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Abstract. Large Eddy simulation (LES) methodology in curvilinear coordinates is presented.
In the current LES formulation filtering and coordinate transformation are decoupled and filter-
ing is performed prior to the transformation as against the ”alternate approach” proposed by
Jordan , where filtering is done after the transformation. The relative advantages and disadvan-
tages of this approach are discussed. Filtering in physicalspace introduces a commutation error
between filtering and differentiation due to non-uniform meshes. This error and its consequence
on overall accuracy is discussed. The commutation filter defined in generalized coordinates is
presented. In order to save computational time for simple geometries the orthogonal and non-
orthogonal terms are treated separately in the present simulation. The approach is validated by
studying the flow over a backward facing step (BFS) and an axis-symmetric dump combustor
(ACDC). The LES simulation of the BFS is carried out for a Reynolds number of 5100 based on
the inlet free-stream velocity and step height h. The results are validated against DNS data. The
mean longitudinal, vertical velocity profile and the turbulence intensities compare satisfactory
with the DNS data at the normalized coordinates. The reattachment length in the longitudinal
direction varies from 7.1h to 7.3h as compared to the DNS value of 6.28h. In addition, a sim-
ulation of the ACDC is carried out for a Reynolds number of 11700 based on the guiding pipe
diameter and the bulk velocity. In order to save computational time, only a 90 degree segment
of the geometry is studied. The results are validated against an experimental data base and
the consequences of the calculation approach on the overallaccuracy are assessed. The reat-
tachment length was well predicted and the mean longitudinal, vertical velocity profile and the
turbulence intensities compare satisfactory with the experiments. It is also observed that the
influence of the SGS model is less crucial than the discretization and the grid resolution. The
overall accuracy depends on the discretization scheme, thegrid resolution, inflow and other
boundary conditions.
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1 Introduction

Modeling of fluid flow by numerical simulation includes Reynolds Averaged Navier Stokes
(RANS), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS). In RANS,
ensemble or time averaged Navier Stokes(N-S) equations aresolved and turbulence is modeled
using an appropriate turbulence model, whereas DNS solves N-S equation on the grid scales
without any turbulence model but it is computationally demanding. LES, which resolves a
major part of turbulent kinetic energy is a promising tool for understanding the physics of un-
steady turbulent flow at comparatively reduced costs. In LES, the large geometrically dependent
energy-carrying eddies are resolved on grid scales(GS), whereas effects of the smaller, more
universal scales are modeled using a sub-grid scale (SGS) model. A high fidelity LES should
resolve length scales from the largest to the inertial scaleon the grid scales. A wide range of
subgrid models have been studied and successfully applied to LES.1–3 Over the decades LES
has been applied successfully to the simple as well as complex geometries. Grigoriadis et al.4

presented an LES method to treat complex geometrical configurations using the domain de-
composition approach and the immersed boundary method. Mahesh et al.5 developed an LES
method for complex geometries discretized with unstructured hybrid grid. LES methodology
in curvilinear coordinates has been used for many complex geometries6–8

In present study a LES methodology is presented in body fittedcurvilinear coordinates. LES
formulation in curvilinear coordinates poses a basic problem, whether filtering has to be per-
formed prior or after the transformation. This problem has been studied by Jordan6 and he
defined the conventional and alternate approaches. In the conventional approach, filtering is
performed before transformation and in the alternate approach filtering is performed after the
transformation. Jordan favored the alternate approach dueto ill defined filter and unfiltered rep-
resentation of metrics coefficients in physical space. But he also mentioned that there was no
difference in the spectral energies of the turbulent fluctuation by filtering in either physical or
computational space. In the present methodology filtering before the transformation was pre-
ferred and transformation was considered as a mathematicaloperator to represent the governing
equations in curvilinear coordinates. In the present simulation the Leonard term was defined in
the physical space and then coordinate transformation was performed. Finally, Jordan6 did not
mention any strong reasons for not using the conventional approach except the filter definition
in physical space and representation of metric coefficients. The present paper discuss more on
merits and demerits of alternate and conventional approaches.

The accuracy of a numerical simulation with LES depends on the discretization schemes, the
grid resolutions and the subgrid-scale (SGS) models. In LES, numerical diffusion caused by the
truncation error of a low-order finite-volume discretization scheme (FVDS) can be of the same
order of magnitude as the subgrid turbulence viscosity.9, 10 Since the numerical diffusion does
not represent the turbulence cascade mechanism and subsequent turbulent diffusion by smaller
eddies. Hence, proper SGS modeling is essential in order to model the role of smaller eddies.

