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Abstract. Large Eddy simulation (LES) methodology in curvilinear ihioates is presented.
In the current LES formulation filtering and coordinate tediarmation are decoupled and filter-
ing is performed prior to the transformation as against ttetérnate approach” proposed by
Jordan , where filtering is done after the transformatione Télative advantages and disadvan-
tages of this approach are discussed. Filtering in physsgace introduces a commutation error
between filtering and differentiation due to non-unifornsires. This error and its consequence
on overall accuracy is discussed. The commutation filtenddfin generalized coordinates is
presented. In order to save computational time for simptemgries the orthogonal and non-
orthogonal terms are treated separately in the present Eitran. The approach is validated by
studying the flow over a backward facing step (BFS) and ansyasmetric dump combustor
(ACDC). The LES simulation of the BFS is carried out for a Ré&ysmnumber of 5100 based on
the inlet free-stream velocity and step height h. The resu# validated against DNS data. The
mean longitudinal, vertical velocity profile and the tureaote intensities compare satisfactory
with the DNS data at the normalized coordinates. The rehttant length in the longitudinal
direction varies from 7.1h to 7.3h as compared to the DNSevalu6.28h. In addition, a sim-
ulation of the ACDC is carried out for a Reynolds number ofdBased on the guiding pipe
diameter and the bulk velocity. In order to save computaidime, only a 90 degree segment
of the geometry is studied. The results are validated agansexperimental data base and
the consequences of the calculation approach on the ovacaliracy are assessed. The reat-
tachment length was well predicted and the mean longitugdueatical velocity profile and the
turbulence intensities compare satisfactory with the expents. It is also observed that the
influence of the SGS model is less crucial than the disctaiizand the grid resolution. The
overall accuracy depends on the discretization schemegtigeresolution, inflow and other
boundary conditions.
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1 Introduction

Modeling of fluid flow by numerical simulation includes Reyu® Averaged Navier Stokes
(RANS), Large Eddy Simulation (LES) and Direct Numericam8lation (DNS). In RANS,
ensemble or time averaged Navier Stokes(N-S) equatiorsoared and turbulence is modeled
using an appropriate turbulence model, whereas DNS solv8shuation on the grid scales
without any turbulence model but it is computationally deaiag. LES, which resolves a
major part of turbulent kinetic energy is a promising toal imderstanding the physics of un-
steady turbulent flow at comparatively reduced costs. In,ltESlarge geometrically dependent
energy-carrying eddies are resolved on grid scales(GS9reals effects of the smaller, more
universal scales are modeled using a sub-grid scale (SG&ImA high fidelity LES should
resolve length scales from the largest to the inertial scaléhe grid scales. A wide range of
subgrid models have been studied and successfully applieE$1-2 Over the decades LES
has been applied successfully to the simple as well as congplemetries. Grigoriadis et 4l.
presented an LES method to treat complex geometrical caafigns using the domain de-
composition approach and the immersed boundary methodeshadt aP. developed an LES
method for complex geometries discretized with unstruaturybrid grid. LES methodology
in curvilinear coordinates has been used for many complergérie§

In present study a LES methodology is presented in body fttedlinear coordinates. LES
formulation in curvilinear coordinates poses a basic moblwhether filtering has to be per-
formed prior or after the transformation. This problem hasrbstudied by Jordérand he
defined the conventional and alternate approaches. In tiwentional approach, filtering is
performed before transformation and in the alternate amrdiltering is performed after the
transformation. Jordan favored the alternate approachadii@efined filter and unfiltered rep-
resentation of metrics coefficients in physical space. Rualso mentioned that there was no
difference in the spectral energies of the turbulent flutbuaby filtering in either physical or
computational space. In the present methodology filtergfgre the transformation was pre-
ferred and transformation was considered as a mathemagieehtor to represent the governing
equations in curvilinear coordinates. In the present sitnuh the Leonard term was defined in
the physical space and then coordinate transformation esisrmed. Finally, Jord&rdid not
mention any strong reasons for not using the conventionabaeh except the filter definition
in physical space and representation of metric coefficiefitie present paper discuss more on
merits and demerits of alternate and conventional appesach

The accuracy of a numerical simulation with LES depends enlibcretization schemes, the
grid resolutions and the subgrid-scale (SGS) models. In bE&erical diffusion caused by the
truncation error of a low-order finite-volume discretipatischeme (FVDS) can be of the same
order of magnitude as the subgrid turbulence viscdsifySince the numerical diffusion does
not represent the turbulence cascade mechanism and sebhséagibulent diffusion by smaller
eddies. Hence, proper SGS modeling is essential in ordeotiehthe role of smaller eddies.

