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Abstract. In this contribution we present a low Reynolds number k-ω model, which has 
been modified to predict drag reduction for FENE-P fluids. The predictions of the 
model are compared with DNS data for fully developed turbulent channel flow of 
FENE-P fluids as well as to predictions of a k-ε model of Resende et al. (Internal report 
2008, FEUP, Porto). The viscoelastic closures were developed for the low and high 
drag reduction regimes, respectively and the model compares favourably with the 
previous k-ε closures in terms of both the flow and polymer characteristics. In the new 
closure, the models for the different viscoelastic terms were almost unchanged relative 
to those used in the context of k-ε and in the case of the nonlinear term in the evolution 
equation of the polymer conformation tensor the numerical values of the parameters 
were kept unchanged, indicating that its main physics was captured by the closure 
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1 INTRODUCTION 
The interest in developing turbulence closures for the prediction of flows with drag 

reduction additives has grown over recent years and fostered a wealth of research on 
Direct Numeric Simulation (DNS) of turbulent channel flows with viscoelastic fluids, 
such as polymeric dilute solutions and surfactant solutions. In the DNS investigations 
with polymer solutions [1-3] the rheology of the fluids has usually been modelled by the 
Finitely-Extensible-Nonlinear-Elastic constitutive equation with Peterlin's 
approximation (FENE-P), and less so by the Oldroyd-B [4] and Giesekus models [5], 
whereas for the surfactant flow simulations the Giesekus constitutive equation has been 
more often preferred [6, 7]. In some cases the DNS data was processed to provide 
Reynolds average data [8, 9] or insight into the vortex dynamics [10, 11]. 

Regarding the development of turbulence closures, the earlier attempts were in the 
1970s with ad-hoc modifications of mixing length models, as reviewed by Pinho et al. 
[12]. Better justified closures were those of Malin [13] for purely viscous fluids of 
variable viscosity and of Pinho and co-workers [14-17], who adopted a Generalized 
Newtonian Fluid constitutive equation and introduced some extensional viscosity 
effects via a dependence on the third invariant of the rate of deformation tensor. 
However, this latter set of turbulence closures is not based on a true viscoelastic 
constitutive equation with memory effects. Therefore, it is only natural that the 
constitutive models which better describe the rheology of dilute polymer solutions, such 
as the FENE-P model, are adopted for the development of turbulence closures, even if 
there are still some discrepancies between the calculated (by DNS) and measured 
intensities of drag reduction [18]. 

To our best knowledge, the first Reynolds average type of turbulence closure for 
FENE-P fluids in the archival literature is that of Li et al. [9], even though some earlier, 
and actually more sophisticated models, were presented at conferences [19, 20]. The 
next step was the model of Pinho et al. [12], which is an extension of the low Reynolds 
number k-ε closure of Nagano and Hishida [21] for Newtonian fluids. In order to arrive 
at a closed form turbulence model for FENE-P fluids, Pinho et al. [12] had to develop 
closures for new terms appearing in the governing equations such as: the nonlinear 
turbulence distortion term in the evolution equation of the conformation tensor, the so-
called NLTij term [10], the viscoelastic stress work and the viscoelastic-turbulent 
diffusion appearing in the transport equation of turbulent kinetic energy. These earlier 
closures were developed on the basis of DNS data, but the model only worked at low 
drag reduction. More recently, this turbulence model was significantly improved by 
Resende et al. [22], who extended its closures to the high drag reduction regime and 
improved its general performance. To achieve this improvements, Resende et al. [22] 
had to modify the closure for NLTij, which is now based on its exact equation, and also 
to modify the eddy viscosity closure, which includes also a polymer contribution. 
Additionally, the transport equation for the rate of dissipation of turbulence by the 
Newtonian solvent was also modified to incorporate a polymer effect, since the earlier 
version of the model [12] used essentially the version of Nagano and Hishida [21] with 
variable turbulent Prandtl numbers [23]. In addition to extending the k-ε model to the 
high drag reduction regime, the new closure of Resende et al. [22] solved various 
deficiencies of the earlier closure of Pinho et al. [12], except the under prediction of 
turbulent kinetic energy. 

