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Abstract. In the present work, we have proposed a robust implementation of Spalart–
Allmaras turbulence model for unstructured grid using a positive implicit procedure. The
implicit procedure is based on designing the associated implicit matrix such that it is M–
matrix. The implicit procedure employs a unified treatment for the implicit operator of
convection, diffusion, anti–diffusion and source terms involved in Spalart–Allmaras model
equation. This implicit procedure guarantees positivity of modified turbulent viscosity (ν̃)
without the use of any clipping. The efficacy of the implicit procedure is demonstrated
with the help of two high lift configurations. From the results presented in this paper, it
is evident that the present implicit procedure is capable of not only achieving high level of
convergence for turbulent viscosity but also using large CFL number to accelerate conver-
gence to steady state.
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1 INTRODUCTION

In past few years, Computational Fluid Dynamics (CFD) has reached to a stage of
maturity where it can be used as an effective analysis tool in an industrial design cycle.
The unstructured data based finite volume algorithms are not only proving to be accurate
but also provide the designers with the reliable estimates of design data in a time short
enough to impact the design cycle.

Many flow analysis problems of industrial relevance involve solving Reynolds Averaged
Navier–Stokes (RANS) equations with an appropriate turbulence model. The use of
turbulence models involving one or more equations, such as Spalart–Allmaras [1], k-ω
and its variants [2, 3, 4] are common in Aerospace industry. Turbulence model equations
are in the form of non–linear convection–diffusion equations with stiff source terms. The
numerical stiffness associated with these equations not only restrict the choice of time
step during solution evolution to steady state but also may cause solution divergence.
This problem is further accentuated on fine grids employing very thin viscous padding
around the body to accurately capture viscous sub–layer as well as solution adaptive
grids required to accurately capture features like shocks, shear layers, vortices etc. Hence
it becomes important to discretize the turbulence model equations, both in space and
time, in such a way that the resultant system of equations preserves the positivity of the
turbulent quantities during solution evolution.

Recently, Mor–Yossef and Levy [5] have proposed a new general implicit procedure that
preserves the positivity of dependent variables corresponding to turbulence model equa-
tions. The implicit procedure is based on designing the implicit matrix to be M–matrix.
The M–matrix has certain properties (to be discussed in section 2) desirable to construct
the unconditionally positive implicit scheme. The implicit procedure employs a unified
treatment for the implicit operator of convection, diffusion and source terms involved in
model equations. This implicit procedure guarantees positivity of turbulence quantities
without the use of any clipping. They have demonstrated the efficacy of this discretiza-
tion procedure using variety of turbulence models [5, 6] both for steady and unsteady
flow problems [7]. In the present work, we have extended the scope this procedure to
Spalart–Allmaras turbulence model which is one of the most preferred turbulence models
in Aerospace CFD community.

The organization of this paper is as follows. Section 2 presents the methodology be-
hind the construction of unconditionally positive implicit procedure for Spalart–Allmaras
turbulence model. Section 3 presents the specific form of the implicit matrix that leads to
positive implicit formulation. Section 4 presents results and discussion. Finally, section 5
concludes the present work.
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2 METHODOLOGY

The semi–discrete form of the Spalart–Allmaras turbulence model equation for a finite
volume (cell) i can be written as:

dν̃i

dt
= Ri + Ωi Si (1)

where, for cell i, modified turbulence viscosity is denoted by ν̃i, sum of inviscid, viscous
and anti–diffusion fluxes is denoted by Ri, source term is denoted by Si, time is denoted
by t and cell volume is denoted by Ωi. Using first order backward Euler time stepping
procedure to discretize Eq. 1 in time, following vector–matrix equation can be written for
all cells in the computational domain:[

Ω

∆t
I − ∂R

∂ν̃
− Ω

∂S

∂ν̃

]n

∆ ν̃ n = Rn + ΩSn (2)

where I is the identity matrix, n is the current time level, ∆ (.) = (.)n+1 − (.)n. Let a
matrix M be an approximation to −

(
∂R
∂ν̃

+ Ω∂S
∂ν̃

)
such that it fulfills the following two

conditions:

1. M is an M–matrix,

2. Rn + ΩSn + Mν̃n is a non–negative vector.

It should be noted that the first condition guarantees only the convergence of the system
of equations but not its positivity, i.e., the system of equations may converge to negative
solution. With the addition of second condition one can guarantee non–negative solution
of this system.