The present LES methodology, which uses the conventiornaioaph, was validated by
studying the unsteady turbulent flow, over a backward fasteg (BFS) and in an axisymmet-
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ric confined dump combustor (ACDC). Although the BFS flow ismetrically simple but it
involves very complex phenomena. At the corner of the stepseparated upstream boundary
layer forms a free-shear layer. The free shear-layer atadownstream at the reattachment
point X, and oscillate in the longitudinal direction. The fluid, upsim to the reattachment
point is subjected to an adverse pressure gradient and Boseparation bubble. Non-reacting
flows over BFS has been studied extensively both experirthgated numerically, and it is one
of the benchmark test case in turbulence modeiiny. In the present paper unsteady charac-
teristics of the BFS and its dynamics with numerical schesubgrid model and grid resolution
is studied.

Efficient combustion requires proper mixing between thédne oxidizer for non-premixed
flames and between burnt and unburnt mixture for premixedefanthe mixing phenomena
and other combustion processes inside the dump combusitdiuisnced by vortices’s that are
formed in the shear layer. Several experimental and nualesiadies have been carried out
for a dump combustor with and without swirl to understanduthsteadiness, vortex breakdown
mechanism ,etc., for reacting and non reacting fl#wS. Lucca and Negrtf have reviewed
the numerical, experimental and theoretical work on volieakdown. In the present work
flow inside the dumb combustor was studied without swirl fhiak previous experimental and
numerical data sets were availalslé’

Axisymmetric geometries are quite common in practical arhistrial problems and most
of the simulations are performed over a pie segment to savggtational time. This is true
for time averaged RANS simulation where the axis boundanglitmn is modeled with proper
boundary condition on turbulent kinetic energy and digsgma In case of LES where instan-
taneous evolution of flow quantities take place. Then the Arundary condition is not ap-
propriate especially for confined jet and swirl flow where nemrtum, mass etc exchange take
place across the axis. This issue has been studied by &2hkimd he observed a substantial
differences in velocities and fluctuations especially eltwsthe axis. The similar behavior have
been observed in present study also.

2 Governing equations and filtering

Three dimensional time dependent Navier-Stokes equaitiagesneralized curvilinear coor-
dinate in strong conservation law foffrvere used in the present work. The N-S equations
were filtered using an implicit low pass box filter in physisphcée’ *°
The filtered continuity equation for flow with constant dénss expressed as

0JU*
— =0 1

The filtered momentum equation
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Where, summation rule applies to all indices except indicesdenotes the Cartesian compo-
nent of the velocity fieldp is the densityp is the static pressurg, is the molecular viscosity,
¢* is the coordinates direction in the transformed spake= 0¢*/0x;, J is the Jacobian of

the coordinates transformatioti’ = gj’?uj are the contravariant velocities components and
represents the filtered quantities of a variahléurther, the subgrid stresg can be expressed
as

Tij = Lij + Cij + Rij (3)

Tij = zfﬁfj - ?jiﬂj (4)

Term L;; = w;u; — w;u; is called the Leonard term and represents the interactimsg the
larger scalesC;; = wu; + u;u; is called the cross-stress term and represents the iriteract

between the larger eddies and smaller eddies/and= uzu] is called the Reynolds subgrid
tensor. The subgrid stresgs is calculated using eddy viscosity approach.

1 ~
Tij — g@'ﬂ'kk = =215, (5)

J ¢! i 9el

ou; u; 2~
Tij = (—Vt <§Jl 821 +§£a—zl) + §5z’jk) (6)

where, v, is the eddy viscosity. In the present study the Smagorims@gel is employed to
compute the eddy viscosity.

whereS;; = < Lo 4 5“%7) is the filtered strain rate tensor. Hence,

v = (CsA)* ]S (7)

EE \/ 25,5, (8)
Where,C is a constant and can be estimated dynamically, ang (J6§l652653)1/3 is the
filter width.

3 Conventional vs Alternate Approach

In the present study, the conventional approach was peefeather than the alternate ap-
proach. Jorddihmentioned a difficulty in calculating the Leonard term du@lefined filter in
physical space. But in actual practice the Leonard ternmesgmts the interaction among larger
eddies and can be evaluated in the physical space with an@pge filter kernel developed in
physical space. Similarly other terms, such as the croessstind Reynolds stress terms also
need to be evaluated in the physical space. In the alterpateach, all these terms were for-
mulated based on the contravariant velocity componentstenihteraction among contravariant
components is still not clear. Another issue with the Ledriarm in computational space is its
inherent metric coefficients, which has to be evaluated higher order schemes.