The present LES methodology, which uses the conventional approach, was validated by
studying the unsteady turbulent flow, over a backward facingstep (BFS) and in an axisymmet-
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ric confined dump combustor (ACDC). Although the BFS flow is geometrically simple but it
involves very complex phenomena. At the corner of the step, the separated upstream boundary
layer forms a free-shear layer. The free shear-layer attaches downstream at the reattachment
point Xr and oscillate in the longitudinal direction. The fluid, upstream to the reattachment
point is subjected to an adverse pressure gradient and formsa separation bubble. Non-reacting
flows over BFS has been studied extensively both experimentally and numerically, and it is one
of the benchmark test case in turbulence modeling.11–15 In the present paper unsteady charac-
teristics of the BFS and its dynamics with numerical scheme,subgrid model and grid resolution
is studied.

Efficient combustion requires proper mixing between the fuel and oxidizer for non-premixed
flames and between burnt and unburnt mixture for premixed flames. The mixing phenomena
and other combustion processes inside the dump combustor isinfluenced by vortices’s that are
formed in the shear layer. Several experimental and numerical studies have been carried out
for a dump combustor with and without swirl to understand theunsteadiness, vortex breakdown
mechanism ,etc., for reacting and non reacting flows.16–18 Lucca and Negro19 have reviewed
the numerical, experimental and theoretical work on vortexbreakdown. In the present work
flow inside the dumb combustor was studied without swirl for which previous experimental and
numerical data sets were available17, 20

Axisymmetric geometries are quite common in practical and industrial problems and most
of the simulations are performed over a pie segment to save computational time. This is true
for time averaged RANS simulation where the axis boundary condition is modeled with proper
boundary condition on turbulent kinetic energy and dissipation. In case of LES where instan-
taneous evolution of flow quantities take place. Then the axis boundary condition is not ap-
propriate especially for confined jet and swirl flow where momentum, mass etc exchange take
place across the axis. This issue has been studied by Schlüter21 and he observed a substantial
differences in velocities and fluctuations especially close to the axis. The similar behavior have
been observed in present study also.

2 Governing equations and filtering

Three dimensional time dependent Navier-Stokes equationsin generalized curvilinear coor-
dinate in strong conservation law form22 were used in the present work. The N-S equations
were filtered using an implicit low pass box filter in physicalspace.8, 10

The filtered continuity equation for flow with constant density is expressed as

∂JŨk

∂ξk
= 0 (1)

The filtered momentum equation

∂Jρ̃ ũi

∂t
+

∂ρ̃JŨkũi

∂ξk
= −

∂Jξk
i p̃

∂ξk
+

∂

∂ξk

(
µJξk

j

(
ξl
j

∂ũi

∂ξl
+ ξl

i

∂ũj

∂ξl

))
−

∂Jρ̃ξk
j τij

∂ξk
(2)
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Where, summation rule applies to all indices except indicesi, ui denotes the Cartesian compo-
nent of the velocity field,ρ is the density,p is the static pressure,µ is the molecular viscosity,
ξk is the coordinates direction in the transformed space,ξk

j = ∂ξk/∂xj , J is the Jacobian of

the coordinates transformation,Uk = ξk
j uj are the contravariant velocities components andφ̃

represents the filtered quantities of a variableφ. Further, the subgrid stressτij can be expressed
as

τij = Lij + Cij + Rij (3)

τij = ũiuj − ũiũj (4)

TermLij = ˜̃uiũj − ũiũj is called the Leonard term and represents the interactions among the

larger scales.Cij = ˜̃uiu
′

j + ˜̃uju
′

i is called the cross-stress term and represents the interaction

between the larger eddies and smaller eddies andRij = ũ
′

iu
′

j is called the Reynolds subgrid
tensor. The subgrid stressτij is calculated using eddy viscosity approach.

τij −
1

3
δijτkk = −2νtS̃ij (5)

whereS̃ij =
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∂ξl + ξl
i
∂fuj
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)
is the filtered strain rate tensor. Hence,

τij =
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−νt

(
ξl
j

∂ũi

∂ξl
+ ξl

i

∂ũj

∂ξl

)
+

2

3
δijk̃

)
(6)

where,νt, is the eddy viscosity. In the present study the Smagorinskymodel is employed to
compute the eddy viscosity.

νt = (Cs∆)2 |S̃| (7)

|S̃| =

√
2S̃ijS̃ij (8)

Where,Cs is a constant and can be estimated dynamically, and∆ =
(
Jδξlδξ2δξ3

)1/3
is the

filter width.

