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Abstract. At the present paper for the first time the cambias changing of the complex 3D
vortex structure of the flow around a sphere (mgumthe stratified incompressible viscous
fluid) with increasing of the stratification is demstrated using #-visualization of the 3D
vortex structures (the internal waves and the sphvesike). The velocity fields used for flae
visualization were obtained by means of the dinecherical simulation (DNS) on the basis of
the Navier-Stokes equations in the Boussinesq appation on the massive parallel
computers with a distributed memory at the follgyvranges of the internal Froude Fr and
Reynolds Re numbers: 0.084r <100, 10<Re<500 (Fr = U/(N-d), Re = U-a/ where U

is the scalar of the sphere velocity, N is a buaydnequency, d is a sphere diameter ansl
the kinematical viscosity). The classification loé stratified flow regimes derived from our
simulation is more close to [1]. A brief descripti@f the used numerical method, the
visualization technique and the flow regimes fa& hlomogeneous fluid are given.
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1 INTRODUCTION

Unsteady 3D separated and undulatory fluid flonsuad a moving blunt body are very
wide spread phenomena in the nature. The undemtpatisuch flows is very important both
from theoretical and from practical points of vielwv.the experiments the 2D internal waves
structure in the vertical plane and the 3D vortexcure of the wake are observed [1-3].
Using DNS the full 3D vortex structures of the fl¢tlne 3D internal waves and the 3D wake)
can be observed. The numerical studies of the momelyeneous (stratified) fluids are very
rare [4-5]. In this connection at the present paperstratified viscous fluid flows around a
sphere are investigated by means of DNS on thes lodghe Navier-Stokes equations in the
Boussinesq approximation on the massive parallelpeders with a distributed memory at the
following ranges of the main flow parameters: 0.8 < 100, 10< Re< 500.

2 NUMERICAL METHOD SMIF

The paper must be written in English within a pngtbox of 16 cm x 24 cm, centered in
the page. The paper including figures, tables afetences must have a minimum length of 4
pages and must not exceed 20 pages. Maximum Zieisic MB.

2.1 Equations and boundary conditions

Let p(X, ¥, 2 =po(1 - X/(2C) + X, Y, 2)) is the density of the linearly stratified fluwdhere
X, Y, zare the Cartesian coordinates, y are the streamwise, lift and lateral directions/(z
have been non-dimensionalized &/2); C = A/d is the scale ratia) is the buoyancy scale,
which is related to the buoyancy frequer¢yand periodT, (N = 2¢/T,, N? = g/A); g is the
scalar of the gravitational acceleratidd;is a dimensionless perturbation of salinity. The
density stratified viscous fluid flows have beemuglated on the basis of the Navier-Stokes
equations in the Boussinesq approximation (1) {i(®Juding the diffusion equation (3) for
the stratiied component (salt)) with four dimemdess parametersFr, Re C»1,
Sc=v/k =709.22, where is the salt diffusion coefficient.
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In (1) - @) v=(% VW, V) is the velocity vector (non-dimensionalized by, p is a
perturbation of pressure (non-dimensionalizegdty?).

The spherical coordinate systeR 0, ¢ (x=Rsind cosp, y=Rsind sinp, z=Rco9,
v =(Wr, Vo, V,)) and O-type grid are used. On the sphere surtlagefollowing boundary

conditions have been used:
:(a_s_i%j
rR=d/2 \OR 2COdR

On the external boundary of the O-type grid théofeing boundary conditions have been
used: 1)forz<0: \w=co9, vy=-sirf, v,=0, S=0; 2)forz>0: W= cod, Vvy=-sirp,
OVylOR = 0,050z = 0.

For solving of the Navier-Stokes equations (1))}#3 Splitting on physical factors
Method for Incompressible Fluid flows (SMIF) witlhe hybrid explicit finite difference

op

VR=Vp =V, =0, R

R=d/2
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scheme (second-order accuracy in space, minimunensehviscosity and dispersion,
monotonous, capable for work in the wide rangenefReynolds and Froude numbers) based
on the Modified Central Difference Scheme (MCDSY @he Modified Upwind Difference
Scheme (MUDS) with the special switch condition eleging on the velocity sign and the
sign of first and second differences of the tramsf&functions has been used [6].