4
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Jordafi also pointed out with the conventional approach, the metréfficients need to eval-
uated exactly. But for practical cases this is an option astcarconstraint. In the conventional
approach the analytic treatment of the metric coefficientsthe Jacobian for tightly controlled
grids give improvement in the solution with fewer grid<But in complex geometry this condi-
tion is difficult to meet and then the numerical treatmentefinetric coefficients and Jacobian
is the most preferred choi@. Finally, Jordaf carried out a priori test with a DNS data set
of the wake of a circular cylinder at a Reynolds number of 3d6ihg a filter developed in
physical as well as in computational space, but he did namkesany difference in the respec-
tive damped spectral energies except the cost of the filbelLEIS the cost of explicit filtering
is hardly 5-6% of total cost. Finally there were no strongsmee mentioned for avoiding the
conventional approach except for the numerical implenmtaln fact the alternate approach
posed some difficulty while evaluating the dynamic modelstant.

3.1 Practical Difficulty with Alternate Approach

LES in non-orthogonal coordinate have been used many tinteswt reference to the al-
ternate or conventional approaches. Mostly LES methodedag curvilinear coordinates are
based on conventional approach. Moin and Kigeveloped an unsteady high-order LES solver
using a localized dynamic model (LKDM). In their study, a hmdology was developed in
physical space and then transformation was used to repsegoverning equation in compu-
tational space.

Jordan and Ragabformulated a dynamic model in the alternated approach byracting
the Germano identityI'¥ = Y% — &F') with M} = J¢FM;;. They obtained a dynamic model

constant as’ .., = —%% Wherecs! are the subgrid stress tensor in computational

space]'¥ are the contravariant resolved turbulent stressesldrate the contravariant resolved
subgrid stresses. Armenio and PioméNiho developed a Lagrangian dynamic mixed model
in generalized coordinates using the alternate approachight out an issue of constriction
of the Germano identity. According to them, computed subgiscosity using’ ;... was not
rotationally invariant. The remedy to this problem was tmgform the Germano identity first
in the physical space and then carry out the contractionh Wis approach the dynamic model

constant was given by, = —%% WhereM" M!G,,, = M;; M,;.” This approach is
similar to developing a dynamic constant in physical space.

In implementation of Lagrangian modes two step procedure was used, where first all tur-
bulent quantities (velocities etc) were transformed intmatravariant form. These contravari-
ant quantities were filtered using three point top hat filted then transferred back in physical
space. Pre and post transformation of flow quantities caodote substantial damping due to
low order approximation of metric coefficiefitsFinally, implementing any new subgrid mod-
els with alternate approach require the modification of mdike Lagrangian dynamic mixed

model, and subsequent testing of the models
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3.2 Filter for Body fitted Curvilinear Geometries

For evaluating the dynamic constant explicit filtering igued. Ghosal and Moff studied
the commutation problem of differentiation and filteringthvhon uniform grid, according to
them when any convolution filter is applied to the N-S equatiander inhomogeneous flows

and nonuniform grid then filtering and differentiation doest commute.g—ﬁ — % # 0. But
practical flows are inhomogeneous and non-uniform gridsgmsal and filter has to be devel-
oped which can commute up to any order of filter width. Van Der’¥constructed a filter
for non-uniform grids which can commutes to any given ordehe filter width. But this fil-
ter does not address problems of the boundary terms whisbsaim case of inhomogeneous
flows. Vasilye¥’ presented a commutative filter for turbulent inhomogendtmes and cor-
responding discrete filter in complex geometries upto arsyrelé order of accuracy. The filter
was developed in computational space using a mapping amciihis approach differs from
alternate approach, where N-S equations were filtered irpatational space rather than the
flow variables. Marsden et &. extended the model developed by VasiK/elor unstructured
grid in physical space, which does not require any transébion.

Geurts et af? studied the commutator errors and they mentioned that wslrigher order
filter can reduce the magnitude of the commutator error laa, dlux due to turbulent stress is
affected simultaneously in a same order of magnitude. Thsyraentioned that the commuta-
tion error can be controlled by selecting an appropriaterfiidth and filter skewness. But in
complex geometry where filter width and skewness vary sugidean explicit computation of
the commutation error is essential.