3 Conventional vs Alternate Approach

In the present study, the conventional approach was preferred rather than the alternate ap-
proach. Jordan6 mentioned a difficulty in calculating the Leonard term due toill defined filter in
physical space. But in actual practice the Leonard term represents the interaction among larger
eddies and can be evaluated in the physical space with an appropriate filter kernel developed in
physical space. Similarly other terms, such as the cross stress and Reynolds stress terms also
need to be evaluated in the physical space. In the alternate approach, all these terms were for-
mulated based on the contravariant velocity components, where interaction among contravariant
components is still not clear. Another issue with the Leonard term in computational space is its
inherent metric coefficients, which has to be evaluated withhigher order schemes.
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Jordan6 also pointed out with the conventional approach, the metriccoefficients need to eval-
uated exactly. But for practical cases this is an option and not a constraint. In the conventional
approach the analytic treatment of the metric coefficients and the Jacobian for tightly controlled
grids give improvement in the solution with fewer grids.23 But in complex geometry this condi-
tion is difficult to meet and then the numerical treatment of the metric coefficients and Jacobian
is the most preferred choice.23 Finally, Jordan6 carried out a priori test with a DNS data set
of the wake of a circular cylinder at a Reynolds number of 3400using a filter developed in
physical as well as in computational space, but he did not observe any difference in the respec-
tive damped spectral energies except the cost of the filter. In LES the cost of explicit filtering
is hardly 5-6% of total cost. Finally there were no strong reasons mentioned for avoiding the
conventional approach except for the numerical implementation. In fact the alternate approach
posed some difficulty while evaluating the dynamic model constant.

3.1 Practical Difficulty with Alternate Approach

LES in non-orthogonal coordinate have been used many times without reference to the al-
ternate or conventional approaches. Mostly LES methodologies in curvilinear coordinates are
based on conventional approach. Moin and Kim10 developed an unsteady high-order LES solver
using a localized dynamic model (LKDM). In their study, a methodology was developed in
physical space and then transformation was used to represent the governing equation in compu-
tational space.

Jordan and Ragab24 formulated a dynamic model in the alternated approach by contracting
the Germano identity

(
Γk

i = Υk
i − σ̃k

i

)
with Mk

i = Jξk
j Mij . They obtained a dynamic model

constant asCalter = −1
2

<Γk
i Mk

i >

<Mm
n Mm

n >
. Whereσk

i are the subgrid stress tensor in computational

space,Γk
i are the contravariant resolved turbulent stresses andΥk

i are the contravariant resolved
subgrid stresses. Armenio and Piomelli,7 who developed a Lagrangian dynamic mixed model
in generalized coordinates using the alternate approach, brought out an issue of constriction
of the Germano identity. According to them, computed subgrid viscosity usingCalter was not
rotationally invariant. The remedy to this problem was to transform the Germano identity first
in the physical space and then carry out the contraction. With this approach the dynamic model

constant was given byCs = −1
2

<Γk
i Mq

i Gkq>

<Mm
n M l

nGml>
. WhereMm

i M l
iGml = MijMij .7 This approach is

similar to developing a dynamic constant in physical space.
In implementation of Lagrangian model,7 a two step procedure was used, where first all tur-

bulent quantities (velocities etc) were transformed into acontravariant form. These contravari-
ant quantities were filtered using three point top hat filter and then transferred back in physical
space. Pre and post transformation of flow quantities can introduce substantial damping due to
low order approximation of metric coefficients6 . Finally, implementing any new subgrid mod-
els with alternate approach require the modification of model, like Lagrangian dynamic mixed
model, and subsequent testing of the models
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3.2 Filter for Body fitted Curvilinear Geometries

For evaluating the dynamic constant explicit filtering is required. Ghosal and Moin25 studied
the commutation problem of differentiation and filtering with non uniform grid, according to
them when any convolution filter is applied to the N-S equations under inhomogeneous flows

and nonuniform grid then filtering and differentiation doesnot commute. ∂̃φ
∂x

− ∂ eφ
∂x

6= 0. But
practical flows are inhomogeneous and non-uniform grid is essential and filter has to be devel-
oped which can commute up to any order of filter width. Van Der Ven26 constructed a filter
for non-uniform grids which can commutes to any given order of the filter width. But this fil-
ter does not address problems of the boundary terms which arises in case of inhomogeneous
flows. Vasilyev27 presented a commutative filter for turbulent inhomogeneousflows and cor-
responding discrete filter in complex geometries upto any desired order of accuracy. The filter
was developed in computational space using a mapping function. This approach differs from
alternate approach, where N-S equations were filtered in computational space rather than the
flow variables. Marsden et al.28 extended the model developed by Vasilyev27 for unstructured
grid in physical space, which does not require any transformation.

Geurts et al.29 studied the commutator errors and they mentioned that usinga higher order
filter can reduce the magnitude of the commutator error but also, flux due to turbulent stress is
affected simultaneously in a same order of magnitude. They also mentioned that the commuta-
tion error can be controlled by selecting an appropriate filter width and filter skewness. But in
complex geometry where filter width and skewness vary suddenly then explicit computation of
the commutation error is essential.

