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Abstract. The effect of inertia on gravity-driven thin film free-surface flow over sub-
strates containing occlusions is considered. Flow is modelled using a depth-averaged form
of the governing Navier-Stokes equations, that enables the exact form of the no-slip condi-
tion to be applied at occlusion surfaces, and the discrete analogue of the coupled equations
solved accurately using an efficient full approximation storage (FAS) algorithm and a full
multigrid (FMG) technique. The effects of inertia and occlusion geometry on the resul-
tant free-surface disturbances are illustrated by a series of results for flow past rectangular
occlusions which demonstrate how increasing the Reynolds number and/or the occlusion
aspect ratio can significantly enhance both the film thickness on the upstream occlusion
boundary and the degree of film thinning at its downstream side. The effect of static
contact angle on free-surface disturbances induced by rectangular occlusions is also inves-
tigated and the results obtained for inertial flow found to be consistent with recent results
for Stokes flow.

1



Sergii Veremieiev, Harvey M. Thompson, Yeaw Chu Lee and Philip H. Gaskell

1 INTRODUCTION

The deposition of thin film coatings over substrates containing regions of micro-scale
topography forms an important component of many natural and scientific processes1, in
substrate cooling and heat transfer applications2,3, and several precision manufacturing
techniques. Examples of the latter can be found in the production of anti-reflective
coatings4, flexible electronic components5, and in displays and sensors6, where thin liquid
films flow over a distribution of functional topographical features such as light-emitting
species on a screen. In industrial coating applications product functionality often depends
critically on the coated film thickness distribution and this has stimulated much interest in
recent years on understanding the flow mechanisms controlling free-surface disturbances
induced by topographic features.

This paper focusses on the particular case of thin film flow past occlusions whose
height is significantly larger than the local film thickness. Such flows are found, for
example, during pesticide flow over hairy leaf surfaces7 and within an aerospace bearing
chamber where the film flow interacts with chamber supports and nuts. For the latter
example, detailed knowledge of the free-surface profile and volume flux within the chamber
is essential for optimal design2. The present lack of reliable data is testament to the
difficulties of studying such systems experimentally, so numerical simulations are likely
to be the most viable option in the foreseeable future. Previous numerical studies of
three-dimensional, thin film flow past occlusions have been restricted to cases of Stokes
flow using either lubrication theory8 or the Boundary Integral Equation method2,9.

Flow inertia can also have a significant influence on both the magnitude10 and stability11

of free-surface disturbances induced by topography. The present study is the first to con-
sider the additional influence of inertia on three-dimensional free-surface disturbances
induced by thin film flow past occlusions. The approach adopted involves the efficient
solution of a depth-averaged form of the governing Navier-Stokes equations10. Section 2
formulates the flow problems of interest while Section 3 outlines the numerical solution
method adopted. Results are presented in Section 4 for the influence of inertia on free-
surface disturbances induced by flow past a series of rectangular occlusions. Conclusions
are drawn in Section 5.

2 PROBLEM FORMULATION

The problems of interest, shown schematically in Figure 1, are of gravity-driven film
flow down a planar surface containing a rectangular occlusion of length LT (≪ LP ) and
width WT (≪ WP ), where LP and WP are the length and width of the problem domain
respectively. The liquid is assumed to be Newtonian and incompressible, with constant
viscosity, µ, density, ρ, and surface tension σ. The chosen Cartesian streamwise, X,
spanwise, Y , and normal, Z, coordinates are as indicated and the solution domain is
bounded from below by the inclined surface Z = 0 and from above by the free-surface
Z = H(X, Y, T ), where H(X, Y, T ) is the film thickness at any point in the (X, Y ) and at
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any time T . The resulting laminar flow is described by the Navier-Stokes and continuity
equations, namely:

ρ

(

∂U

∂T
+ U · ∇U

)

= −∇P + ∇ · T + ρG, (1)

∇ · U = 0, (2)

where U = (U, V, W ) and P are the fluid velocity and pressure, respectively;

T = µ
(

∇U + (∇U)T
)

is the viscous stress tensor and G = g0 (sin θ, 0,− cos θ) is the

acceleration due to gravity where g0 is the standard gravity constant.

P

P

Figure 1: Schematic of gravity-driven film flow past an occlusion.