Bahramiar® proposed a volume based discrete filter that can be usedtfostractured and
unstructured grids, but in their model the filtering opemtcommutes to one order less than
the order of numerical scheme.

In non-orthogonal geometries, implementation of filter t@ndone in two ways. In first
approach developed by Vasily&primitive variables are transformed in contravariant form
and then these contravariant quantities are filtered in coatipnal space using a discrete filter
developed by Vasilye¥. In second approach developed by Marséeprimitive variables are
filtered in physical space which requires calculation of @ifimoments in complex geometry.
The advantage with Marsd&mapproach is that it can be used for both structured and unstru
tured grid. The one dimensional filter proposed by Marsten

al
Pl f

Bx ©)

Wheref (x) is a variable being filtered, G is the kernel of filte, is the filter widthand a & b
are the domain boundaries. The filter mgmetis defined as

r—a)/ A
M = / 'G (n,x)dn (10)
(z=b)/Ls

Wheren = (x —y) / A, is the change of variable angdis associated with location dependent
filter function G <%,x> The present finite volume schemes is second order accimate t

6
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commutation error (which is also second order accurate doereduce the overall accuracy.
Marsder® proposed a polynomial expression for filter momehts = S, =0° Wi (), — 20)’,
which satisfy all the filter properties proposed by Vasilyé¥or second order accurate scheme,
the filter moments\/' = 0 and M2 # 0 need to be evaluated. For one dimensional filter the

second order filter moment i®? = m ((z; — wi_1)* + (2541 — x;)?), wherez;, and
x; are longitudinal positions of the grid ang represent the longitudinal position where filter

is being computed.
~ M? 9 ,Of
fz)=f(z)+ 5 or (Ax%) (11)
In the present study three one dimensional filters, one i e@@ction, are employed.
For uniform regular gridv/? = 1/2, the filtered operator becomes a top hat filfer= f; +

T (firn = 2fi+ fis).
4 The Dynamic Procedure in Conventional Approach

In the dynamic procedutéa second test filter gives a filtered sub grid stress (SGS)téhs
similar to the original SG&;; when applied to the filtered momentum equation in the physica
space. The Germano identity in physical space;js= T;; — 7,;. Contracting the Germano
identity with M;; produces a dynamic constant in physical space

1 L. M.
Cy=-—22 12
2 My My, (12)

— o~~~

where tensoffy, = A2|S|Sy — A2(S|S), andL;; = wu; — s; and f(x) represent the
double filtering of a variablef(x). The stress tensak;; and M/, are evaluated in physical
space using the filter as expressed in Equ.(11). The conStavdries instantaneously with
space and time and produces too much positive and too higitimegubgrid viscosity, which
destabilized the solution. To avoid the stability problémthe present simulation averaging of
the numerator and denominator in circumferential directar ACDC and spanwise direction
for BFS along with clipping is carried out.

5 Numerical Algorithm

The filtered NS Equ.(1) and Equ.(2) along with the subgridsstrEqu.(6) are solved using
finite volume technique on a non-staggered grid. In the nagegered grid all the variables
(pressure, velocities components and scalars) are stbtled eell center. For calculating con-
vective fluxes, flow variables at cell faces are required.sThiachieved by a discretization
technique such as Quadratic Upwind Differencing Schemel@8Y or the fourth order cen-
tral scheme (CDS-4). The viscous fluxes are approximatecehyral differences scheme of
second-order accurate. Rhie and Chomoment interpolation (MI) scheme is used, to avoid
the unphysical oscillations i.e. checker-board pressaréhe non-staggered grid. In incom-
pressible flow, density is not linked with pressure and fesspure-velocity coupling projection
method?® is used here. A three step (predictor-corrector-corr@qmycedure is used here to
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solve the filtered continuity and momentum equations. Ingfeglictor step the momentum
equations are solved to obtain intermediate velocitied figth old pressure values. This in-
termediate velocities field do not satisfy the continuity&ipn. In the first corrector step the
pressure correctiop is calculated by solving the pressure correcgioRoisson equaticrEqu.
(13) with the intermediate filtered velocities field from the predictor step.

o (op\ 1 (opu

Here /At is the time step. In the second corrector step, velocitidsoéhpressure are corrected
with computed pressure correction field from the first cdoestep. The three-steps procedure
is repeated until convergence. The governing momentumtieggaare integrated with an ex-
plicit five stage fourth-order Runge-Kutta method by Catpeat al** The orthogonal and non
orthogonal terms are treated separately to save the cotignatitime for simple geometries.