2.2 Splitting scheme of SMIF

Let the velocity, the perturbation of pressure #ralperturbation of salinity are known at
some moment, = n'T, wheret is time step, and n is the number of time-steggenTthe
calculation of the unknown functions at the nemtdilevel t,.; = (h+1)T for equations (1) —
(3) can be presented in the following four-stepro

=~ _ N
Step I: VoV - —-(v" m)v" +£Avn +L25n2
Re 2Fr g
Step II: rAp=01V
n+l_ S
Step llI: v V- -0p
T
n+l _ on n+l
Step IV: SToS . -(v"m)s" + 2 AS" + X
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The Poisson equation for the pressure (step Il) besn solved by the diagonal
Preconditioned Conjugate Gradients Method.

2.3 Finite-difference scheme for the convective termsfthe equations (1)-(3) (1D
example)
Let us consider the linear model equation:
fi+uf =0, u = const. 4)
Let

fin+1 _ fin

n _¢n
NPT (5)
r h
be a finite-difference approximation of equatioih (4
Let us investigate the class of the difference seh&vhich can be written in the form of
the two-parameter family which depends on the pataraa andf in the following manner:

n _|afih+Q-a-B "+ G, u=20
fi+}/2 = n n n (6)
a’fi+2+(1—a—,[>’)fi+1+,3fi , u<o.
In this case the first differential approximation éguation (5) has the form
2
f +uf, = |:2|u|(1+ 20 -2p) —’”7 fio 7)

If we puta == 0in (6) we'll obtain usual first order monotorsicheme which is stable
when
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ru .
0<C= % <1, whereC is the Courant number. (8)

If a=0,£=0.5we'll obtain the usual central differencbesue, and forr = -0.5,=0 —
the usual upwind scheme. Both last two scheme kagend order of accuracy in space
variable and are non-monotonic.

It is known that it is impossible to construct arfegeneous monotonic difference scheme
of higher order than the first order of the appnaiion for equation (4). A monotonic
scheme of higher order can therefore only be coct&d either on the basis of second-order
homogeneous scheme using smoothing operators, tineobasis of hybrid schemes using
different switch conditions from one scheme to heot(depending on the nature of the
solution), possibly with the use of smoothing.

Here we consider a hybrid monotonic difference suhdased on a combination of a
MCDS and MUDS with special switch condition.

Let us investigate schemes with upwind differences,5 = 0. The requirement that the
scheme viscosity should be a minimum, as can neadilseen from equation (7), impose the
following condition ona:

=-05(1-C). 9
For schemes witlr = 0, the analogous condition is
L=05(1C). (20)

Since an explicit finite difference scheme constderwe shall restrict the subsequent
analysis to the necessary condition for stabifityhie case of the explicit schemes (8).
Let us assume that there is a monotonic net fumgficfor example Af}, = f5; - £" =0

at anyi.
The functionf™* will also be monotonic when the following condits are satisfied:
(a) for a scheme witB = 0 anda from relationship (9), under the condition

Afiﬁ% < Z(C)Afir_‘%, where¢(C) =0.5(1-C)/ (2 -C);
(b) for a scheme witlr = 0 andg from relationship (10), under the condition
Afiﬁl% < U(C)Afir_‘%, whereo(C) =2 (1 +C)/C.

It can be seen from this that the domains of mamoity of the homogeneous scheme
being considered have a non-empty intersectioncélea whole class of hybrid schemes is
distinguished by the condition of switching ovenrfr one homogeneous scheme to another.
The general form of this condition is as follows:

AfL, =onfl,,  where(C) < < 0 (C).

The choice ofd = 1 corresponds to the points of the intercharfg@e sign of the second
differencef” and makes it possible to obtain the estimdig= O(h) for the required
function f at the intersection points, by means of which eosd-order approximation is
retained with respect to the spatial variables mbath solutions. We used the following
switching condition:

if (uAfAzf)i”J,y2 >0, then the scheme wiji= 0 (MUDS) is used,;
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if (uAfAzf)i”J,y2 <0, then the scheme wiitn=0 (MCDS) is used;
where A7, = Afl; - Af".