For Newtonian fluids, it is known that in the k-ε turbulence models there are 
problems due to the lack of natural boundary condition of ε, and the appearance of 
higher-order correlations in the balance of the dissipation rate at the wall, forcing the 
used of higher-order derivatives of the turbulent kinetic energy, which leads to a not 
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asymptotic behaviour and consequently to numerical stiffness. A possibility is to 
arrange an alternative to ε. Wilcox [24] developed the k-ω model where the exact 
viscous terms next to the wall do not require modeling, thus leading to better predictions 
without the use of damping functions typical of k-ε closures. In addition, the k-ω model 
leads to more robust computaions, Wilcox et al. [25]. Nevertheless the Wilcox model 
behaviour is asymptotically incorrect, because he neglected the contribution of the 
viscous cross-diffusion term. According to Menter [26], although the k-ω model predict 
better wall-bounded flows than the standard k-ε model, in free shear layers the k-ω 
model shows some deficiencies, because it is very sensitive to the free stream 
conditions. Improvements to the original k-ω model involve the inclusion of the exact 
term of viscous cross-diffusion and damping functions to obtain a correct asymptotic 
behaviour, as was done by Speziale et al. [27] and Menter [28]. Their models improve 
the predictions in turbulent boundary layers specially under adverse pressure gradients. 
Further improvements were made by assessing the numerical values of the model 
parameters and revised damping functions to better predict complex flows with 
recirculation, as done by Peng et al. [29] and Bredberg et al. [30], who also used DNS 
data to eliminate the dependence on a wall-function, while predicting the correct 
asymptotic behavior near walls. 

In this work we propose a k-ω turbulence model for FENE-P fluids that is also valid 
for the low and high drag reduction regimes. The developed model is a modified form 
of the k-ω model of Wilcox [25], as presented by Bredberg et al. [30], incorporating 
new terms associated with fluid elasticity. The model is also calibrated using DNS data 
for fully-developed channel flow provided by Li et al. [3, 9] and Kim et al. [11] for the 
low and high drag reduction regimes (DR < 30% and 30% < DR < 70%, respectively).  

The paper is organised as follows: the governing equations for the k-ω turbulence 
model, for fluids represented by the FENE-P rheological constitutive equation, are 
presented in section 2. Section 3 presents the closures that are required to close this 
viscoelastic turbulence model, in particular those terms affected by the non-Newtonian 
viscoelastic fluids which are explained in more detail. Then, section 4 presents and 
discusses results of the model for fully-developed channel flow and compares the 
predictions with DNS data. The paper closes with the main conclusions and 
recommendations for future work. 

2 GOVERNING EQUATIONS 
In what follows capital letters and overbars denote Reynolds-averaged quantities, 

whereas small letters and primes denote fluctuations. A caret is used to identify 
instantaneous quantities. The equations are written in the indicial notation of Einstein, 
with 

 
δ ij  = 0 when i≠ j and 

 
δ ij = 1 for i= j. 

In the context of Reynolds average turbulent flow calculations, solving for a 
turbulent flow problem of an incompressible FENE-P fluid requires the solution of the 
continuity and momentum equations (1) and (2), respectively, 

 0i
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∂
=

∂
 (1) 

 ( )
2

,ik pi i i
k s i k

k i k k k k

U U UpU u u
t x x x x x x

τ
ρ ρ η ρ

∂∂ ∂ ∂∂ ∂
+ = − + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂
, (2) 

where τ ik ,p  is the Reynolds-averaged for mean polymer stress, Ui is the mean velocity, 
p is the mean pressure, ρ  is the fluid density and - ρuiuk  is the Reynolds stress tensor. 
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The fluid rheology is described by the FENE-P model, where the extra stress is the sum 
of a Newtonian solvent contribution of viscosity ηs  with a polymeric contribution, as in 
equation (3) below. This total extra stress has already been incorporated into the 
momentum equation (2). 

 ,
i J

ij s ij p
j i

U U
x x

τ η τ
⎛ ⎞∂ ∂

= + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 (3) 

The mean polymer stress τ ij ,p  results from Reynolds-averaging the FENE-P stress 
equation relating the instantaneous stress and conformation tensors as given by equation 
(4). The mean conformation tensor ( Cij ) is determined by Reynolds averaging its 
instantaneous evolution equation leading to equation (5), where the first-term inside 
brackets on the left-hand-side is Oldroyd's upper convected derivative of Cij .  
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 (5) 

The functions appearing in these equations are  

 ( )
2

2

3
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−
=

−
and ( ) 1f L =  (6) 

where L2 denotes the maximum extensibility of the dumbbell model. Alternative 
formulations of these functions are possible, but the issue is largely irrelevant here [12]. 

The other parameters of the rheological constitutive equation are the relaxation time 
of the polymer λ  and its viscosity coefficient ηp . The following three terms on the left-
hand-side of Eq. (5) are denoted as 

ji
ij kj ik

k k
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= +
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and include the viscoelastic cross-correlations for which adequate closures are 
developed in this work, namely NLTij and CTij. 

The Reynolds stress tensor appearing in the momentum equation is modeled by 
invoking the Boussinesq turbulent stress-strain relationship (7) 

 22
3i j T ij iju u S kρ ρν ρ δ− = −  (7) 

where k is the turbulent kinetic energy and νT  is the eddy viscosity. This is where this 
work differs from the earlier works of Pinho et al. [12] and Resende et al. [22], which 
relied on a model for the eddy viscosity based on the turbulent kinetic energy (k) and its 
rate of dissipation by the Newtonian solvent (ε N ). Here, instead of Nε  the eddy 
viscosity closure uses the specific rate of dissipation (ω N ) as in equation (8), 

 ()T N

kgν
ω

= , (8) 
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where the specific form of the function g() is discussed in section 3.1. The quantities k 
and  ω N  needed to be obtained from their transport equations. 