Substituting the matrix −
(

∂R
∂ν̃

+ Ω∂S
∂ν̃

)
in Eq. (2) by the matrix M, we get:[

Ω

∆t
I +M

]n

∆ν̃n = (R + ΩS)n (3)

The following properties of the M–matrix are pivotal in the design of the proposed positive
implicit scheme:

1. The inverse of an M–matrix exists,

2. The inverse of an M–matrix is non–negative diagonal positive (NPD) matrix with
all diagonal entries positive and all off–diagonal entries non–negative,

3. For any positive scalar ϕ and for an M–matrix, say matrix A, the matrix ϕI +A is
an M–matrix.

It can be easily verified that the implicit scheme given by Eq. (3) is an unconditionally
positive convergent scheme.
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3 UNCONDITIONALLY POSITIVE FORMULATION

A specific form of the desired M for the Spalart–Allmaras model is developed herein.
For this purpose, it is convenient to split the vector Ri given in Eq. 1 into inviscid, viscous
and anti–diffusion parts as follows:

Ri ≡ Rinv + Rvis + Rad (4)

where Rinv, Rvis and Rad denote inviscid, viscous and anti–diffusion residuals respectively.
These residuals are given as follows:

Rinv = −
∑

J

F⊥J,inv ∆SJ (5)

Rvis =
∑

J

F⊥J,vis ∆SJ (6)

Rad = −
∑

J

F⊥J,ad ∆SJ . (7)

In above equations, F⊥J,inv, F⊥J,vis and F⊥J,ad denote respectively inviscid, viscous and
anti–diffusion flux vectors normal to interface J and are given by

F⊥J,inv = u+
⊥i ν̃i + u−⊥j ν̃j, (8)

F⊥J,vis =
1

2σ
[(νi + νj) + (1 + cb2) (ν̃i + ν̃j)] (∇ν̃ · n̂)J , (9)

F⊥J,ad =
cb2

σ
ν̃i (∇ν̃ · n̂)J , (10)

with

u⊥i,j = ui,j nx + vi,j ny + wi,j nz, (11)

u±⊥ =
1

2
[u⊥ ± |u⊥|] and (12)

(∇ν̃ · n̂)J =
(ν̃j − ν̃i)∣∣∣~Rij · n̂J

∣∣∣ . (13)

In above equations, ~Rij denotes the distance between the cell centroids i and j shared by
interface J and n̂J denotes the unit normal to the interface J .
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3.1 Presentation of inviscid residual

Substituting Eq. 8 in Eq. 5, the inviscid residual is written as follows:

Rinv = −
∑

J

(
u+
⊥i ν̃i + u−⊥j ν̃j

)
∆SJ

= −
∑

J

u+
⊥i∆SJ ν̃i −

∑
J

u−⊥j∆SJ ν̃j

= −Ri,inv ν̃i −
∑

J

Rj,inv ν̃j (14)

Consider following splitting for a scalar X

(X)P = |X|+ X and (15)

(X)N = |X| −X. (16)

Since Ri,inv is always ≥ 0, we can write

(Ri,inv)P = 0 and (17)

(Ri,inv)N = Ri,inv. (18)

Further, since Rj,inv is always ≤ 0, we can write

(Rj,inv)P = −Rj,inv and (19)

(Rj,inv)N = 0. (20)

Therefore,

Rinv = − (Ri,inv)N ν̃i +
∑

J

(Rj,inv)P ν̃j. (21)