Bahramian30 proposed a volume based discrete filter that can be used for both structured and
unstructured grids, but in their model the filtering operation commutes to one order less than
the order of numerical scheme.

In non-orthogonal geometries, implementation of filter canbe done in two ways. In first
approach developed by Vasilyev,27 primitive variables are transformed in contravariant form
and then these contravariant quantities are filtered in computational space using a discrete filter
developed by Vasilyev.27 In second approach developed by Marsden,28 primitive variables are
filtered in physical space which requires calculation of a filter moments in complex geometry.
The advantage with Marsden28 approach is that it can be used for both structured and unstruc-
tured grid. The one dimensional filter proposed by Marsden28

f̃ (x) = f (x) +

l=∞∑

l=n

(−1)l

l!
△

l
x M l ∂

lf

∂x
(9)

Wheref (x) is a variable being filtered, G is the kernel of filter,△x is the filter width and a & b
are the domain boundaries. The filter momentM l is defined as

M l =

∫ (x−a)/△x

(x−b)/△x

ηlG (η, x) dη (10)

Whereη = (x − y) / △x is the change of variable andy is associated with location dependent

filter function G
(

x−y
△x

, x
)

. The present finite volume schemes is second order accurate the
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commutation error (which is also second order accurate) does not reduce the overall accuracy.
Marsden28 proposed a polynomial expression for filter momentsM l =

∑k=∞

k=0 Wk(xk − x0)
l,

which satisfy all the filter properties proposed by Vasilyev.27 For second order accurate scheme,
the filter momentsM1 = 0 andM2 6= 0 need to be evaluated. For one dimensional filter the
second order filter moment isM2 = 1

(xi+1+xi−1)2
((xi − xi−1)

2 + (xi+1 − xi)
2), wherexk and

xi are longitudinal positions of the grid andx0 represent the longitudinal position where filter
is being computed.

f̃ (x) = f (x) +
M2

2

∂

∂x

(
△2

x

∂f

∂x

)
(11)

In the present study three one dimensional filters, one in each direction, are employed.
For uniform regular gridM2 = 1/2, the filtered operator becomes a top hat filterf̃i = fi +
1
4
(fi+1 − 2fi + fi−1).

4 The Dynamic Procedure in Conventional Approach

In the dynamic procedure31 a second test filter gives a filtered sub grid stress (SGS) tensor Tij

similar to the original SGSσij when applied to the filtered momentum equation in the physical
space. The Germano identity in physical space isLij = Tij − σ̃ij . Contracting the Germano
identity withMij produces a dynamic constant in physical space

Cs =
1

2

LijMij

MklMkl
(12)

where tensorMkl = ∆̃2̂
|S̃|S̃kl −

̂̃
∆2 |̂S̃|

̂̃
Skl andLij = ̂̃uiũj − ̂̃ui

̂̃uj and
̂̃
f(x) represent the

double filtering of a variablef(x). The stress tensorLij andMkl are evaluated in physical
space using the filter as expressed in Equ.(11). The constantCs varies instantaneously with
space and time and produces too much positive and too high negative subgrid viscosity, which
destabilized the solution. To avoid the stability problem,in the present simulation averaging of
the numerator and denominator in circumferential direction for ACDC and spanwise direction
for BFS along with clipping is carried out.

5 Numerical Algorithm

The filtered NS Equ.(1) and Equ.(2) along with the subgrid stress Equ.(6) are solved using
finite volume technique on a non-staggered grid. In the non-staggered grid all the variables
(pressure, velocities components and scalars) are stored at the cell center. For calculating con-
vective fluxes, flow variables at cell faces are required. This is achieved by a discretization
technique such as Quadratic Upwind Differencing Scheme (QUICK) or the fourth order cen-
tral scheme (CDS-4). The viscous fluxes are approximated by central differences scheme of
second-order accurate. Rhie and Chow32 moment interpolation (MI) scheme is used, to avoid
the unphysical oscillations i.e. checker-board pressure on the non-staggered grid. In incom-
pressible flow, density is not linked with pressure and for pressure-velocity coupling projection
method33 is used here. A three step (predictor-corrector-corrector) procedure is used here to
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solve the filtered continuity and momentum equations. In thepredictor step the momentum
equations are solved to obtain intermediate velocities field with old pressure values. This in-
termediate velocities field do not satisfy the continuity equation. In the first corrector step the
pressure correctionp

′

is calculated by solving the pressure correctionp
′

Poisson equation3 Equ.
(13) with the intermediate filtered velocities̃u∗

i field from the predictor step.
∂

∂xi

(
∂p

′

∂xi

)
=

1

△t

(
∂ρũ∗

i

∂xi

)
(13)

Here△t is the time step. In the second corrector step, velocities and old pressure are corrected
with computed pressure correction field from the first corrector step. The three-steps procedure
is repeated until convergence. The governing momentum equations are integrated with an ex-
plicit five stage fourth-order Runge-Kutta method by Carpenter et al.34 The orthogonal and non
orthogonal terms are treated separately to save the computational time for simple geometries.