The transport equation for the turbulent kinetic energy, a contraction of the Reynolds 
stress transport equation written originally by Dimitropoulos et al. [8], is given by Eq. 
(9) 
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 (9) 

Introducing the definition of instantaneous polymer stress (see [12]), Eq. (9) is 
rewritten as  
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The left-hand side of equation (10) represents the advection of k and the remaining 
terms on the right-hand side have the following meaning, following the notation of 
Dimitropoulos et al. [5]: kP - rate of production of k; kQ  - turbulent transport of k by 
velocity and pressure fluctuations; N

kD  - molecular diffusion of k associated with the 
Newtonian solvent; Nε  - direct viscous dissipation of k by the Newtonian solvent; VQ  - 
viscoelastic turbulent transport; Vε  - viscoelastic stress work, which can be positive or 
negative, acting as a dissipative or productive mechanism, respectively. 

The specific rate of dissipation by the Newtonian solvent (ω N ) is defined as 

 ω N =
ε N

Ck k
 (11) 

Its transport equation, which has not been deduced before for a FENE-P fluid, can be 
obtained from this definition and the transport equation for k and Nε .The exact form of 
the transport equation for the rate of dissipation of turbulent kinetic energy is Eq. (12), 
originally derived by Pinho et al. [12] for a FENE-P fluid. 
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All terms, but the last on the right-hand-side, are found also in the corresponding 
equation for a Newtonian fluid. This last term is a viscoelastic contribution. This 
equation is never used in this form, but in a modelled form, so it is adequate to rewrite it 
as in Eq. (13). 
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where for compactness we used the definitions of NP
ε

 as the rate of production of Nε , 

NQ
ε

 is the turbulent transport of Nε  by velocity and pressure fluctuations, N
ND
ε

 is the 

molecular diffusion of Nε  associated with the Newtonian solvent, Nε
Φ  is the 

destruction and N
VE
ε

 is the viscoelastic term, which is here assumed as a destruction 

term since the DNS data has show that Nε  is reduced with the viscoelasticity and drag 
reduction. 

Following Bredberg et al. [30], we derive Eq. (11) and obtain  
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Back-substituting the transport equations of k and ε N  into this expression, we arrive 
at the following transport equation of ω N  

 N N N N N

N
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ω
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Finally, the direct viscoelastic contribution to the balance of ω is given in Eq. (16) 
and has three contributions: the viscoelastic destruction term from the ε N - equation and 
from the k- equation the viscoelastic turbulent diffusion and the viscoelastic stress work.  
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The k-ω model of Bredberg et al. [30] differs from that of Wilcox [25] in that they 
keep the viscous and turbulent cross-diffusion term, Eq. (17), in NQ

ω
, which Wilcox 

neglected. Keeping the cross diffusion term describes better the asymptotic near-wall 
behaviour for k~y2 and ω~y-1, and consequently a reduction in the number of damping 
functions to a single one. The remaining damping function in the ω equation depends on 
the turbulent Reynolds number, defined as ( )Re Sk ν ω= , avoiding the ambiguity of 
defining a distance to a wall in complex geometries.  
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The final forms of the transport equations of turbulent kinetic energy and its specific 
rate of dissipation are Eqs. (18) and (19), respectively. 

 V Vi i T
i k s P k

i k i k i

U k Uk k
u u C k Q

t x x x x
ρ νρ

ρ η η ρ ρ ω ρε
σ

∂ ∂∂ ∂ ∂
+ = − + + + − + −

∂ ∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 (18) 

 
1 2

2

N

i T
s P k

i i i

Vs
T

i i

U C P C
t x x x k

C k E
k x x

ω ω
ε

ω
ω

ρ ω νρω ω ωη η ρ ρω
σ

η ωρ ν ρ
ρ

⎡ ⎤⎛ ⎞∂∂ ∂ ∂
+ = + + + − +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

⎛ ⎞ ∂ ∂
+ +⎜ ⎟ ∂ ∂⎝ ⎠

 (19) 

3 NON-DIMENSIONAL NUMBERS AND DNS CASES 
The development of the various closures is carried out on the basis of DNS data for 

fully development channel turbulent flow of FENE-P fluids. In this exercise various 
non-dimensional numbers are used, which are defined as follows: the Reynolds number 
Reτ0

≡ huτ ν0  is based on the friction velocity (uτ ), the channel half-height (h) and the 
zero shear-rate kinematic viscosity of the solution, which is the sum of the kinematic 
viscosities of the solvent and polymer (ν0 = νs +ν p ). The Weissenberg number is given 
by Weτ0

≡ λuτ
2 ν0  and β  ( β ≡ νs ν0 ) is the ratio between the solvent viscosity and the 

solution viscosity at zero shear rate.  