3.2 Presentation of viscous residual

Substituting Eq. 13 and Eq. 9 in Eq. 6, the viscous residual is written as follows:

Rvis =
∑

J

1

2σ
[(νi + νj) + (1 + cb2) (ν̃i + ν̃j)]

(ν̃j − ν̃i)∣∣∣~Rij · n̂J

∣∣∣∆SJ

=
∑

J

Γvis (ν̃j − ν̃i) ∆SJ , with (22)

Γvis =
1

2σ
[(νi + νj) + (1 + cb2) (ν̃i + ν̃j)]

1∣∣∣~Rij · n̂J

∣∣∣ (23)
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Therefore,

Rvis = −
∑

J

Γvis∆SJ ν̃i +
∑

J

Γvis∆SJ ν̃j

= −Ri,vis ν̃i +
∑

J

Rj,vis ν̃j

= − (Ri,vis)N ν̃i +
∑

J

(Rj,vis)P ν̃j (24)

3.3 Presentation of anti–diffusion residual

Substituting Eq. 13 and Eq. 10 in Eq. 7, the anti–diffusion residual is given by:

Rad = −
∑

J

cb2

σ
ν̃i

(ν̃j − ν̃i)∣∣∣~Rij · n̂J

∣∣∣∆SJ

= −
∑

J

Γad (ν̃j − ν̃i) ∆SJ , with (25)

Γad =
cb2

σ
ν̃i

1∣∣∣~Rij · n̂J

∣∣∣ (26)

Therefore,

Rad =
∑

J

Γad∆SJ ν̃i −
∑

J

Γad∆SJ ν̃j

= Ri,ad ν̃i −
∑

J

Rj,ad ν̃j

= (Ri,ad)P ν̃i −
∑

J

(Rj,ad)N ν̃j (27)

3.4 Presentation of total residual

Based on the presentations of inviscid, viscous and anti–diffusion residuals, the total
residual Ri may now reads as follows:

Ri = −
[(

Ri ,inv

)
N

+
(
Ri ,vis

)
N
−
(
Ri ,ad

)
P

]
ν̃i

+
∑

J

{[(
Rj ,inv

)
P

+
(

Rj ,vis

)
P
−
(

Rj ,ad

)
N

]
ν̃j

}
(28)

At this point its should be re-emphasized that (R∗, ∗)P , (R∗, ∗)N are positive. Further-
more, one should note that:

(Ri,vis)N =
∑

J

(Rj,vis)P (29)
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(Ri,ad)P =
∑

J

(Rj,ad)N (30)

Now, rearranging the total residual as follows:

Ri =
{(

Ri ,ad

)
P
−
(
Ri ,inv

)
N
−
(
Ri ,vis

)
N

+
∑

J

[(
1−Bi

j

) (
Rj ,inv

)
P

T i
j −

(
Rj ,ad

)
N

T i
j

]}
ν̃i

+
∑

J

[
Bi

j

(
Rj ,inv

)
P

+
(

Rj ,vis

)
P

]
ν̃j (31)

where

T i
j =

ν̃j

ν̃i

(32)

and

Bi
j =

T i
j

1 + T i
j

=
ν̃j

ν̃j + ν̃i

(33)

It should be emphasized that the formulation of the residual Ri as given in Eq. 31 is
algebraically identically to the formulation given in Eq. 28 or Eq. 4.

For the sake of clarity we define T j
i ad and T j

i inv as follows:

T i
j ≡ T i

j ad
= T i

j inv
. (34)

Therefore Eq. 31 could be written as follows

Ri =
{(

Ri ,ad

)
P
−
(
Ri ,inv

)
N
−
(
Ri ,vis

)
N

+
∑

J

(1−Bi
j

) (
Rj ,inv

)
P

T i
j inv︸ ︷︷ ︸

Rod

−
(

Rj ,ad

)
N

T i
j ad


 ν̃i

+
∑

J

[
Bi

j

(
Rj ,inv

)
P

+
(

Rj ,vis

)
P

]
ν̃j (35)

The formulation of Ri as given in Eq. 35 is used to derive the appropriate implicit operator.