Taking the reference length-scale in all directions to be the asymptotic, or fully de-
veloped, film thickness, H0, and scaling the velocities by the free-surface (maximum)
velocity, U0 = ρg0H

2
0 sin θ/2µ apropos the classic Nusselt solution11, pressure (stress ten-

sor) by P0 = µU0/H0, and time by T0 = H0/U0, equations (1) and (2) can be rewritten
in non-dimensional form as:

Re

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ · τ + Stg, (3)

∇ · u = 0, (4)

where u = (u, v, w), τ and g = G/g0 are the dimensionless velocity, viscous stress
tensor and gravity component, respectively; Re = ρU0H0/µ is the Reynolds number and
St = 2/ sin θ the Stokes number.
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The problem is closed by imposing the required no-slip, inflow, outflow, kinematic,
free-surface normal and tangential stress boundary conditions, namely:

u|z=0 = 0, (5)

u|x=0,lp;y=0,wp
= (z (2 − z) , 0, 0) , (6)

∂h

∂t
+ u|z=h

∂h

∂x
+ v|z=h

∂h

∂y
− w|z=h = 0, (7)

−p + (τ |z=h · nh) · nh =
κ

Ca
, (8)

(τ |z=h · nh) · th = 0, (9)

where Ca = µU0/σ is the capillary number, x, y, z, lp, wp, h correspond to their dimensional

counterparts, nh =
(

−∂h
∂x

,−∂h
∂y

, 1
)

·

[

(

∂h
∂x

)2
+

(

∂h
∂y

)2

+ 1

]−1/2

is the unit normal vector

pointing outward from the free surface, th is the unit vector tangential to the free surface
and κ = −∇ · nh is the free-surface curvature.

The liquid meets the occlusion at a static contact line with a resulting static contact
angle, θS , formed at the free-surface in a plane normal to the occlusion boundary. This
condition together with a no-slip boundary condition at the boundary of the occlusion Γ
are imposed via8

∇h|(x,y)∈Γ · nΓ = tan
(

θS −
π

2

)

, (10)

u|(x,y,z)∈Γ = 0, (11)

where nΓ is the outward pointing normal to the occlusion.

2.1 Mathematical formulation

Since the mathematical details are described in detail elsewhere10, only a very brief
overview is provided. A process of depth-averaging is used by adopting a long-wave
approximation that ε = H0/L0 ≪ 1, where L0 = H0/ (6Ca)1/3 is the characteristic in-
plane capillary length scale. The required friction and dissipation terms10 are obtained
by assuming the self-similar velocity profiles:

u = 3ū
(

ξ − 1/2ξ2
)

, v = 3v̄
(

ξ − 1/2ξ2
)

, (12)

where ξ = z/h. Then the depth-averaged form (DAF) of the momentum equations (3)

and the continuity equation (4) for the unknown averaged velocities ū (x, y, t) = 1
h

∫ h

0
u dz,

v̄ (x, y, t) = 1
h

∫ h

0
v dz and the film thickness h (x, y, t) respectively are:

εRe

[

∂ū

∂t
−

u

5h

∂h

∂t
+

6

5

(

ū
∂ū

∂x
+ v̄

∂ū

∂y

)]

=
∂

∂x

[

ε3

Ca
∇2h − 2εh cot θ

]

−
3ū

h2
+ 2, (13)
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εRe

[

∂v̄

∂t
−

u

5h

∂h

∂t
+

6

5

(

ū
∂v̄

∂x
+ v̄

∂v̄

∂y

)]

=
∂

∂y

[

ε3

Ca
∇2h − 2εh cot θ

]

−
3v̄

h2
, (14)

∂h̄

∂t
+

∂

∂x
(hū) +

∂

∂y
(hv̄) = 0. (15)

Problems are closed using averaged forms for the outflow/inflow conditions and the
assumption of fully developed flow both upstream and downstream, namely:

ū|x=0 = 2/3, v̄|x=0 =
∂ū

∂x
|x=lp =

∂v̄

∂x
|x=lp =

∂ū

∂y
|y=0,wp

=
∂v̄

∂y
|y=0,wp

= 0, (16)

h|x=0 = 1,
∂h

∂x
|x=lp =

∂h

∂y
|y=0,wp

= 0. (17)

In addition the static contact line and no-slip conditions take the form:

ε∇h|(x,y)∈Γ · nΓ = tan
(

θS −
π

2

)

, ū|(x,y)∈Γ = v̄|(x,y)∈Γ = 0. (18)

3 METHOD OF SOLUTION

The method of solution is based on that described in detail recently10, so only a brief
outline is given below.