The two DNS sets of data used in the calibration are characterized by a Reynolds 
number of   Reτ 0 = 395, a solvent to total zero-shear-rate viscosities ratio of  β = 0.9  and 
a maximum extensibility   L2 = 900 . The Weissenberg numbers are   Weτ 0 = 25 and 

  Weτ 0 = 100 , corresponding to drag reductions of 18% and 37%, respectively. 

4 CLOSURES OF THE VISCOELASTIC TURBULENCE MODEL 

4.1 Momentum equation closures  
The Reynolds average polymer stress is given in Eq. (4) and is a function of the 

average conformation tensor and a double correlation involving fluctuations of the 
conformation tensor, Pinho et al. [12] have shown the impact of this double correlation 
to be small at low drag reduction, but even though Resende et al. [22] found it to be 
non-negligible at high drag reduction it is nevertheless neglected here since the present 
model is only valid at low and high drag reductions, and so the Reynolds average 
polymer stress reduces to Eq. (20).  

 ( ) ( ),
p

ij p kk ij ijf C C f L
η

τ δ
λ

⎡ ⎤≈ −⎣ ⎦  (20) 

To determine the Reynolds average conformation tensor it is necessary to solve Eq. 
(5), which contains several terms requiring an appropriate closure, These are the two 
terms containing fluctuations of the conformation tensor, which are designated by CTij 
and NLTij. Previous work of Pinho et al. [12] and Resende et al. [22], have shown the 
CTij term to be negligible  at low and high DR in comparison with the remaining terms 
of the equation. To calculate its NLTij Resende et al. [22] developed an explicit closure 
which is able to capture the behavior of all its components at low and high DR, which is 
adopted here without any modification. 
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The parameters and damping functions of NLTij model are listed in the Table 1. 
 

  CF1    CF 2  CF 3  CF 4  
 
CεF

 
1.0 0.0105 0.046 1.05 2 

2

1 1 0.8exp
30F
yf
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= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

4

2 1 exp
25F
yf

+⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

Table 1: Parameters and damping functions of the NLTij model. 

The variation of the Reynolds stress with drag reduction has been established along 
ago in experiments, like those of Ptasinski et al. [18], and is also quantified in direct 
numerical simulations. Resende et al. [22] developed and calibrated, based on DNS 
data, a Reynolds stress closure that is capable to predict correctly the reduction of the 
shear stress with the increase in DR. The same theories and constants values are used 
here. 

In the context of first order turbulent closures, the Reynolds stress is modelled using 
the Boussinesq turbulent stress-strain relationship, 

 22
3i j T ij iju u S kρ ρν ρ δ− = − , (22) 

where Tν  is the eddy viscosity. 
Not all components of the Reynolds stress tensor decrease with DR, but most do and 

in particular the shear Reynolds stress. In order to incorporate the correct influence of 
the DR on the Reynolds stress Resende et al. [22] showed the need to modify the eddy 
viscosity model which is divided into Newtonian ( N

Tν ) and polymeric ( P
Tν ) 

contributions as in Eq. (23). 
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 N P
T T Tν ν ν= −  (23) 

The Newtonian contribution is modelled by the typical low Reynolds number 
turbulent viscosity modified by the use of the specific rate of dissipation as in Eq. (24) 
for the k-ω model (Wilcox [24]), i.e., 

 N
T N

kC fμ μν
ω

= × × , (24) 

where the Newtonian parameters and damping functions are those of Bredberg et al. 
[30] presented below, with a difference in the damping function fμ  where one of the 
coefficients changed from 25 to 28, to improve the predictions of velocity in Newtonian 
turbulent channel flow. 

 1.0Cμ =  and 
2.75

3

1
0.09 0.91 1 exp

28
t

t

R
f

Rμ = + + − −
⎡ ⎤⎧ ⎫⎛ ⎞ ⎪ ⎪⎛ ⎞
⎢ ⎥⎨ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠⎪ ⎪⎢ ⎥⎝ ⎠ ⎩ ⎭⎣ ⎦
 with t

S

k
R

ω ν
=

⋅
(25) 

The polymeric contribution to the eddy viscosity has the same physical dependency, 
but also depends on viscoelastic quantities, namely the conformation tensor via its trace, 

 ( )0
,P

T mm N

kf We y C C fτ μ μν
ω

+= × × × ×  (26) 

In spite of this modification, and in order to better represent the variation of the eddy 
viscosity with wall distance and drag reduction Resende et al. [22] found it necessary to 
correct the model with a function ( )0

,f We yτ
+  incorporating wall damping and 

Weissenberg number effects 

( )0
, P P

DRf We y f fτ μ
+ = ×  with 0.00045 1 2.55 exp

44
P yfμ

+⎡ ⎤⎛ ⎞
= + × −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 and 

 
0.12324

0

0

251 exp
6.25

P
DR

Wef
We

τ

τ

⎡ ⎤⎡ ⎤⎛ ⎞= − − × ⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦
 (27) 

These function developed by Resende et al. [22] in the context of a k-ε model, are 
used here without any modification. 