6 Problem Description

LES methodology was applied over the backward facing step (shown in Fig.1) and in the ax-
isymmetric confined dump combustor (ACDC) (shown in Fig.2).BFS was chosen for its appar-
ent geometrical simplicity, but it involves relatively complex flow phenomena. This geometry is
well suited to study the turbulence behavior under separation, recirculation and reattachment,35

which is of highly importance for many practical and engineering applications. Furthermore
a well established amount of numerical and experimental literature are available13–15, 36for this
case. The axisymmetric confined dump combustor (ACDC) was chosen due to complexity of
geometry and flow. The experimental and numerical results show that the turbulence in the
dump combustor is highly unsteady and anisotropic behind the sudden expansion.16–18

Figure 1: Geometrical Configuration of BFS Figure 2: Geometrical Configuration of ACDC

6.1 Computational Domain

Figure 1 shows a computational domain used for BFS, wherex, y andz represent the longitu-
dinal, vertical and spanwise directions, respectively. The longitudinal lengthLx of configuration
was20.5h and channel length ahead of the step was2.5h. The dimensions in the verticalLy and
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spanwiseLz directions were6h and4h respectively. The Reynolds number(Reh = ρU0h/µ)
based on the step height and free stream velocity was 5100, which was same as the DNS of
Le et al.14 The computational domain was discretized using a grid(148 × 72 × 20) in lon-
gitudinal, vertical and spanwise directions. The grid was refined in the strong shear flow re-
gions, i.e. close to the walls and in recirculation region. The time step in the current simula-
tion was fixed at∆t = 0.05h/U0. The total simulation time was500h/U0. A no-stress wall
v = 0, ∂u

∂y
= 0, ∂w

∂y
= 0 was applied at the upper boundary. No-slip boundary conditions was

used at all walls. Whereu, v andw are the velocity components in longitudinal, vertical and
spanwise direction. A free-slip was imposed such thatw = 0, ∂u

∂z
= 0, ∂v

∂z
= 0 on the spanwise

boundaries. A mean turbulent profile by Spalart37 atReθ = 670 supreimposed with a white noise
was applied at inlet, whereθ is a momentum thickness. The vertical and spanwise components
of the mean velocity were set to zero. At outlet velocities gradient∂ui

∂xi
= 0 were taken equal to

zero.
Figure 2 shows the computational domain used for ACDC which is similar to the geome-

try studied by Wang et al.17, 20 The Reynolds number(ReB = ρUBd/µ) for this configuration
was 11700 based on the guiding pipe diameterd and the bulk velocityUB. The diameters of
the guiding piped, main pipeD and constriction piped were 25.3mm, 49.1 mm and 25.3mm
respectively. The heightH = (D − d) of the sudden expansion (step) was 23.8mm. The
length of guiding pipe, main pipe and constriction pipe were2.1H, 17.44H and 2.1H respec-
tively. In order to save computational time a quarter of cylinder (pie segment) was studied.
A grid of (154 × 104 × 20) was used in axial, radial and circumferential direction. Atthe in-
let, longitudinal velocity profile from experiments20 perturbed with white noise was used and
radial and tangential component were set equal to zero. At outlet convective boundary condi-
tion ∂ui

∂t
+ UC

∂ui

∂xi
= 0 was used. WhereUC was the convective velocity, which was assumed

UC = UB. On the annular surface no slip wall boundary condition was used. The cyclic bound-
ary condition was used on the circumferential direction. Time step in the current simulation
was fixed at∆t = 4 · 10−5. Total simulation time was 2s about 50000 time steps. Table 1
presents the different configurations studied for the LES over BFS and ACDC. For the BFS,

Table 1: LES Test Cases for Flow Over BFS and ACDC

Runs Scheme SGS model Grid Case Description
Run-1 QUICK Dynamic (DM) (154 × 88 × 20) ACDC
Run-2 QUICK Dynamic (DM) (154 × 104 × 20) ACDC
Run-3 CDS-4 Dynamic (DM) (154 × 104 × 20) ACDC
Run-4 QUICK Dynamic (DM) (148 × 72 × 20) BFS
Run-5 CDS-4 Dynamic (DM) (148 × 72 × 20) BFS

the mean longitudinal velocity profiles and turbulent intensity non dimensionalized with inflow
free stream velocityU0 were computed and compared with DNS data set of Le et al.14 For
ACDC, mean longitudinal, radial velocity profiles and turbulent intensity non dimensionalized
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Balram Panjwani, Ivar S. Ertesvåg, Andrea Gruber and KjellErik Rian

with inflow bulk velocityUb were computed and compared with experimental data set of Wang
et al.17, 20

