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Abstract. Heat exchanger configuration, including unavoidable dead space, affects the
performance of thermoacoustic devices. Three different models are compared numerically:
ideal heat exchangers, modeled as a fluid zone where temperature is prescribed at all times,
hot for the heater and cold for the cooler, and two more realistic arrangements, in which
the heat exchangers are made up of horizontal plates with a prescribed blockage ratio. In
one of these, a fixed temperature is imposed in the heat exchanger plates, while in the
other, constant heat fluxes are prescribed. The thermoacoustic engine consists of a stack
and heat exchangers, placed inside a long tube closed at one end and equipped with a load at
the other end. It is modeled coupling a numerical simulation of the viscous and conducting
flow in the stack and heat exchangers with linear acoustics in the left and right parts of
the tube (the resonators), based upon multiple scale analysis. When a sufficiently large
temperature difference is applied between the heat exchangers, initial pressure perturbations
are amplified, the fluid starts oscillating and amplitudes grow, up to the point when the
engine reaches a stationary periodic operation. The three heat exchanger models result
in a similar behavior. The initial amplification is a function of the initial temperature
gradient along the stack plates. However, the presence of a small void volume between
heat exchangers and stack considerably lowers the initial temperature gradient in the stack.
Different resonating modes are amplified depending upon the configuration, which is in
agreement with experimental observations.
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1 INTRODUCTION

The main attraction of thermoacoustic engine is absence of any moving part. The
standing wave engine consists of a long resonating tube, closed at one end, and with a
load placed at the other end. A stack, usually made up of parallel plates, is placed inside
the resonator. One extremity of the stack is maintained at a hot temperature while the
other end is kept cold; to that effect, heat exchangers are required on both sides. The
combination of pressure fluctuation and oscillating heat exchange in the boundary layers
along the plates results in a heat engine effect [1, 2, 3]. However, design and construction
of the heat exchangers is challenging; usually there remains a dead space filled with cycle
fluid between the heat exchangers and the end of the stack. Here, engines with different
heat exchanger models and configurations are compared and the effect of these dead spaces
is quantified.

The model used includes a direct simulation of the viscous, conducting flow in the stack
and heat exchangers, coupled with an exact solution of linear acoustics in the resonators.
In a properly designed device in stationary operation, the flow should sweep a length
comparable with the stack length, while to avoid large losses in the resonators the Mach
number should remain low. Thus it is reasonable to assume that the flow is low Mach
number, and that the length of the stack+heat exchangers section is of the order of the
total length times the Mach number. The low Mach number flow in the resonator is then
characterized by length and time scales in a ratio of the other of the speed of sound, while
in the heat exchangers, length and time are in a ratio of the order of the fluid velocities,
yielding respectively and acoustic flow and a dynamically incompressible flow. Pressure
fluctuations are restricted to an acoustic amplitude by the flow in the resonators. Matching
these two solutions in the standard way provides appropriate boundary conditions to the
heat exchanger flow problem which is solved numerically. From the standpoint of resonator
acoustics, the heat exchangers are transparent to pressure but they provide a source of
volume. For details on the multiple scale model, see [4, 5].

2 PHYSICAL MODEL AND MULTIPLE SCALE FORMULATION

The geometry consists of a long tube with length LR, within which a set of heat
exchangers with characteristic length LS is placed, at a location x = 0. The stack consists
of a set of parallel plates. It is assumed that the heater and the cooler have the same
periodicity so that the simulation can be reduced to a domain consisting of two half-plates
plus the gap between them, and a consistent fraction of the resonator cross-section. The
geometry of the heat exchanger section (the simulation domain) is shown in Fig. 1. One
resonator end, located at xL is closed, while the second consists of a load. The latter,
for instance a piston, entails some motion of the tube end; however that motion is of the
order of the particle displacement hence small compared with the tube length. Thus the
load is readily reduced to an impedance at a fixed location xR.

The multiple scale formulation has been described in detail elsewhere [4, 5]. A brief
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Figure 1: Stack and heat exchanger geometry

overview follows. The key scaling assumptions made are that at the stationary regime,
velocities are small compared with the speed of sound, and that they span a length of
the order of the length of the stack or heat exchanger section. Then since for an acoustic
resonance, the resonator length is of the order of the speed of sound times the period, while
the length of the heat exchangers is like the velocity times the period, the ratio between the
characteristic length LS and the resonator length LR equals the reference Mach numberM .
Assuming a time scale of the order of the period, velocities corresponding to the reference
Mach number, and these respective length scales, flow in the resonator is characterized
by a linear acoustic problem. Flow in the heat exchangers however is described by a
dynamically incompressible model, with order M2 pressure gradients superimposed to
spatially uniform pressure fluctuations, potentially up to leading order; however continuity
of pressure between the two solutions limits these spatially uniform to the magnitude of
the fluctuations in the resonators, which are of order M .