This eddy viscosity model is capable to predict the correct evolution shown by the 
DNS data in both LDR and HDR, namely a decrease in Tν  as DR increase, visualized in 
Figure 1 (a). 
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Figure 1: Comparison between the model predictions (lines) and DNS data (symbols: Δ DR=18% and 
○ DR=37%) for turbulent channel flow with 0Re 395τ = , 2 900L =  and 0.9β = : (a) the turbulent 

viscosity normalized by 0ν ; (b) the velocity predictions of the () present model and (– –) Resende et 
al. model [22] 

4.2 Kinetic energy transport equation closures  
The original model of Pinho et al. [12] suffered from a problem at low Weissenberg 

numbers, where it predicted a shift in the velocity profile below the Newtonian profile. 
This problem was associated with a deficiency in the model of molecular diffusion term, 
which was addressed in the modifications of Resende et al. [31] in the scope of a k-ε 
model. However, these modifications were not sufficient in the scope of the k- ω model 
and the solution was the direct incorporation of an extra molecular diffusion associated 
with the zero-shear-rate polymer viscosity in the transport equations of k and ω. This 
philosophy was also adopted by Iaccarino et al. [32] in their k-ε v2-f viscoelastic 
turbulence model. At this low Weissenberg numbers, the fluid viscoelasticity has still a 
very small impact on the turbulence model and the viscosity is the main rheological 
property affecting the flow via the dissipation rate at the near-wall region. Resende et al. 
[22] solved this deficiency by changing the wall model for the rate of dissipation  of 
turbulent kinetic energy and also by  introducing shear-thinning of the viscosity, 

Pτν . In 
the k-ω turbulence models this term does not exist and the problem must be sorted out 
differently. We found that inclusion of molecular diffusion terms, associated with the 
zero-shear-rate polymer viscosity in the transport equations of k and ω is an equally 
efficient strategy to solve this problem. And for this reason we introduced the polymeric 
contribution, Pν , into the VQ , Eq. (28), keeping the energy distribution balance of 
production and destruction as we increase drag reduction. 

Another contribution of Resende et. al. [22] was in the energy balance, of k, 
specifically in the viscoelastic diffusion of k. Here he found that one of the 
contributions, originally neglected by Pinho et al. [12] for low drag reduction ( ik iC FU  
in equation (28)), was not irrelevant at higher drag reductions. Consequently, Resende 
et al. [22] developed a new closure for this contribution and the full model for the 
viscoelastic diffusion in this model is now given by equation (28), where the closure for 
the iikCU  is that of Pinho et al. [12]. 
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 ( )
' 2

,
22

ik p i pV ik i iik
mm p

k k k

u C FU CU kQ f C
x x x

τ η
η

λ
∂ ⎡ + ⎤∂ ∂⎛ ⎞≡ ≈ +⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

  (28) 

and 

( )1
0

25 kj ik
ijk i m j m

mm m m

C CCU C u u u u
We f C x xβ

τ

λ ∂⎛ ⎞∂
= − + −⎜ ⎟∂ ∂⎝ ⎠

 

 
1.661

2 20
7 25 j ik i jk

WeC u C u Cτ
β

⎛ ⎞ ⎡ ⎤− ± ±⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
 (29) 

 0

2 25
FU n n

ik i ik
i

C We u uC FU C
x

τ ∂
=

∂
 (30) 

Parameters, 1 0.6Cβ = , 2 0.05Cβ =  and 1FUC = , are modified to include a 
dependence on Wesseinberg number to correct the predictions by the various 
contributions of the energy balance as DR increased. These coefficients and functions 
are the same as in the k-ε model of Resende et al. [22] and were obtained through 
calibration against DNS data. 

The viscoelastic dissipation model, Eq. (31), was developed by Pinho et al. [12] for 
low drag reduction. Resende et al. [22] analysed extended its performance to high 

regime, introducing a drag reduction function 
4 0.095

1 0 01 exp
6.25 25DR
We Wef τ τ⎡ ⎤⎛ ⎞ ⎡ ⎤= − − ×⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

 to 

correct the behaviour for different Wesseinberg numbers.  

 ' 1
,

1 1.37 ( )
2

pV i mm
ik p DR mm

k

u NLTf f C
x

η
ε τ

ρ ρλ
∂

≡ ≈ ×
∂

 (31) 

The closure of viscoelastic terms, Vε  and VQ , of the k equation, (18), are based on 
the closures of Pinho et al. [12] and Resende et al. [22], for low and high DR. These 
models are capable of accurate predictions using the same numerical values of their 
coefficients, and the behaviour they predict are the same as in the k-ε. 