On smooth solutions this scheme has a second ofdgproximation with respect to the
time and spatial variables. It is stable when theur@nt criterion (8) is satisfied and
monotonic. More over it was shown that this hylsatheme comes nearest to the third order
schemes.

The generalization of the considered finite-diffeze scheme for 2D and 3D problems is
easily performed for convective terms in (1), (Bpr the approximation of other space
derivatives in equations (1) — (3) the centralatiéhces are used.

The efficiency of the method SMIF and the greatewgr of supercomputers make it
possible adequately to model the three-dimensieaparated incompressible viscous flows
past a sphere and a circular cylinder at moderaig®&ds numbers [7]-[11] and the air, heat
and mass transfer in the clean rooms.

Figure 1: The vortex structures in the stratifiledd around a moving sphere
atRe=100,Fr = 2, 1, 0.8 - the isosurfacps= 0.005,
B isthe imaginary part of the complex-conjugate eigatuss of the velocity gradient tendae]).

\

Figure 2: Re= 100,Fr = 1: a) the isolines of the perturbation of s&inb) the isolines of [12];
c) the stream lines in the vertical plane (in thieirence frame connected with fluid).

3 THE VISUALIZATION TECHNIQUE

For the visualization of the 3D vortex structurasthe sphere wake the isosurfaces of
have been drawing, whefeis the imaginary part of the complex-conjugate eigalu@s of
the velocity gradient tensdp [12] (fig. 1). B has a real physical meaning. Let us consider a
local stream lines pattern around any point incavflwherep > 0) in a reference frame
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moving with the velocity of this pointv(= dx/dt ~ G x, wherev is a velocity of a fluid
particle in the considered reference framandt is time). It's easy to demonstrate (see the
theory of the ordinary differential equations) ththe local stream lines pattern in the
considered reference franxeis closed or spiral, anfl is the angular velocity of this spiral
motion The good efficiency of thiB-visualization technique has been demonstrated ih [
The clear relationship between the isolines of ghdaurbation of the salinity in the vertical
plane (the traditional way of the representationthed internal waves (fig. 2a, 3e)) and the
horizontal arc-shaped vortex structures (the newway of the representation of the internal
waves) is shown at fig. 2.

4 RESULTS

4.1 The diffusion-induced flow around a resting sphere

In the beginning the code for DNS of the 3D sepatatratified viscous fluid flows around
a sphere has been tested in the case of a reptiegesin a continuously stratified fluid. As a
result of this test it was showfof the first timg that the interruption of the molecular flow
(by the resting sphere) not only generates theymigetrical flow on the sphere surface (from
the equator to the poles) but also creates the gheteady internal waves [13]-[14]. At first a
number of these waves is equal/M@,. For example at= 2T, four convective cells with the
opposite directions of the vorticity (two wavesg qresented in the stream lines distribution.
A base cell, whose size is determined by the radiuke sphere, is located near the sphere
surface. At time more than 3¢ the sizes and arrangement of cells are stabiliaed,only
the base cell and two thin adjacent cells withiaktless 2.2 mm are observed both in the
salinity perturbation fields and in the stream lines pattern. In other wdlashigh gradient
sheets of densityith a thickness 2.2 mm are observed near thespafiehe resting sphere.
The maximum velocity of this quasi-steady flow nebe sphere surface is equal to
0.006 mm/s. The similar high gradient sheets okdgihave been observed before a moving
sphere (near the poles)Rat<0.1.

4.2 The classification of the flow regimes around a $pere moving in the viscous
stratified fluid

For flow regime | (Fr > 10 — the homogeneous cd¥éhe following sub-classification has
been observed previously (see [11]): RB<200 - a steady axisymmetrical wake;
2) 200 <Re< 270 — a steady double-thread wake (fig. 4a); B)2Re< 400 — a procession
of the vortex loops (facing upwards), the periotigggparation from the one edge of the vortex
sheet; 4)Re> 400 — the periodical separation from the oppositiges of the irregularly
rotating vortex sheet. In this case the followingimvortex structures of the flow can be
selected: 1) the deformed vortex ring (or semig)nig the recirculation zone; 2) the vortex
sheet surrounding the recirculation zone; 3) theexothreads or loops connected with the
recirculation zone (see [11]) (fig. 4&pwing to our previous investigatior{see [11])the
detailed formation mechanisms of vortices (FMV}he sphere wake have been described for
200<Re< 1000. In particular it was shown that the detailddV for 270 <Re< 290,
290 <Rex< 320 and 320 Re< 400 are different. (The main differences have baeserved
in the recirculation zone.)