Without loss of generality (i.e. avoiding any assumption on the shape of the waves,
and avoiding a Fourier representation), acoustics in the two parts of the resonator can be
expressed as a d’Alembert solution, as a pair of traveling waves that move respectively
left and right at the speed of sound with no interaction except at boundaries. At the two
tube ends, however, the boundary conditions result in a relationship that determines the
outgoing wave as a function of the incoming wave (a model often described as a ”reflection
coefficient”). In the current context, this model reduces resonator acoustics to boundary
conditions, on both sides of the heat exchanger sections, relating order M pressure and
velocity to their values at a previous time equal to the round trip time between heat
exchanger location and the respective end at the respective speed of sound.

Under the scaling above, at leading order and at order M , the momentum equation is
reduced respectively to ∇p(0) = 0 and ∇p(1) = 0, in which the superscript characterizes
the magnitude of the pressure contribution in a Taylor expansion in the reference Mach
number M . The resulting problem includes momentum at order M2 together with the
leading order conservation laws for mass and energy:

∂ρ

∂t
+∇.(ρu) = 0

3



Catherine Weisman, Diana Baltean Carlès, Patrick Le Quéré and Luc Bauwens

∂(ρu)

∂t
+∇.(ρu⊗ u) = −∇p(2) +

1

Re
∇.τ (1)

ρ

[
∂T

∂t
+ (u.∇)T

]
=

1

Pe
∇2T

in which it has already been taken into account that, scaling the thermodynamic properties
by reference values, p(0) = ρT = 1. The stress tensor τ = [∇u + (∇u)t − 2

3
(∇.u)I], the

reference Reynolds number is evaluated based upon the reference velocity, LS and viscosity
at the reference state and likewise for the reference Péclet number. In the solid plates
(either the stack plates or the heat exchanger plates) the dimensionless heat conduction
equation is:

∂T

∂t
=

1

Pes

∆T, (2)

where the solid Péclet number is defined as Pes = Peαref/αs, αref and αs being thermal
diffusivities respectively at the reference state in the fluid and in the solid, with the latter
depending upon the solid material.

In the limit of M → 0, in the outer scaling, associated with the resonator and with
acoustics, the length of the stack and heat exchangers→ 0. In the inner scaling, associated
with the stack and heat exchangers, the resonators become infinitely long. Matching the
two problems requires values of pressure and velocity to approach the same limits. Given
that in the heat exchangers, ∇p(1) = 0, these are in effect transparent to acoustic pressure,
which is thus continuous between the two sides of the resonator. However for velocity,
integration of the energy equation over the heat exchangers and stack (including additional
lengths on both sides that →∞) yields

(uL − uR)H +
1

Pe

∫
∇T · nds = 0 (3)

in which H is the height of the simulation domain. Continuity of p(1), together with the
acoustic boundary conditions on both sides, at the heat exchanger location, and Eq. (3)
provide three equations for the three unknowns p(1), uL and uR. Solving provides closure
to the acoustic problem, and boundary conditions to the problem in the stack and heat
exchangers, which is then solved numerically.

3 NUMERICAL SOLUTION

The problem in the heat exchangers and stack is solved numerically using a code
originally developed to deal with non-Boussinesq convection, hence suitable for density
and temperatures that vary at leading order, and spatially uniform pressure fluctuations at
up to leading order, both for velocities restricted to a small Mach number [6]. Diffusion is
dealt with implicitly while advection is explicit. Both are second-order accurate in space
and time. A fractional step projection method adapted for variable density is used to
enforce continuity. Both the ADI and GMRES algorithm have been tested to solve the
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Helmholtz equation for temperature and velocities. A multigrid algorithm determines the
pressure correction.

Solution of the coupled equations providing velocity boundary conditions from res-
onator acoustic are appropriately integrated in the solution sequence. An extensive vali-
dation of the current implementation has been performed with satisfactory results [4, 5].

4 RESULTS

Results were obtained for a device geometry studied by Atchley et al. [7], 1 m long, with
a 3.5 cm long stack, using helium, for various mean pressure values. Since LR/LS = 28.6,
M = 0.035. The heat exchangers are placed at a distance of 0.055LR from the left (closed)
end. As to widths, there are respectively 0.0222 LS and 0.008 LS for the stack gap and
the stack plate, which is made of stainless steel. Heat exchangers are made of nickel; they
are 0.009 LS thick; the hot heat exchanger is 0.21 LS long and the cold one is 0.63 LS,
with passages 0.021 LS wide. The distance between heat exchanger and stack is the same
on both sides, equal to the stack gap.

For the heat exchangers, two configurations with geometry as shown in Fig. 1 were
used, respectively assuming the entire heat exchanger wall to be at imposed heat ex-
changer temperatures, or imposing a longitudinally uniform heat flux along the outer
heat exchanger boundaries (i.e. the symmetry lines that bound the simulation domain).
The third model assumed ideal heat transfer, by forcing the fluid to adopt the imposed
heat exchanger temperatures within transverse slices crossing the entire domain, as shown
in Fig. 2.