6 Problem Description

LES methodology was applied over the backward facing stepis in Fig.1) and in the ax-
isymmetric confined dump combustor (ACDC) (shown in FigBS was chosen for its appar-
ent geometrical simplicity, but it involves relatively cptax flow phenomena. This geometry is
well suited to study the turbulence behavior under segaratecirculation and reattachméht,
which is of highly importance for many practical and engnieg applications. Furthermore
a well established amount of numerical and experimentaititire are availabt&™® *6for this
case. The axisymmetric confined dump combustor (ACDC) waserndue to complexity of
geometry and flow. The experimental and numerical resultsvghat the turbulence in the
dump combustor is highly unsteady and anisotropic behiadtidden expansidfi:®

ol

,{'\

Figure 1: Geometrical Configuration of BFS Figure 2: Geometrical Configuration of ACDC

6.1 Computational Domain

Figure 1 shows a computational domain used for BFS, wheyandz represent the longitu-
dinal, vertical and spanwise directions, respectivelye IBmgitudinal lengti.,. of configuration
was20.5h and channel length ahead of the step %&4. The dimensions in the vertical, and
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spanwisel, directions weresh and4h respectively. The Reynolds numb&e, = pUyh /1)
based on the step height and free stream velocity was 5106hwlas same as the DNS of
Le et al** The computational domain was discretized using a @it x 72 x 20) in lon-
gitudinal, vertical and spanwise directions. The grid wefined in the strong shear flow re-
gions, i.e. close to the walls and in recirculation regioime Time step in the current simula-
tion was fixed atA; = 0.05h/U,. The total simulation time was00h/U,. A no-stress wall

v =0, 3—3 =0, ?)—Z = 0 was applied at the upper boundary. No-slip boundary candtivas
used at all walls. Where, v andw are the velocity components in longitudinal, vertical and
spanwise direction. A free-slip was imposed such that 0, % =0, % = 0 on the spanwise
boundaries. A mean turbulent profile by Spaiaat Rey = 670 supreimposed with a white noise
was applied at inlet, whergis a momentum thickness. The vertical and spanwise comp®nen
of the mean velocity were set to zero. At outlet velocitiem:tirentg—;‘z = 0 were taken equal to
zero.

Figure 2 shows the computational domain used for ACDC whscsimilar to the geome-
try studied by Wang et df:?° The Reynolds numbéiRez = pUpd/ ) for this configuration
was 11700 based on the guiding pipe diamétand the bulk velocity/z. The diameters of
the guiding pipel, main pipeD and constriction pipe were 25.3mm, 49.1 mm and 25.3mm
respectively. The heighf = (D — d) of the sudden expansion (step) was 23.8mm. The
length of guiding pipe, main pipe and constriction pipe wereH, 17.44H and 2.1H respec-
tively. In order to save computational time a quarter of mgér (pie segment) was studied.
A grid of (154 x 104 x 20) was used in axial, radial and circumferential direction.ti# in-
let, longitudinal velocity profile from experimertsperturbed with white noise was used and
radial and tangential component were set equal to zero. #d¢taronvective boundary condi-
tion a{;? + Ue ggj = 0 was used. Wheré& was the convective velocity, which was assumed
Uc = Ug. On the annular surface no slip wall boundary condition weesdu The cyclic bound-
ary condition was used on the circumferential directionm@&istep in the current simulation
was fixed atA, = 4 - 10~°. Total simulation time was 2s about 50000 time steps. Table 1
presents the different configurations studied for the LE& &FS and ACDC. For the BFS,

Table 1: LES Test Cases for Flow Over BFS and ACDC

Runs | Scheme| SGS model Grid Case Description
Run-1| QUICK | Dynamic (DM) | (154 x 88 x 20) ACDC
Run-2| QUICK | Dynamic (DM) | (154 x 104 x 20) ACDC
Run-3| CDS-4 | Dynamic (DM) | (154 x 104 x 20) ACDC
Run-4| QUICK | Dynamic (DM) | (148 x 72 x 20) BFS
Run-5| CDS-4 | Dynamic (DM) | (148 x 72 x 20) BFS

the mean longitudinal velocity profiles and turbulent irsi&non dimensionalized with inflow
free stream velocity/, were computed and compared with DNS data set of Le &t &or
ACDC, mean longitudinal, radial velocity profiles and tudnt intensity non dimensionalized