3.5 Presentation of source term

The source term in the Spalart-Allmaras turbulence model is of the following form:

Si = P (ν̃i)−D (ν̃i) (36)

= P̂ (ν̃i) ν̃i − D̂ (ν̃i) ν̃i. (37)

In above equations, P and D denote the production and destruction terms respectively
involved in Spalart–Allmaras turbulence model.
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3.6 Implicit formulation

The backward Euler time stepping procedure, given in Eq. 2, for cell i can be written
as follows: [

Ωi

∆t
− ∂Ri

∂ν̃i

− Ωi
∂Si

∂ν̃i

]
∆tν̃i −

∂Ri

∂ν̃j

∆ν̃j = Ri + ΩiSi (38)

with the help of Eq. 35 the Jacobian, ∂Ri

∂ν̃i
, ∂Ri

∂ν̃j
could be appropriately approximate to

form the desired M-matrix.
In deriving the ∂Ri

∂ν̃i
we use the following assumptions (refer to Eq. 35):

•
(
Ri ,ad

)
P

,
(
Ri ,inv

)
N

,
(
Ri ,vis

)
N

are frozen in time.

•
(
1−Bi

j

)
, T i

j ad
,
(
Ri ,ad

)
N

are frozen in time.

• T i
j inv

is differentiate with respect to ν̃i only.

• ν̃i that multiply Rod is frozen in time.

• Any positive contribution to ∂Ri

∂ν̃i
is neglected.

Based on these assumptions the final form of ∂Ri

∂ν̃i
is given as

∂Ri

∂ν̃i

= −
(
Ri ,inv

)
N
−
(
Ri ,vis

)
N
−
∑

J

[(
Rj ,ad

)
N

T i
j

]
−

∑
J

[(
1−Bi

j

) (
Rj ,inv

)
P

T i
j

]
(39)

In deriving the ∂Ri

∂ν̃j
we use the following assumptions:

•
(

Rj ,inv

)
P

,
(

Rj ,vis

)
P

, Bi
j are frozen in time.

Based on the above the final form of ∂Ri

∂ν̃j
is given as

∂Ri

∂ν̃j

=
∑

J

[
Bi

j

(
Rj ,inv

)
P

+
(

Rj ,vis

)
P

]
(40)

Finally the contribution of the source term to the LHS of Eq. 38 is given as follows:

−∂Si

∂ν̃i

= Max
[
D̂i − P̂i, 0

]
+ Max

[(
∂D̂i

∂ν̃i

− ∂P̂i

∂ν̃i

)
ν̃i, 0

]
. (41)

The unconditionally positive implicit procedure presented in this work is implemented
in the flow solver High Resolution Flow Solver on Unstructured Meshes (HiFUN) [8] which
is based on unstructured data based cell centre finite volume formulation.
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4 RESULTS AND DISCUSSION

The efficacy of the implicit procedure presented in this work is demonstrated with
the help of two high lift configurations. Computing flow past high lift configuration is
still a challenge to present day CFD due to associated complexities in terms of geometry
and flow physics. For solving RANS equations, Roe scheme [9] is used for inviscid flux
computations, Green–Gauss theorem based diamond path reconstruction [10] is used for
viscous flux computations, Venkatakrishnan limiter [11] is used for gradients limiting and
matrix free symmetric Gauss Seidel (SGS) [12] procedure is used for implicit state update.
In all the computations, the flow is assumed to be fully turbulent.

