes

Figure 3 shows the kinetic and magnetic energy spectra, plotted versus the wavenumber
normalized by Iroshnikov and Kraichnan (IK) microscale ηIK , for the total, coherent and
incoherent parts. The spectra are obtained by integrating energy in three-dimensional
k-space over spherical shells k = |k|.

We observe that the spectra of the total fields exhibit an IK spectrum in the inertial
subrange, i.e., Eζ(k) ∝ k−3/2 (ζ = u, b)12,13. For the coherent contributions, the kinetic
and magnetic energy spectra are identical with those of the total fields all along the in-
ertial range, respectively. This implies that coherent vorticity sheets and current density
sheets are responsible for the IK spectrum. Although both spectra of the coherent fields
differ from the spectra of the total fields for kηIK & 0.5, the coherent fields still provide
significant contributions at scales smaller than kηIK ≃ 0.5. Concerning the incoherent
fields, we observe that the scaling of the incoherent kinetic energy spectrum is close to
k2. This is also the case for the incoherent magnetic field. These k2 spectra correspond
to equipartitions of incoherent kinetic and magnetic energies between all wave vectors k,
respectively. The incoherent velocity and magnetic fields are therefore spatially decor-
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Quantity total coherent incoherent large scale small scale
Velocity skewness 0.055 0.055 0.000 0.055 −0.004
Velocity flatness 3.3 3.3 3.7 3.3 12.1
Magnetic field skewness 0.018 0.018 0.000 0.018 −0.002
Magnetic field flatness 3.0 3.0 3.7 3.0 16.8
Vorticity skewness −0.050 −0.052 0.001 −0.029 −0.008
Vorticity flatness 8.1 8.4 5.8 5.5 16.3
Current density skewness 0.015 0.016 −0.001 0.009 0.001
Current density flatness 14.2 14.9 6.2 7.9 23.7

Table 2: Skewness and flatness for the total, coherent, incoherent, large-scale and small-scale fields.
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Figure 3: Kinetic (left) and magnetic (right) energy spectra of the total, coherent and incoherent fields.

related, which is consistent with the observation that incoherent vorticity and current
density are structureless (see Fig. 1 (right)).

Studying the transfer of kinetic and magnetic energy in Fourier space enables us to
check the contributions of the coherent and incoherent fields to the nonlinear dynamics.
The energy fluxes for the kinetic and magnetic energy are defined by

Πα(k) = −
∫ k

0

Tα(q)dq, (1)

Tα(q) =
1

2

∑
q−1/2≤q′<q+1/2

{
F [z−

α ](q
′) · F [

(
z+
α · ∇

)
z−
α ](q

′)

+ F [z+
α ](q

′) · F [
(
z−
α · ∇

)
z+
α ](q

′)
}
, α = c, t (2)

where q = |q|, z±
c = uc ± bc and z±

t = u ± b.
Figure 4 shows the energy fluxes for the coherent fields, normalized by the energy

dissipation rate ⟨ϵ⟩ versus kηIK, together with the total energy flux. We find that the
energy flux for the coherent fields coincides with that for the total fields all along the
inertial range. In the dissipative range, the coherent flux still dominates, though it begins
to depart from the total flux.
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Figure 4: Energy fluxes Π(k) for the total, coherent and large-scale fields.

3.2 Results obtained by LFF method

3.2.1 Visualization

Figure 5 (left) shows that the large-scale vorticity (top) and current density (bottom)
structures, both represented by 3.26% of the Fourier coefficients, retain less vorticity and
current density sheets than the coherent vorticity and current density fields (see Fig. 1).
Table 1 shows that the large-scale fields retain almost all of the kinetic and magnetic
energies, but have less kinetic and magnetic enstrophies than the coherent fields.

Figure 5 (right) illustrates that the small-scale vorticity and current density fields
exhibit organized structures, similar to those present in the DNS field. This is in contrast
with the incoherent fields, which contain no vorticity and current density sheets as shown
in Fig. 1 (right). Table 1 shows that the small-scale fields have more kinetic and magnetic
enstrophies than the incoherent fields.

3.2.2 Probability density functions

Figure 6 (left) shows that the PDFs of the large-scale velocity and magnetic fields
are in good agreement with those of the total velocity and magnetic fields, respectively.
This is the case for the coherent fields, which preserve the PDFs of the total velocity
and magnetic fields. The PDFs of the small-scale velocity and magnetic fields exhibit a
stretched exponential behavior, though the incoherent velocity and magnetic fields exhibit
a quasi-Gaussian distribution (see Fig. 2).