7 Results and discussion

7.1 Qualitative Analysis of flow over BFS and ACDC

Figures 3 and 4 show the instantaneous large coherent structure of ACDC and BFS, respec-
tively using Q criterion. The Q criterion is the second invariant of velocity gradient tensor
∇u and was proposed by Hunt et al.38 The second invariantQ = 1

2
(ΩijΩij − SijSij). Where

Ωij = 1
2

(
∂ui

∂xj
−

∂uj

∂xi

)
and strain rate tensorSij = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
are respectively the anti-

symmetric and the symmetric components of∇u. As it is observed that the boundary layer

Figure 3: Large Coherent Structure of Axisymmetric ConfinedDump Combustor (ACDC) with Q isosurface of
1000

Figure 4: Large Coherent Structure of Backward Facing Step with Q isosurface of 0.5

inside the guiding pipe of ACDC or at the step of BFS, separates at the trailing edge and forms
shear layer. The shear layer undergoes the K-H instability and forms the instantaneous coher-
ent structures or eddies of different size. The shear layer attaches downstream at reattachment
point and oscillates about the mean reattachment lengthXr. The reattachment region is strongly
influences with inflow condition, wall and geometry of the configuration. The flow inside the
ACDC involve three major flow phenomena as was mentioned by Wang et al.17, 20 a main core,
flow between the wall and the shear layer and flow near to the wall.
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7.2 Reattachment length of BFS

The mean reattachment length in BFS wasXr= 7.3h (Run-4) and7.1h (Run-5) compared to
the DNS value of(Xr = 6.28h) of Le et al.14 and the experimental value of(Xr = (6.0 ± 0.15)h)
of Jovic and Driver.13 This was because of the inflow boundary condition used in the current
simulation did not had turbulent longitudinal vortices’s that caused delay in the transition of
the shear layer and consequently increase of the reattachment length.2 Westphal and Johnston12

observed that the reattachment length decreases with an increase in freestream turbulence. An
LES of BFS carried out by Dubief and Delcayre15 obtained a recirculation length of7.2h at the
same Reynolds number of5100. The inflow boundary condition was mean velocity profile37

perturbed with white noise.

−0.5 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
0

1

2

3

Y/h

U/U
0

 

 

DNS (Le et al)
Run−5
Run−4

X*/h=−0.333 X*/h=0 X*/h=0.66 X*/h=1.496

Figure 5: Mean longitudinal velocity profiles at four different streamwise positions downstream of the step, for
Run-4 and Run-4 compared to DNS results of Le et al.14

7.3 Mean Velocities and Turbulent intensity of BFS

In BFS the averaged flow parameters (velocities etc) are independent of the initial condi-
tions, geometrical parameters and boundary conditions with respect to the normalized coor-
dinateX∗ = x − Xr/Xr.12 The non dimensional mean longitudinal velocity profiles were
plotted in Fig. 5 at different normalized coordinatesX∗. The computed results compared well
with the DNS results at the reattachment (X∗ = 0) and the recovery region (X∗ = 0.66). The
longitudinal velocity was under predicated at (X∗ =-0.333 ) especially fory ≤ 0.5h. The lon-
gitudinal velocity was overpredicated at (X∗ = 1.497) for Run-4. That is because the coarser
grids at this location produced too much diffusion. Less diffusive scheme CDS-4(Run-5) shows
improvement over QUICK scheme Fig. 5.

The time-averaged (a) longitudinal〈u
′

u
′

〉1/2/U0, (b) vertical〈v
′

v
′

〉1/2/U0, (c) spanwise〈w
′

w
′

〉1/2/U0

turbulent intensities and (d) Reynolds shear stress component 〈u
′

v
′

〉/U2
0 are plotted in Fig.

6 at different normalized coordinatesX∗. Whereu
′

, v
′

andw
′

are the velocity fluctuations
in longitudinal, vertical and spanwise direction. The longitudinal turbulence intensity com-
pared well with DNS especially for the regiony ≤ 1.0h and it was underpredicted for the
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Figure 6: Square roots of non-dimensional mean Reynolds stresses at four different streamwise positions down-
stream of the step for Run-4 and Run-5 compared to DNS resultsof Le et al.14

region2.2h ≥ y ≥ 1.0h at the reattachment (X∗ = 0) and the recirculation (X∗ = -0.333).
This could be due to two reasons: the first reason was the poor grid resolution for the region
1.0h ≤ y ≤ 6.0h, which has reduced the turbulent intensity due to inherent numerical diffu-
sion of QUICK scheme. On the other hand the CDS-4 scheme is less diffusive in nature and
predicted more turbulence intensity than the QUICK scheme as shown in Fig. 6. The another
reasons was that the inflow boundary condition was not computed as deterministically as it was
done in the DNS. The longitudinal turbulent intensity〈u