The first configuration is referred to as NHLP2D [13] configuration. This configuration
has a slat, a main element and a flap. The free stream Mach number (M∞) is 0.197 and
free stream Reynolds number (Re∞) is 3.52 millions. Figure 1 depicts the hybrid grid
around the configuration consisting of triangular and quadrilateral elements. The total
number of cells in the computational domain are 130,241. Figure 2 depicts the Mach
fill plot at α = 21o. Tables 1 and 2 give the comparison of lift and drag coefficients at
α = 12o and α = 21o respectively obtained using present computations with experimental
results [13] and standard computations by Rumsey [14]. Figure 3 depicts the convergence

Lift coefficient Drag coefficient
Experiments 3.2023 0.0352

Present 3.1690 0.0408
Rumsey 3.2100 0.0386

Table 1: NHLP2D: CL, CD comparison, α = 12o

Lift coefficient Drag coefficient
Experiments 4.1335 0.0925

Present 4.1100 0.0764
Rumsey 4.2011 0.0720

Table 2: NHLP2D: CL, CD comparison, α = 21o

of density and ν̃ residues at α = 12o. From this figure it can be seen that density residue
converges to 10 decades and ν̃ residue converges to about 8 decades. Figure 4 depicts the
variation of CFL number with the iterations during convergence to steady state. This
figure clearly brings out the robustness of proposed implicit procedure in terms of using
large CFD number. Figures 5 and 6 depict the convergence of density/ν̃ residue and
variation of CFL number with iterations respectively at α = 21o. In this case also high
convergence level for ν̃ and usage of large CFL number are clearly evident.

The second configuration is referred to as OMAR 5–elements [15] configuration. This
configuration consists of a slat, a main element, a primary flap and two auxiliary flaps.
The free stream Mach number (M∞) is 0.201 and free stream Reynolds number (Re∞)
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is 2.83 millions. Figure 7 depicts the unstructured quadrilateral grid around the config-
uration. The total number of cells in the computational domain are 162,578. Figure 8
depicts the Mach fill plot at α = 8o. Figures 9 and 10 depict the comparison of lift and
drag coefficients at various angles of attack obtained using present computations with
experimental results [15]. Figures 11 to 18 depict the convergence of density residue, ν̃
residue and variation of CFL number with iterations for α varying from −4o to 8o. From
these figures, it is clear that density residue converges to 10 decades and ν̃ residue con-
verges to about 8 decades. These results also demonstrate the efficacy of present implicit
procedure in achieving high convergence level for ν̃ and usage of large CFL number.

5 CONCLUSIONS

In the present work, we have proposed a robust implementation of Spalart–Allmaras
turbulence model for unstructured grid using a positive implicit procedure. The implicit
procedure is based on designing the associated implicit matrix such that it is M–matrix.
The implicit procedure employs a unified treatment for the implicit operator of convection,
diffusion, anti–diffusion and source terms involved in Spalart–Allmaras model equation.
This implicit procedure guarantees positivity of modified turbulent viscosity (ν̃) without
the use of any clipping. The efficacy of the implicit procedure is demonstrated with
the help of two high lift configurations. From the results presented in this paper, it is
evident that the present implicit procedure is capable of not only achieving high level
of convergence for turbulent viscosity but also using large CFL number to accelerate
convergence to steady state.
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Figure 1: NHLP2D: Grid
Figure 2: NHLP2D: Mach fill, α = 21o

Figure 3: NHLP2D: Convergence, α = 12o Figure 4: NHLP2D: CFL variation, α = 12o

Figure 5: NHLP2D: Convergence, α = 21o Figure 6: NHLP2D: CFL variation, α = 21o
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Figure 7: OMAR5: Grid
Figure 8: OMAR5: Mach fill, α = 8o

Figure 9: OMAR5: CL comparison Figure 10: OMAR5: CD comparison

Figure 11: OMAR5: Convergence, α = −4o Figure 12: OMAR5: CFL variation, α = −4o
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Figure 13: OMAR5: Convergence, α = 0o Figure 14: OMAR5: CFL variation, α = 0o

Figure 15: OMAR5: Convergence, α = 4o Figure 16: OMAR5: CFL variation, α = 4o

Figure 17: OMAR5: Convergence, α = 8o Figure 18: OMAR5: CFL variation, α = 8o
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