4.3 Dissipation kinetic energy transport equation closures 

As in the transport equation of k, there are modifications in the transport equation of 
Nω . The first change is an extra molecular diffusion of Nω  associated with the polymer 

viscosity coefficient, thus complementing the molecular diffusion by the Newtonian 
solvent. The second modification concerns the term N

VE
ω

, defined in Eq. (16), which 

contains the viscoelastic destruction of Nε  ( N
VE
ε

), given by Eq. (32) [22]. 

 
( ) ( ) ( ) '

2
ˆ2

3
N

pV i
s nn pp qq ik

m k m

uE f C f C c C
x x xLε

η
η

λ
⎧ ⎫∂ ∂ ∂ ⎡ ⎤= ⎨ ⎬⎣ ⎦∂ ∂ ∂− ⎩ ⎭

 (32) 

The closure for N
VE
ω

 is based on the closure developed by Resende et al. [22] for 

N
VE
ε

, but this time there are modifications in the damping function DRf ε  and in the 



P. R. Resende, F. T. Pinho, B. A. Younis, K. Kim and R. Sureshkumar 
 

 12

numerical values of coefficients 1FCε  and 2FCε . More details on the development of the 
closure of N

VE
ε

 can be found in [22]. 

And additional modification to the closure of N
VE
ε

 refers to a new development of 
this closure which in contrast to the original model of Resende et al. [22], is now able to 
consider also variations in the polymer concentration, and in the polymer molecular 
weight. This is achieved via the introduction of the factor ( )5.230.9β  and term (L2-3), 
respectively. 

( ) ( )
( )
5.23

5 2
0

0.9 1
3

N
V

DRE f f
We L

ε
ε

τ

β β−
≈ − × × ×

−
 

 ( ) ( )
2

2 22 2
1 23

N V

F F mm mmNC L C C f C
k ε ε

ε ε
ε

⎡ ⎤
× × × − + × ×⎢ ⎥

⎣ ⎦
 (33) 

The viscolastic damping functions for the new closure of N
VE
ε

 is 

( )5 1 exp 50f y+⎡ ⎤= − −⎣ ⎦ , the drag reduction effect is introduced by 

( ) 1/ 4
01 exp 16.25DRf Weτ= − −⎡ ⎤⎣ ⎦  and by the coefficients  1FCε  and 2FCε  which become 

( )0.724
1 00.44 25FC Weε τ=  and ( )1.558

2 01.0 25FC Weε τ= , respectively. 

 
2

2

1
N N

V V V V
k p

k k

E E D
C k k k xω ε

ω ω ωε η ∂
= − + +

∂
 (34) 

The capacity of this closure to predict well in both the k-ε and k-ω turbulence 
models, using the same coefficients, suggests the fairness of the assumptions invoked 
by Resende et al. [22] in its developments. 

The values of the turbulent Prandtl numbers and of the Newtonian parameters are 
show in Table 2, here based on Bredberg et al’s. [30] model, with a correction in the 
coefficient Cω  for which we use 1.0 rather than 1.1. Note that this change in Cω  is with 
the same principle used before in damping function fμ , to improve the Newtonian 
predictions. 

 
Cμ  kC  Cω  

1
Cω  

2
Cω  kσ  ωσ  

1.0 0.09 1.0 0.49 0.072 1.0 1.8 
Table 2 – Newtonian parameters of the turbulence model. 

4.4 Boundary conditions 

The usual non-slip boundary conditions are used at the wall, U=0, k=0, except for ω 
which is not defined on that basis. According to Wilcox [24] near a wall ω must follow 
the asymptotic behaviour of Eq. (35), and this requires the use of a fine mesh inside the 
viscous sublayer having at least 5 computational cells for y+ < 2.5 to guarantee 
numerical accuracy. In our case we ensured between 5 and 10 points existed in that 
region where this expression was imposed. 
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( )

2

2
PS

kC y
τν ν

ω
+

→
⋅

 (35) 

Since the polymer solution has a viscosity given by the sum of the solvent and 
polymer viscosity, Wilcox’s [24] asymptotic expression, which only contains the 
Newtonian viscosity, had to be modified to incorporate the local total viscosity by the 
inclusion of the corresponding polymeric contribution (

Pτν ) defined in Eq. (36) 

 12
P

P

U
y

τ
τν

ρ
= ∂

∂

 (36) 

5 RESULTS OF THE MODEL AGAINST DNS DATA 
The turbulence model was tested against DNS data for in a viscoelastic turbulent 

channel flow at 18% and 37% drag reduction ( 0 25Weτ =  and 0 100Weτ = , respectively), 
all other parameters being constant, namely the Reynolds number ( 0Re 395τ = ), 
maximum extension of the conformation tensor ( 2 900L = ) and the viscosity ratio  
( 0.9β = ). For accurate results to within ± 1%, a mesh of 99 non-uniform 
computational cells from wall to wall was used, containing about 10 cells within each 
viscous sublayer. 