For flow regime Il (1.5<Fr <10 — ‘the quasi-homogeneous ca@eth four additional
threads connected with the vortex sheet surrounthiiegsphere, fig. 1, 3 (left fig.)”) the
boundaries of the analogous sub-regimes (flattenedertical direction and with four
additional threads) are slightly shifted.
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Figure 3: Re=100,Fr =2, 1, 0.8: a) the skin friction patterns oa fphere lee side; b-c) the stream lines
in the vertical (b) and horizontal (c) planesd) the isosurfaces @f= 0.055, 0.02, 0.05 [12];
e) the isolines of the perturbation of the saliifglS= 510° is the distance between
the isolines), the darker isolines correspond tyatieeS.
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For example for 200 Re< 270, Fr = 2 the six-threads wake is observed (fig. 4b)e Th
domination of the four additional threads is obwobere. UnlikeFr =100 atFr =2
(200 <Re< 270) the unsteadiness in the form of the peridditectuation of the rear
stagnation point around axisis observed. Thus with decreasingFof (from 10 to 2) the
vortex ring is deformed in an oval (Fig. 3a, 4h).the vertical plane the part of fluid is
supplied in the recirculation zone (fig. 3b). Thhrs fluid goes through the core of the vortex
oval and is emitted downstream in the horizontahpl(fig. 3c). The 3D instantaneous stream
lines which are going near the sphere surface gonar this vortex oval and form the four
vortex threads (Fig. 3d).

Figure 4. The skin friction patterns on the sghee side (left fig.) and the isosurface$ ¢12] atRe= 250:
a)Fr =100 ¢ =0.04), bfFr=2 @ =0.04 —six threads), €& =1 @ = 0.08).

At Fr <1.5 (200 <Re<500) the big initial vertical flattening of theofi (fig. 3a, 4c)
prevent the vortex formation mechanisms typicaltha homogeneous fluid. Ar < 1.5 the
new vortex formation mechanisms (which are typfoalthe stratified fluid) are realised with
increasing ofRe With decreasing ofr the fluid structures around the sphere are slowly
flattened both along the vertical axs(fig. 3a-b) and along the line of the sphere motion
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(along axisZ, fig. 3c) (the length of the internal waves in thertical plane is\/d = 2x-Fr

(fig. 5)). For example two free foci in fig. 3c ampproaching to the sphere with decreasing of
Fr. The length of four threads (connected with theteso sheet surrounding the sphere at
fig. 1, 3d, 4) is also diminished with reducingfaf (fig. 6) and atFr < 0.1 these threads are
transformed in thaigh gradient sheets of denshigfore the sphere (fig. 6 c-d).

Figure 5: The stream lines in the vertical pléore-r = 1, Re= 100.

During theflow regime Il (0.9 <Fr < 1.5 — ‘the non-axisymmetric attached vortexthe
recirculation zone”, fig. 1, 3, 4c) the vortex oval the recirculation zone has been
transformed into the quasi-rectangle with two shettical vortex tubes (fig. 7c). With
decreasing oFr the thickness of this quasi-rectangle in the gattplaneX-Z is diminishing
up to zero and this quasi-rectangle is transformexthe system athetwo symmetric vortex
loops (fig. 7d). It means that the wave processes dedstne rectangular vortex in the
recirculation zone. As you can see from fig. 3dtde top and bottom parts of each wave
crest along the axig (fig. 5) are visualized as two symmetrical V-shp®rtex structures
with the sloping ends. The head of this V-shapedexostructure is connected with the four
auxiliary vortex threads induced near thexis by the four main vortex threads (connected
with the vortex sheet surrounding the sphere).n@oturn these four induced vortex threads
are connected with the horizontal arc-shaped vatiexctures represented the internal waves.

During the flow regime IV (0.6 < Fr<0.9 — “the two symmetric vortex loops in the
recirculation zone”) the legs of these two symneetortex loops are combined with four
induced vortex threads (mentioned above) (fig. Ydrel the primary separation line (and the
recirculation zone) vanish. Thus at &.&r < 0.6 theflow regime V (“the absenceof the
recirculation zone”) is observed (fig. 6a).