′

u
′

〉1/2/U0 was slightly overpredicted
at recovery region (X∗ = 0.66, andX∗ = 1.497). The vertical turbulent intensity〈v

′

v
′

〉1/2/U0

was underpredicted at recirculation(X∗ = -0.333) and the prediction is better at the reattachment
(X∗ = 0). Figure 6d shows the better agreement of Reynolds shear-stress component〈u

′

v
′

〉/U2
0

for the regiony ≤ 1.0h.

7.4 Mean Velocities and Turbulent intensity of ACDC

In LES the grid independent solution is essential to understand the influence of subgrid
stresses. The present method uses an implicit filter for filtering the governing equations, in that
case it is difficult to obtain grid independent LES solution.Because when grids are refined then
solution converges towards the DNS. Nevertheless in the present study two grids were studied.
Run-1 and Run-2 were the LES of ACDC with grids(154 × 88 × 20) and(154 × 104 × 20) re-
spectively. The grid is refined in radial direction because the turbulence generation mechanism
dominates near the wall and in the shear layer. Figure 7 showsthe profiles of the mean and Root
Mean Square (RMS) longitudinal velocities for Run-1 and Run-2. It is observed that the mean
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Figure 7: Mean and RMS of longitudinal velocity profiles, normalized with bulk velocityUB, at different stream-
wise positions downstream of the step; where Run-1 (solid line), Run-2 (dashed line) and experiments (�)
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Figure 8: Mean longitudinal velocity profiles, normalized with bulk velocityUB,
(

U
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)
, at different streamwise

positions downstream of the step; where Run-2 (dashed line), Run-3 (solid line) and experiments (�)
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Figure 9: Mean longitudinal velocity profiles, normalized with bulk velocityUB,
(

U
UB

)
at different streamwise

positions downstream of the step; where Run-2 (dashed line), Run-3 (solid line) and experiments (�)

velocity and RMS do not change much with grid refinement. The RMS values slightly improve
close to the reattachment point.
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tions downstream of the step; where Run-2 (dashed line), Run-3 (solid line) and experiments (�)
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Figure 11: Mean radial velocity profiles, normalized with bulk velocity UB,
(
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at different streamwise posi-

tions downstream of the step; where Run-2 (dashed line), Run-3 (solid line) and experiments (�)
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Figure 12: Root Mean Square(RMS) of longitudinal velocity profiles, normalized with bulk velocityUB,(
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)
, at different streamwise positions downstream of the step;where Run-2 (dashed line), Run-3

(solid line) and experiments (�)
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Figure 13: Root Mean Square(RMS) of longitudinal velocity profiles, normalized with bulk velocityUB,(
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)
, at different streamwise positions downstream of the step;where Run-2 (dashed line), Run-3
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Figure 14: Root Mean Square(RMS) of radial velocity profiles, normalized with bulk velocityUB,(
〈v

′

rv
′

r〉
1/2/UB

)
, at different streamwise positions downstream of the step;where Run-2 (dashed line), Run-3

(solid line) and experiments (�)

Figures 8 and 9 show the mean longitudinal velocity normalized with bulk velocity along the
axial direction. It can be seen that the reattachment lengthis well predicated and the secondary
recirculation zone which varies from 2.1h to 8.5h is also well predicted. The separation bubble
close to constriction is also well captured. It is observed from Figures 8 and 9 that the mean
axial velocity matches will with experimental results up tox/h = 8.4 and beyond that the core
R/D ≤ 0.2 is overpredicated, whereR is the radial coordinates. ForR/D ≥ 0.2 comparison
is excellent with experimental data base of Wang et al.17, 20 This overprediction in mean ve-
locities was caused due to the axis boundary condition. As itis seen from Figs.14 and 15 that
the radial component of fluctuations are zero at the axis. That clearly indicates that the turbu-
lence was not being redistributed in radial direction, which caused surplus axial momentum and
overprediction of mean velocities.

Figures 10 and 11 show the radial velocity profile compared with experiments. The predic-
tion are in good agreement with experiments. The radial component of velocity is very small
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Figure 15: Root Mean Square(RMS) of radial velocity profiles, normalized with bulk velocityUB,(
〈v

′

rv
′

r〉
1/2/UB

)
, at different streamwise positions downstream of the step;where Run-2 (dashed line), Run-3

(solid line) and experiments (�)

except in the region(16 ≤ x/h ≤ 17.44) that is because of the constriction at the exit. Effect
of constriction is rather local and the present methodologyhas captured reasonably well the
radial velocity profiles in this region. The turbulence in the region(2.1 ≤ x/h ≤ 16) is mostly
dominate due to K-H instability and subsequent break down ofthe large coherent structures.