The predictions are compared with the DNS data for the following proprieties: 
velocity, turbulent kinetic energy, conformation tensor, NLTij tensor, Reynolds shear 
stress and the polymer stress tensor, respectively. A parametric analysis was also carried 
out to assess the capabilities of the turbulence model. Its results are compared with the 
predictions of the function developed by Li et al. [9] based on the DNS data, by 
changing the Wesseinberg and the Reynolds numbers for the same L2 and β. 

In Figure 1 (b) the predicted velocity profiles are compared with DNS data for 18% 
and 37% DR and show good agreement, and the monotonic shift of the log-law region 
with the DR is captured, as expected. Also the correct evolution in the buffer-layer is 
well predicted. 

The corresponding profiles of the turbulent kinetic energy profile are plotted in 
Figure 2 (a). The predicted peak values decrease with DR, in contrast with the DNS 
data, and represents a deficiency of the model. We suspect this is related to the inability 
of the k-ω model (as well as of the k-ε model) to capture the increased anisotropy of the 
Reynolds stress tensor as DR is increased, due to the isotropic theories invoked in these 
two first order models. A second order turbulence model needs to be considered to 
correct this problem. 

The profiles of the rate of the kinetic energy dissipation are presented in Figure 2 
(b), the predictions are similar in both models next and away from the wall, for 18% and 
37% DR, capturing qualitatively the correct behaviour, when comparing with DNS data. 
Note that even for Newtonian fluids there are differences in the predictions of Nε  
obtained with k-ε and k-ω turbulence models. This difference forces a correction in the 
coefficient values of the N

VE
ε

 closure, which has a direct impact on the predictions of 
Nε .  
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Figure 2: Comparison between the model predictions of the present model, Resende et al. model [22] 

(lines) and DNS data (symbols: □ Newtonian, Δ DR=18% and ○ DR=37%) for turbulent channel flow 
with 0Re 395τ = , 2 900L =  and 0.9β = : (a) the kinetic energy; (b) the kinetic energy dissipation. 

Figure 3 (a)-(e) shows for 18 and 37% DR, the predictions of NLTij for both the k-ω 
and k-ε models. The predictions components are similar and their main features are the 
increase of the peak value with DR and its shift away from the wall, which becomes 
more intense in the log-zone. For all normal components an underprediction of the peak 
value for 37% DR is detected, except in shear component where there is an 
overprediction.  

The predictions of the viscoelastic dissipation in Figure 3 (f) confirm the calibration 
of this closure by Resende et al. [22] for 37% DR, which belongs to the high drag 
reduction regime, with the same underprediction of the maximum value due to the 
deficit in the predictions of the NLTkk.  
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Figure 3: Comparison between the model predictions of the present model, Resende et al. model [22] 

(lines) and DNS data (symbols: Δ DR=18% and ○ DR=37%) for turbulent channel flow with 0Re 395τ = , 
2 900L =  and 0.9β = : (a) NLT11

* ; (b) NLT22
*; (c) NLT33

*; (d) NLT12
*; (e) NLTkk

*; (f) the viscoelastic 
dissipation. 

The correct predictions of the NLTij tensor model have a direct impact in the 
prediction of the conformation tensor, as can be observed in Figure 4 (a)-(d). In 
particular, for the component zz there is a deficit in Czz as a consequence of a deficit in 
NLTzz, when comparing with DNS data. Again we suspect this to be essentially a 
consequence of invoking turbulence isotropy inherent to the model. An overprediction 
is observed for Cxx, next to the wall, at 18% DR, which decreases when DR increases to 
37%. For the Cxy component there is an overprediction next to the wall and a 
underprediction away from wall. The underprediction is stronger at large DR. The 
predictions of Cyy are fair due to the correct prediction of NLTyy, but deficiencies 
observed with NLTyy are carried over to Cyy, for example the underprediction of the 
maximum value of NLTyy is also detected in Cyy. The trace Ckk can be compared through 
function f(Ckk) plot in Figure 4 (e) where an overprediction of the maximum value is 
seen as both DR= 18% and 37%.  
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Figure 4: Comparison between the model predictions of the present model, Resende et al. model [22] 

(lines) and DNS data (symbols: Δ DR=18% and ○ DR=37%) for turbulent channel flow with 0Re 395τ = , 
2 900L =  and 0.9β = : (a) C11 ; (b) C22; (c) C33; (d) C12; (e) f(Ckk). 