Figure 6 (right) reveals that the PDFs of the large-scale vorticity and current density,
ωL and jL, do not preserve those of the total fields. The small-scale vorticity and current
density has about the same range of variation as ωL and jL, respectively. These results
about the PDFs of ωL and jL are in contrast with those obtained by the CVCE method.
As mentioned in subsection 3.1.2, the PDFs of the coherent vorticity and current density
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Figure 5: Isosurfaces of |ω| (top) and |j| (bottom) of the large-scale (left), and small-scale contributions
(right). The values of the isosurfaces are the same as those for the corresponding coherent and incoherent
fields. Subcubes of size 2563 are visualized.

fields well preserve those of the total fields. The spatial variations of the incoherent
vorticity and current density fields are much smaller than those of the coherent vorticity
and current density fields.

3.2.3 Energy spectra and energy fluxes

We have denoted the cutoff wavenumber kc separating the large- and small-scale con-
tributions by vertical dashed lines in Fig. 3. The energy spectra of the large-scale velocity
and magnetic fields are identical with those of the total fields for k < kc, and the energy
spectra of the small-scale velocity and magnetic fields are the same as those for k ≥ kc.

The energy fluxes for the large-scale fields are obtained by the use of the equation
(1) with replacement of z±

α by z±
L = uL ± bL. Figure 4 shows that the large-scale fields

preserve the nonlinear dynamics of the DNS field in the inertial range, but not near the
cutoff wavenumber.

4 CONCLUSIONS

We have introduced the coherent vorticity and current density extraction (CVCE)
method for extracting coherent structures from MHD turbulent fields9 and compared the
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Figure 6: PDFs of the ℓth components of (top) the velocity and (bottom) the magnetic fields for the
total, large-scale and small-scale fields. (left) PDFs of the ℓth components of (top) the vorticity and
(bottom) the current density fields for the total, large-scale and small-scale fields. (right)

method with the linear Fourier filtering (LFF) method. The CVCE method is based on
the orthogonal wavelet decomposition. Thresholding the wavelet coefficients allows us
to split each of the fields into two contributions: a coherent and organized component,
and an incoherent and random component. The LFF method is based on the Fourier
decomposition, which decomposes the fields into large- and small-scale contributions.
Both methods have been applied to the DNS data of incompressible MHD turbulence
without mean magnetic field in a 2π periodic box, computed at resolution N = 5123 with
the Taylor microscale Reynolds number RM

λ = 157.
The coherent structures extracted by the CVCE method, reconstructed from few

wavelet coefficients, preserve the coherent vorticity sheets and current density sheets
present in the DNS field. The coherent fields contain most of the kinetic and magnetic
energies and enstrophies of the total fields. The PDFs of the total and coherent vorticity
and current density have stretched exponential tails and coincide almost perfectly. The
coherent kinetic and magnetic energy spectra coincide with the spectra of the total fields
all along the inertial range, and they differ only in the dissipative range. Studying the flux
of the kinetic and magnetic energy confirms that the nonlinear dynamics is fully captured
by the coherent fields.
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The large-scale fields, represented by almost the same number of degrees of freedom as
that of the coherent fields, do not well preserve vorticity sheets and current density sheets
present in the DNS field. The large-scale fields contain most of the kinetic and magnetic
energies of the DNS field. However, they retain less kinetic and magnetic enstrophies
than the coherent fields. The PDFs of the large-scale vorticity and current density do not
preserve those of the total vorticity and current density fields. The flux of the kinetic and
magnetic energies of the DNS field is retained well by the large-scale fields in the inertial
range, but not near the cutoff wavenumber.

In conclusion, the wavelet representation is more suitable for extracting the coherent
structures and preserving the statistics of the total fields than the Fourier representation.
The above findings motivate the development of Coherent Vorticity sheet and Current
density sheet Simulation method (CVCS), which is a generalization of the Coherent Vortex
Simulation method (CVS). CVS is based on the deterministic computation of the coherent
flow evolution using an adaptive wavelet basis and modeling the influence of the incoherent
background flow, which was proposed for hydrodynamic turbulence.14 Applications of
CVS to two-dimensional flows and to three-dimensional turbulent mixing layers can be
found in Refs. 15−17. Thus, CVCS is promising and should be pursued in future studies.
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