9
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with inflow bulk velocity U, were computed and compared with experimental data set off\Wan
etall”?0

7 Results and discussion
7.1 Qualitative Analysis of flow over BFS and ACDC

Figures 3 and 4 show the instantaneous large coherentisewmt ACDC and BFS, respec-
tively using Q criterion. The Q criterion is the second inaat of velocity gradient tensor
Vu and was proposed by Hunt et®IThe second invariar® = % (€2;;94; — Sij5i;). Where

o L (0w _ 9y i o L ow 4 9y i i
Qj = 5 ( 2. %_) and strain rate tensd¥;; = ; oo, + 7o ) are respectively the anti

symmetric and the symmetric componentsvaf. As it is observed that the boundary layer

Py Fig.3a
_—— =

Figure 3: Large Coherent Structure of Axisymmetric Confibeanp Combustor (ACDC) with Q isosurface of
1000

Figure 4: Large Coherent Structure of Backward Facing Stép@ isosurface of 0.5

inside the guiding pipe of ACDC or at the step of BFS, separaté¢he trailing edge and forms
shear layer. The shear layer undergoes the K-H instabilityfarms the instantaneous coher-
ent structures or eddies of different size. The shear layactzes downstream at reattachment
point and oscillates about the mean reattachment lekigtihe reattachment region is strongly
influences with inflow condition, wall and geometry of the figaration. The flow inside the
ACDC involve three major flow phenomena as was mentioned hygvéaal'”2° a main core,
flow between the wall and the shear layer and flow near to the wal

10
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7.2 Reattachment length of BFS

The mean reattachment length in BFS w§s 7.3~ (Run-4) andr.1~ (Run-5) compared to
the DNS value of X, = 6.28h) of Le et al** and the experimental value @k, = (6.0 + 0.15)h)
of Jovic and Drivet® This was because of the inflow boundary condition used in tineent
simulation did not had turbulent longitudinal vorticed'st caused delay in the transition of
the shear layer and consequently increase of the reattatthength? Westphal and Johnstén
observed that the reattachment length decreases with sgagecin freestream turbulence. An
LES of BFS carried out by Dubief and Delca¥tebtained a recirculation length @f2h at the
same Reynolds number 6100. The inflow boundary condition was mean velocity prdfile
perturbed with white noise.

3

—DNS (Le et al)
= Run—-5 1
- Run—4

-85

Figure 5: Mean longitudinal velocity profiles at four diféat streamwise positions downstream of the step, for
Run-4 and Run-4 compared to DNS results of Le éfal.

7.3 Mean Velocities and Turbulent intensity of BFS

In BFS the averaged flow parameters (velocities etc) arepgent of the initial condi-
tions, geometrical parameters and boundary conditionis kegpect to the normalized coor-
dinate X* = z — X,/X,.'> The non dimensional mean longitudinal velocity profiles aver
plotted in Fig. 5 at different normalized coordinat€s. The computed results compared well
with the DNS results at the reattachment*(= 0) and the recovery regioX(* = 0.66). The
longitudinal velocity was under predicated at*(=-0.333 ) especially foy < 0.5h. The lon-
gitudinal velocity was overpredicated at{ = 1.497) for Run-4. That is because the coarser
grids at this location produced too much diffusion. Lestugize scheme CDS-4(Run-5) shows
improvement over QUICK scheme Fig. 5.

The time-averaged (a) longitudin@l «')'/2 /U, (b) vertical(v'v')}/2 /U,, (c) spanwiséw w")'/? /U,
turbulent intensities and (d) Reynolds shear stress coemidn’v') /U2 are plotted in Fig.

6 at different normalized coordinatéé*. Whereu', v" andw’ are the velocity fluctuations
in longitudinal, vertical and spanwise direction. The ldadinal turbulence intensity com-
pared well with DNS especially for the region < 1.0h and it was underpredicted for the

11
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Figure 6: Square roots of non-dimensional mean Reynoldss#s at four different streamwise positions down-
stream of the step for Run-4 and Run-5 compared to DNS resfuls et al*4

region2.2h > y > 1.0h at the reattachmentX(* = 0) and the recirculationX* = -0.333).
This could be due to two reasons: the first reason was the pabragolution for the region
1.0h < y < 6.0h, which has reduced the turbulent intensity due to inherentarical diffu-
sion of QUICK scheme. On the other hand the CDS-4 schemesdliffasive in nature and
predicted more turbulence intensity than the QUICK schesnghawn in Fig. 6. The another
reasons was that the inflow boundary condition was not coedpag deterministically as it was
done in the DNS. The longitudinal turbulent intensityw')'/2 /U, was slightly overpredicted

at recovery regionX* = 0.66, andX*

1.497). The vertical turbulent intensity'v')'/2 /U,

was underpredicted at recirculatiofi( = -0.333) and the prediction is better at the reattachment
(X* = 0). Figure 6d shows the better agreement of Reynolds stesss componerit; v') /U?

for the regiony < 1.0A.