3.1 Spatial Discretisation

Equations (13) to (15), incorporating appropriate friction and dispersion terms, are
solved subject to the applicable boundary conditions on a rectangular computational do-
main, (x, y) ∈ Ω = (0, lp) × (0, wp), subdivided using a regular spatially staggered mesh
arrangement of cells having sides of length ∆x and width ∆y. The unknown variables,
film thickness, h, and the velocity components, ū, v̄, are located at cell centres, (i, j), and
cell faces, (i + 1/2, j), (i, j + 1/2), respectively. Solving the momentum equations (13)
and (14) at cell faces with the convection and time derivative terms grouped together to
simplify their numerical treatment, and omitting for the sake of convenience the over-
bar denoting velocity averaging, results in the following second-order accurate in space
discretisation scheme:

εRe

(

∂u

∂t
−

u

5h

∂h

∂t
+

6

5
F [u]

)

i+1/2,j

−
ε3

Ca

(

hi+1,j+1 − 2hi+1,j + hi+1,j−1 − hi,j+1 + 2hi,j − hi,j−1

∆x∆y2

+
hi+2,j − 3hi+1,j + 3hi,j − hi−1,j

∆x3

)

+ 2ε cot θ
hi+1,j − hi,j

∆x
+

3ui+1/2,j

h2
i+1/2,j

− 2 = 0, (19)

εRe

(

∂v

∂t
−

v

5h

∂h

∂t
+

6

5
F [v]

)

i,j+1/2
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−
ε3

Ca

(

hi+1,j+1 − 2hi,j+1 + hi−1,j+1 − hi+1,j + 2hi,j − hi−1,j

∆x2∆y

+
hi,j+2 − 3hi,j+1 + 3hi,j − hi,j−1

∆y3

)

+ 2ε cot θ
hi,j+1 − hi,j

∆y
+

3vi,j+1/2

h2
i,j+1/2

= 0, (20)

∂hi,j

∂t
+

hi+1/2,jui+1/2,j − hi−1/2,jui−1/2,j

∆x
+

hi,j+1/2vi,j+1/2 − hi,j−1/2vi,j−1/2

∆y
= 0, (21)

where F [ω] = u∂ω
∂x

+ v ∂ω
∂y

is the convective operator and the following terms are inter-

polated from neighbouring nodes: hi±1/2,j = (hi±1,j + hi,j) /2, hi,j±1/2 = (hi,j±1 + hi,j) /2.
The convective operator F [ω] is discretized using a second-order accurate total variation
diminishing (TVD) scheme12.

3.2 Temporal Discretisation

The associated time discretisation includes the use of an explicit and second-order
accurate in time predictor and a semi-implicit β-method10 solution stages. For β =
1/2 the method reduces to the second order accurate in time, but conditionally stable
Crank-Nicolson scheme, whereas β = 1 leads to the fully implicit first order accurate
in time unconditionally stable Laasonen method. The automatic adaptive time-stepping
procedure adopted employs an estimate of the local truncation error (LTE) obtained
from the difference between an explicit predictor stage and the current solution stage to
optimise the size of time steps and thus minimise computational waste.

3.3 Multigrid Solver

The discretized equations are solved using a multigrid strategy with a combined Full
Approximation Storage (FAS) and full multigrid (FMG) technique, where errors on a
particular computational grid are reduced by employing a hierarchy of successively finer
grids, G0, . . . , Gk, . . . , GK , where G0 denotes the coarsest and GK the finest grid level.
The FMG solution process consists of performing a fixed number of FAS V-cycles on
intermediate grid levels Gk ∈ [G1, ..., Gk−1] (usually 1-3 V cycles) and up to 10 V cycles
on the finest grid level GK . Due to the staggered nature of the discretization involved,
the relaxation methodology adopted employs a lexicographic box smoothing Gauss-Seidel
scheme. Dirichlet boundary conditions are assigned as exact values at the boundary
points, whereas Neumann boundary conditions are implemented by employing ghost nodes
at the edge of the computational domain.

4 RESULTS

Results are provided which briefly explore the effect of Reynolds number on the resul-
tant free surface disturbance for gravity-driven thin film flow over an inclined substrate
with θ = π

6
past a rectangular occlusion of aspect ratio A = WT /LT . For the cases con-

sidered ε = 0.1, which results in Ca = ε3/6 = 0.000167, and the two-dimensional flow
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domain has lp = wp = 80 and the occlusion is centred at (xt, yt) = (30, 40). The multigrid
algorithm employs a coarsest grid level G0 with n0

x = n0
y = 64 and a finest grid level

G4 with n4
x = n4

y = 1024 uniformly spaced cells. At each time step sufficient multigrid
V-cycles are performed to reduce residuals on the finest mesh level to below 10−6.