Figure 2: Ideal heat exchangers: in the regions delineated, fluid temperatures are imposed

Initial conditions considered fluid at rest and temperature profiles obtained numerically,
corresponding to steady conduction solutions in the walls and in fluid at rest. Figure 3
shows the respective temperature fields close to the hot heat exchanger. Differences

Figure 3: Initial temperatures. Left to right: imposed temperature, imposed heat flux, ideal exchangers
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between the two realistic heat exchangers and the ideal one are perhaps more obvious in
Fig. 4, which shows the difference in the initial profiles along the centerline. The effect
of conduction in the gap on the temperature gradient in the stack is clear.
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Figure 4: Initial temperatures along the centerline. Left: entire heat exchanger section. Right: near hot
heat exchanger

Resolutions of 512 × 32, 1024 × 64 and 512 × 64 grid points were used, with about
1000 time steps/period, until velocity increased and then the step size was decreased
by a factor ten. Convergence was found to be satisfactory. ADI and GMRES yielded
indistinguishable results; being faster, the former was used for the results below.

First, results for three different values of the mean pressure were compared, all for heat
exchangers at fixed temperatures. Results describing the early part of the amplification
process are shown in Figs. 5 to 7, all for a hot heat exchanger 450 K above the cold one.
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Figure 5: Acoustic pressure. Left, time history. Right, detail over narrow window. p̃ref = 150kPa

Because these results were obtained for different loads, that some results show the
thermoacoustic instability taking longer to manifest itself and grow does not lend to any
meaningful conclusion. However, there is also a mode switch. At higher pressure, the
dimensionless period is close to the fundamental in a tube at ambient temperature, with
value equal to 2.0 in the current scaling. However when the pressure is reduced the first
harmonic, with period close to unity, is being amplified at the lowest pressure. Finally, for
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Figure 6: Acoustic pressure. Left, time history. Right, detail over narrow window. p̃ref = 240kPa
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Figure 7: Acoustic pressure. Left, time history. Right, detail over narrow window. p̃ref = 440kPa

an intermediate value, initially the fundamental appears, but eventually the first harmonic
becomes dominant. These results are consistent with [7].

Results for different heat exchanger models are shown in Figs. 8 and 9, for a tem-
perature difference of 450 K, except for Fig 9, and a load characterized by an impedance
f = p(1)/u = 100. Results for realistic heat exchangers, either with imposed temperatures,
or heat fluxes, are indistinguishable.
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Figure 8: Longitudinal velocity, right side of the heat exchanger section. Left, time history. Right, narrow
window. Solid curve for realistic exchangers, dashed line for ideal ones. Mean pressure 150 kPa

Next the effect of the load was examined. Figures 10 and 11 show the influence of the
load, all for a pressure of 440 kPa and a temperature difference of 262 K, for realistic heat
exchangers at prescribed temperature.
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Figure 9: Acoustic pressure for temperature differences of 260 K and 450 K. Mean pressure 440 kPa
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Figure 10: Acoustic pressure for f = 106, 103, 100, 90 and 80 (left); f = 68, 65, 64.9 and 64.8 (middle);
f = 0.04 and 0.02 (right)

These results show that initially, as the load impedance decreases, the instability takes
longer to grow. However, for a value in the neighborhood of 55, the trend switches
direction, and further decrease of the impedance leads to an instability that is developing
earlier. This is consistent with existence of an impedance that maximizes the power
developed by the engine. Indeed, power becomes zero for both an infinite and a zero
impedance, hence existence of a maximum for an intermediate value. It is clear that the
power absorbed by the load reduces the power left for amplitude growth. As shown in
Fig. 11, for very low impedance, the frequency doubles. This is consistent with a zero
impedance representing an open end, which leads to resonant modes with a frequency
double that for an open end in straight tubes with uniform temperature.

5 CONCLUSION

Direct simulation of a complete thermoacoustic engine was performed. Based upon a
multiple scale analysis, the global compressible flow problem is reduced to a dynamically
incompressible problem in the heat exchangers, with boundary conditions derived from
linear acoustics in the resonator.

The model was used to study several features of the engine, such as influence of load
impedance, temperature differences, mean pressure and heat exchanger models. Results
show that the approach will yield valuable information on the operation of the engine,
which remains otherwise rather opaque. While simulations remain relatively large, as the
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Figure 11: Acoustic pressure - detail for f = 0.02

current results show, it is possible to use the model in parametric study, which will help
understanding tradeoffs.
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[6] P. Le Quéré, R. Masson and P. Perrot, Chebyshev collocation algorithm for 2D non-
Boussinesq convection, J. Comp. Physics, 103, 320–335 (1992).

[7] A.A Atchley and F. M. Kuo, Stability curves for a thermoacoustic prime mover, J.
Acoust. Soc. Am. 95, 1401–1404 (1994).

9