With decreasing offr a new recirculation zones generated from the nearest wave crest at
Fr =0.4. During theflow regime VI (0.25<Fr <0.4 — ‘a new recirculation zorie
fig. 6b, 7f) the V-shaped vortex structures arasfarmed into “dorsals”. AEr < 0.25 (with
decreasing ofr) these “dorsales” are shifted more close to theesgp and form a strong
vortex envelope (“skeleton”) around the new redatian zone (fig. 6¢). Thus d&r < 0.25
theflow regime VII (“the two vertical vortices the new recirculation zone (bounded by the
internal waves)”) is observed. At 0.6Fr <0.25 (at Re<120) the ring-like primary
separation line has been simulated (Fig. 6¢)-iA& 0.03 (atRe< 120) the cusp-like primary
separation line with four singular points (two nsden X-Z plane) and two saddles (W:Z
plane)) has been observed.

At Fr <0.3,Re> 120 the edges of two vertical vortex sheetsg@ach side of the quasi-2D
recirculation zone) are detached alternatively. @id). The corresponding Strouhal numbers
0.19 <St = fd/U < 0.24 (wherd is the frequency of shedding) are in a good ages¢mwith
the experiment [2].

The obtained characteristics of the simulated floissch as horizontal and vertical
separation angles, the drag coefficients)Aok 100,Re< 500 are in a good agreement with
the experiments [1]-[2], [15]-[16].
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Figure 6: The skin friction patterns on the sgHee side (left fig.), the stream lines in thetieat plane and the
isosurfaces off [12] (right fig.): a)Fr = 0.5,Re= 100 ¢ = 0.02), b)r =0.3,Re=100 § = 0.02),
c) Fr = 0.08,Re= 100 § = 0.005), dFr = 0.05,Re=500 ¢ =0.2).
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d) V" e)
Figure 7: The isosurfaces pf{12] atRe=100: a)Fr = oo, b)Fr =2 (3 = 0.15), cfr=1 @ =0.1),
d)Fr=0.7 $=0.087), efr=0.6 ¢ =0.087), ffFr =0.35 § = 0.087).

5 CONCLUSIONS

The continuous changing of the complex 3D spheleewartex structure of the stratified
viscous fluid with decreasing &fr from 100 to 0.004 has been investigate®a& 500 for
the first tim@ owing to the mathematical modelling on the masgarallel computers with a
distributed memory and thfevisualization of the 3D vortex structures (thesimial waves and
the sphere wake). The numerical method SMIF an@tisualization technique are briefly
described. At 0.6 €r < 1.5 the gradual disappearance of the reciranlatone is observed
(fig. 7). It is the most interesting and compleanisformation of the wake vortex structure. At
Fr = 0.4 a new recirculation zone is formed from tiearest “wave crest” which is appeared
very close to the sphere.

With increasing oRe (from 100 to 500) the number of the degrees addoen of the flow
IS increased too. At the same time the stratificastabilizes the flow in the sphere wake. As
a result of our DNS at 0.064Fr < 100 andRe< 500 the following classification of the flow
regimes around a sphere horizontally moving inieeous stratified fluid has been observed:
[) Fr > 10 —the homogeneous casiy. 4a, 7a;

II) 1.5 <Fr <10 —the quasi-homogeneous cg@ath four additional threads connected with
the vortex sheet surrounding the sphere, fig. 14Bd7b);

[l1) 0.9 <Fr < 1.5 -thenon-axisymmetric attached vortexthe recirculation zone

(fig. 1, 3d, 4c, 7c);

IV) 0.6 <Fr < 0.9 —thetwo symmetric vortex loops the recirculation zone, fig. 1, 3d, 7d;

V) 0.4<Fr < 0.6 —theabsencef the recirculation zone, fig. 6a, 7e;

VI) 0.25 <Fr < 0.4 —anew recirculation zondig. 6b, 7f;

VII) Fr <0.25 -the two vertical vorticesn the new recirculation zone (bounded by the
internal waves), fig. 6¢-d.

This classification is more close to the classtia@afrom [1].
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