Figure 2 investigates the effect of contact angle θS on the three-dimensional free-surface
disturbance caused by a square (A = 1) occlusion for Re = 5. Increasing the static contact
angle θS leads to a reduction in film thickness near the upstream boundary and an increase
in film thickness at the downstream boundary. These findings are consistent with recent
results2 for Re = 0, however in the first case the free-surface profiles near the occlusion are
much more sensitive to the prescribed θS owing to the long, thin nature of the occlusions
considered in this work.
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Figure 2: Free-surface plot for flow over a two-dimensional localised square occlusion with Re = 5 showing
the effect of contact angle, θS , on the free surface disturbance.

The effects of both contact angle θS and Reynolds number Re on the streamwise and
spanwise centre-line free-surface profiles are described on Figure 3. For a fixed contact
angle increasing Re promotes localised film thickening and film thinning at the upstream
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and downstream occlusion boundaries respectively. For example, the streamwise profiles
in Figure 3 show that increasing Re from 5 to 50 leads to an increase in the film thickness
upstream of the occlusion from 1.37 to 1.49 and 0.81 to 0.92 for θS = 87◦ and 93◦

respectively. Downstream of the occlusion the effect of increasing Re is to reduce the film
thickness. For θS = 87◦ increasing Re from 5 to 50 leads to film thinning, where the film
thickness reduces from 1.40 to 1.36, whereas for θS = 93◦ this leads to reductions in the
film thickness from 0.54 to 0.49.
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Figure 3: Effect of contact angle, θS , and Reynolds number, Re, on (left) streamwise and (right) spanwise
centre-line free-surface profiles through the centre of a square occlusion for Re= 5 (top) and Re= 50
(bottom).

Figure 4 shows the effect of inertia and aspect ratio on the three-dimensional free-
surface disturbance that results from flow past a rectangular occlusion. It clearly demon-
strates how increasing Re from 5 to 50 leads to typically a doubling of the free-surface
disturbance upstream of the occlusion and a strengthening of the bow wave shed from the
sides of the occlusion. Increasing aspect ratio also has a dramatic effect on the free-surface
disturbances, most noticeably on the increased magnitude of the upstream free-surface
disturbances. In fact this is to be expected since, in the limit A → ∞, the fluid film would
have to climb over the occlusion in order to satisfy mass continuity.
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Figure 4: Free-surface plot for flow over a two-dimensional localised rectangular occlusion with θS = π

2

showing the effect of Reynolds number, Re, and aspect ratio, A, on the free surface disturbance.

Finally, the magnitude of these free-surface disturbances are shown more clearly by
the corresponding streamwise and spanwise free-surface profiles shown in Figures 5(a)
and 5(b) respectively. Figure 5(a) shows that increasing Re from 5 to 50 leads to an
increase in the film thickness at the upstream occlusion boundary from 1.30 to 1.61 and
1.98 to 2.92 for occlusions with A = 2 and A = 5 respectively. It also shows the effect
of Re and A on the degree of film thinning near the downstream occlusion boundary.
For A = 2, increasing Re from 5 to 50 leads to a reduction in film thickness at the
downstream occlusion boundary from 0.89 to 0.76. For A = 5, the localised thinning is
much more pronounced with the film thickness reducing from 0.42 for Re = 5 to only 0.13
for Re = 50, suggesting that the substrate may become effectively dry just downstream
of the occlusion for larger Re values. Such localised film thinning is very important in,
for example, cooling applications since they can have a major influence on the achievable
heat transfer rates into cooling films2.
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Figure 5: Effect of Re and A on (a) streamwise and (b) spanwise centre-line free-surface profiles through
the centre of a rectangular occlusion.

5 CONCLUSIONS

In addition to its well-known influence on free-surface stability, this paper has shown
how both inertia and occlusion geometry can enhance free-surface disturbances that re-
sult from thin film flow past occlusions. Generally, increasing inertia leads to localised
film thickening near the upstream occlusion boundary and film thinning near the down-
stream boundary. Each of these features is amplified by increasing the occlusion aspect
ratio. Static contact angle θS also has a significant influence on film thicknesses near
the occlusion and increasing θS tends to reduce film thicknesses upstream and increase
film thicknesses downstream of the occlusion. Detailed knowledge of such film thickness
variations is essential for optimal design in practical applications.
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