Figures 12 and 13 show the RMS value of the axial velocities. It is observed that the QUICK
schemes underpredict the fluctuations close to the sudden expansion. It is because, in current
simulation inflow mean profile was subjected with white noise, which did not had properly
correlated turbulent length and time scales. These fluctuations dies out due to inherent numer-
ical diffusion of the QUICK scheme. On the other hand CDS-4 scheme predicts better than
the QUICK scheme due to low inherent numerical diffusion. Although the fluctuations are
underpredicted close to the step but further downstream in the region(2.1 ≤ x/h ≤ 8.4) the
predictions are in good agreement with experiments. This improvement in prediction indicates
that the present methodology has captured the turbulence generation process due to shear layer
instability and its interaction with wall reasonably well.At the exit the CDS schemes overpre-
dicts the fluctuations due to poor grid resolution in constriction region.

The RMS value of radial velocities as plotted in Figs.14 and 15 are rather large compared to
the their mean values Figs.10 and 11. This behavior is quite similar to the BFS where lateral
and spanwise variance were much larger than their mean values.8 That clearly indicate that the
flow after sudden expansion is anisotropic.

8 Conclusions

The large eddy simulation approach in curvilinear coordinates is presented. LES in curvi-
linear coordinates requires two spatial operation, filtering and coordinates transformation. The
conventional approach (where filtering is performed prior to coordinates transformation) is pre-
ferred rather than the alternate approach (where filtering is performed after the coordinates
transformation). Present study showed that the issues raised by Jordan6 with conventional ap-
proach such as calculation of Leonard term and representation of the metric coefficients are not
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Balram Panjwani, Ivar S. Ertesvåg, Andrea Gruber and KjellErik Rian

really the big concern. But instead formulating the dynamicconstant with alternate approach
created some problems such as non-rotational invariance ofthe the subgrid viscosity. The rem-
edy to this problem also requires some operations in physical space. The implementation of the
dynamic model in alternate approach requires pre and post transformation of the flow variables,
which introduces further damping.

Filtering in physical space introduces a commutation errorbetween filtering and differenti-
ation due to non-uniform meshes. The commutation filters up to any desired order have been
developed for structured as well as unstructured grids.27, 28 Application of these filters were
discussed in curvilinear coordinates. A filter in curvilinear coordinate is developed using the
Marsden et al. approach.27, 28 The developed filter is a Laplace filter and is used for explicit
filtering the primitive variable. In LES the cost of explicitfiltering is hardly 5-6% of total cost.

The present methodology, which is developed in curvilinearcoordinates requires computa-
tion of orthogonal and non orthogonal terms. For simple geometries computation of non or-
thogonal terms are not required. Therefore the orthogonal and non-orthogonal terms are treated
separately to save the computational time.

The methodology is validated by performing the LES over the backward facing step (BFS)
and in the axis symmetric dump combustor (ACDC). The LES overBFS is carried out for a
Reynolds number of 5100 based on the inlet free-stream velocity and step height h. The results
are validated against DNS data base. The mean longitudinal velocity profile and the turbulence
intensities compare satisfactory with the DNS data at the normalized coordinatesX∗ = x−Xr

Xr

for a mesh about 40 times coarser than the DNS. The reattachment length in the longitudinal
direction varies from 7.1h to 7.3h as compared to the DNS value of 6.28h, due to inconsistent
inflow boundary condition.

The LES of the ACDC is carried out for a Reynolds number of 11700 based on the guiding
pipe diameter and the bulk velocity. In order to save computational time, only a 90 degree seg-
ment of the geometry is studied. The results are validated against an experimental data base of
Wang et al.17, 20 The reattachment length was well predicted and the mean longitudinal, vertical
velocity profile and the turbulence intensities compare satisfactory with the experiments.

The influences of the SGS models for practical geometries areless crucial than the discretiza-
tion and the grid resolution.8 The overall accuracy depends on the discretization scheme,the
grid resolution, inflow and other boundary conditions. The impact of the axisymmetric ap-
proach on LES was discussed. The discrepancy in the computedresults using axis boundary
condition is large at downstream of the step and close to axis. That is because the axis boundary
condition does not allow the instantaneous exchange of the mass and momentum across the
axis.
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Balram Panjwani, Ivar S. Ertesvåg, Andrea Gruber and KjellErik Rian

REFERENCES

[1] P. Sagaut.Large Eddy Simulation for Incompressible flows. Springer Verlag, 2006.
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