7.4 Mean Velocities and Turbulent intensity of ACDC

In LES the grid independent solution is essential to undarsthe influence of subgrid
stresses. The present method uses an implicit filter forifijghe governing equations, in that
case it is difficult to obtain grid independent LES solutiBecause when grids are refined then
solution converges towards the DNS. Nevertheless in theeptestudy two grids were studied.
Run-1 and Run-2 were the LES of ACDC with grid$4 x 88 x 20) and(154 x 104 x 20) re-
spectively. The grid is refined in radial direction becaumsettirbulence generation mechanism
dominates near the wall and in the shear layer. Figure 7 stitmywrofiles of the mean and Root
Mean Square (RMS) longitudinal velocities for Run-1 and Rut is observed that the mean
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Figure 7: Mean and RMS of longitudinal velocity profiles, malized with bulk velocity/z, at different stream-
wise positions downstream of the step; where Run-1 (sali)JiRun-2 (dashed line) and experime 3 (
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Figure 8: Mean longitudinal velocity profiles, normalizedtwbulk velocity U, (%) at different streamwise

positions downstream of the step; where Run-2 (dashed ke)-3 (solid line) and experimentll)
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Figure 9: Mean longitudinal velocity profiles, normalizedwbulk velocity U, U—Ifg) at different streamwise
positions downstream of the step; where Run-2 (dashed e)-3 (solid line) and experimentll)

velocity and RMS do not change much with grid refinement. TMSR/alues slightly improve
close to the reattachment point.
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Figure 10: Mean radial velocity profiles, normalized withkouelocity U, (UL; at different streamwise posi-
tions downstream of the step; where Run-2 (dashed line);3R(golid line) and experimentili)
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Figure 11: Mean radial velocity profiles, normalized withkouelocity U, (UL; at different streamwise posi-
tions downstream of the step; where Run-2 (dashed line);3Rgolid line) and experimentil)
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Figure 12: Root Mean Square(RMS) of longitudinal velocityofles, normalized with bulk velocity/p,
((u’u’)l/Q/UB), at different streamwise positions downstream of the stépere Run-2 (dashed line), Run-3
(solid line) and experimentdi)
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Figure 13: Root Mean Square(RMS) of longitudinal velocityffles, normalized with bulk velocity/p,
<u’u’>1/2/UB), at different streamwise positions downstream of the stépere Run-2 (dashed line), Run-3
(solid line) and experimentdi)
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Figure 14: Root Mean Square(RMS) of radial velocity profilesormalized with bulk velocityUg,
(v,v,)1/2/Ug), at different streamwise positions downstream of the stéfere Run-2 (dashed line), Run-3
(solid line) and experimentd)

Figures 8 and 9 show the mean longitudinal velocity nornealiwith bulk velocity along the
axial direction. It can be seen that the reattachment leisgtiell predicated and the secondary
recirculation zone which varies from 2.1h to 8.5h is alsol weddicted. The separation bubble
close to constriction is also well captured. It is observednf Figures 8 and 9 that the mean
axial velocity matches will with experimental results upi{th = 8.4 and beyond that the core
R/D < 0.2 is overpredicated, wher® is the radial coordinates. Fét/D > 0.2 comparison
is excellent with experimental data base of Wang ét"&!. This overprediction in mean ve-
locities was caused due to the axis boundary condition. Assiéen from Figs.14 and 15 that
the radial component of fluctuations are zero at the axist Glearly indicates that the turbu-
lence was not being redistributed in radial direction, aigaused surplus axial momentum and
overprediction of mean velocities.

Figures 10 and 11 show the radial velocity profile compardt @xperiments. The predic-
tion are in good agreement with experiments. The radial @rapt of velocity is very small
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Figure 15: Root Mean Square(RMS) of radial velocity profilesormalized with bulk velocityUg,

<v;v;)1/2/UB), at different streamwise positions downstream of the sidere Run-2 (dashed line), Run-3
(solid line) and experimentd)

except in the regionl6 < z/h < 17.44) that is because of the constriction at the exit. Effect
of constriction is rather local and the present methodology captured reasonably well the
radial velocity profiles in this region. The turbulence ie tlegion(2.1 < z/h < 16) is mostly
dominate due to K-H instability and subsequent break dowthefarge coherent structures.

Figures 12 and 13 show the RMS value of the axial velocities.dbserved that the QUICK
schemes underpredict the fluctuations close to the sudgemsion. It is because, in current
simulation inflow mean profile was subjected with white npis#ich did not had properly
correlated turbulent length and time scales. These fluonsties out due to inherent numer-
ical diffusion of the QUICK scheme. On the other hand CDSHeste predicts better than
the QUICK scheme due to low inherent numerical diffusion.thaugh the fluctuations are
underpredicted close to the step but further downstrearharregion(2.1 < z/h < 8.4) the
predictions are in good agreement with experiments. Thsawvement in prediction indicates
that the present methodology has captured the turbulemerafeon process due to shear layer
instability and its interaction with wall reasonably wellt the exit the CDS schemes overpre-
dicts the fluctuations due to poor grid resolution in coesitsn region.

The RMS value of radial velocities as plotted in Figs.14 abére rather large compared to
the their mean values Figs.10 and 11. This behavior is gintéas to the BFS where lateral

and spanwise variance were much larger than their meansfllieat clearly indicate that the
flow after sudden expansion is anisotropic.

8 Conclusions

The large eddy simulation approach in curvilinear coorttinas presented. LES in curvi-
linear coordinates requires two spatial operation, fitigind coordinates transformation. The
conventional approach (where filtering is performed priczdordinates transformation) is pre-
ferred rather than the alternate approach (where filtesngerformed after the coordinates
transformation). Present study showed that the issuesdraig Jordahwith conventional ap-
proach such as calculation of Leonard term and representatithe metric coefficients are not
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really the big concern. But instead formulating the dynaounstant with alternate approach
created some problems such as non-rotational invariantedhe subgrid viscosity. The rem-
edy to this problem also requires some operations in phiyseece. The implementation of the
dynamic model in alternate approach requires pre and @ostformation of the flow variables,
which introduces further damping.

Filtering in physical space introduces a commutation doegween filtering and differenti-
ation due to non-uniform meshes. The commutation filtersougnly desired order have been
developed for structured as well as unstructured grid®. Application of these filters were
discussed in curvilinear coordinates. A filter in curvikmecoordinate is developed using the
Marsden et al. approach.?® The developed filter is a Laplace filter and is used for explici
filtering the primitive variable. In LES the cost of explidittering is hardly 5-6% of total cost.

The present methodology, which is developed in curviliremardinates requires computa-
tion of orthogonal and non orthogonal terms. For simple getoles computation of non or-
thogonal terms are not required. Therefore the orthogorhhan-orthogonal terms are treated
separately to save the computational time.

The methodology is validated by performing the LES over taekivard facing step (BFS)
and in the axis symmetric dump combustor (ACDC). The LES @&Fe$ is carried out for a
Reynolds number of 5100 based on the inlet free-stream ieked step height h. The results
are validated against DNS data base. The mean longitudehadity profile and the turbulence
intensities compare satisfactory with the DNS data at threnatized coordinateX™* = %
for a mesh about 40 times coarser than the DNS. The reattathemgth in the longitudinal
direction varies from 7.1h to 7.3h as compared to the DNSevafi6.28h, due to inconsistent
inflow boundary condition.

The LES of the ACDC is carried out for a Reynolds number of D@F@sed on the guiding
pipe diameter and the bulk velocity. In order to save contprial time, only a 90 degree seg-
ment of the geometry is studied. The results are validatathagan experimental data base of
Wang et alt” 2% The reattachment length was well predicted and the meaiitimhigal, vertical
velocity profile and the turbulence intensities comparestsadtory with the experiments.

The influences of the SGS models for practical geometrigleasecrucial than the discretiza-
tion and the grid resolutioh.The overall accuracy depends on the discretization schérae,
grid resolution, inflow and other boundary conditions. Thgact of the axisymmetric ap-
proach on LES was discussed. The discrepancy in the compegatts using axis boundary
condition is large at downstream of the step and close to @kiat is because the axis boundary
condition does not allow the instantaneous exchange of #&srand momentum across the
axis.
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