Equation (37), developed by Li et al. [9], allows the determination of the drag 
reduction intensity as a function of the Weissenber number (

0
Weτ ), the Reynolds 

number (
0

Reτ ) and the maximum molecular extensibility  of the dumbbell (L), where 

0 , 6.25cWeτ =  and 
0 ,Re 125rτ = . To verify the correct evolution of the present model by 

changing the Weissenber number, constant 
0

Reτ , L2 and β, Table 3 compares the DR of 
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the present model with the DR calculated by Eq. (37). It can be observed that for low 
drag reduction there is an overprediction which can be explained by the underprediction 
in Eq. (37) for low regime, but for high DR the values become more close due to the 
accuracy of the equation (37) for high and maximum DR regimes, more details can be 
found in Li et al. [9]. 

( )80 1 exp 0.0275DR L= × − − ×⎡ ⎤⎣ ⎦  

 ( ) 0

0 0

0

0.225

,
,

Re
1 exp 0.025

Rec
r

We We τ
τ τ

τ

−⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥× − − − ⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

 (37) 

 

0

(%)

We

DR
τ  14 25 44 100 153 

Present model  9.3 18 27.6 37 43.8 
Li et al. [9] equation 6.2 13.6 23.3 37.6 42.3 

Table 3 – Comparison between the DR (%) of the present model with Li et al. [9] equation for 
2 900L = , 

0
Re 395τ =  and 0.9β = . 

6 CONCLUSIONS 
The present k-ω turbulence model is able to predict the drag reduction in both the 

low and high drag reduction regimes. The predictions were compared with two sets of 
DNS data pertaining to these two flow regimes, for turbulent channel flow of FENE-P 
fluids, characterized by the following nondimensional numbers: 

0Re 395τ = , 2 900L = and 0.9β =  for 0 25Weτ =  (drag reduction of 18%) and 

0 100Weτ =  (drag reduction of 37%), respectively. We were also able to predict the 
variation of the DR with Weissenberg number as given by the expression of Li et al. [9] 
developed using DNS data.  

The evolution of the velocity profile and of the eddy viscosity with DR is well 
predicted, especially in the buffer-layer. In general, the conformation tensor is well 
predictand the main effects are captured, namely the increase of the maximum value and 
its shift away from the wall, as in Resende et al. [22] for the k-ε turbulence model.These 
are also a consequence of the correct prediction of the non-linear viscoelastic NLTij, 
which is required by both the conformation tensor equation and the model for the 
viscoelastic stress work appearing in the ω equation. 

This work also showed that the various viscoselastic closures developed in the 
context of the k-ε model by Resende et al. [31] can be used with minor modifications in 
the context of other first-order turbulence models.  

However, the main problem detected by Resende et al. [22] remained, namely the 
reduction of the turbulent kinetic energy as DR increases. In spite of improvements in 
the prediction of k, the current model also sees a decrease in the peak value of k as DR 
increases. This is a limitation of the first order turbulence models, where the assumption 
of turbulence isotropy leads to an incompatibility between the variations of eddy 
viscosity and k with drag reduction, the solution of which requires closures that do not 
rely on turbulence isotropy, i.e., second order turbulence models.  



P. R. Resende, F. T. Pinho, B. A. Younis, K. Kim and R. Sureshkumar 
 

 18

ACKNOWLEDGMENTS 
The authors gratefully acknowledge funding from FEDER and FCT through Project 

POCI/56342/EQU/2004. 

REFERENCES  
 
 [1] R. Sureshkumar, A. N. Beris and R. A. Handler 1997. Direct numerical simulation of the turbulent 
channel flow of a polymer solution. Physics of Fluids, 9 (3), 743-755. 
 
[2] E. De Angelis, C. M. Casciola and R. Piva 1999. DNS of wall turbulence: dilute polymers and self-
sustaining mechanisms. Computers and Fluids, 31, 495-507. 
 
[3] C. F. Li, R. Sureshkmar and B. Khomami 2006. Influence of rheological parameters on polymer 
induced turbulent drag reduction. Journal of Non-Newtonian Fluid Mechanics, 140, 23-40. 
 
[4] K. D. Housiadas and A. N. Beris 2004. An efficient fully implicit spectral scheme for DNS of turbulent 
viscoelastic channel flow. J. Non-Newt. Fluid Mech, 122, 243- 262. 
 
[5] C. D. Dimitropoulos, R. Sureshkumar and A. N. Beris 1998. Direct numeric simulation of viscoelastic 
turbulent channel flow exhibiting drag reduction: effect of variation of rheological parameters. Journal of 
Non-Newtonian Fluid Mechanics, 79, 433-468. 
 
[6] B. Yu and Y. Kawaguchi 2003. Effect of Weissenberg number on the flow structure: DNS study of 
drag reducing flow with surfactant additives. Int. J. Heat and Fluid Flow, 24, 491-499. 
 
[7] B. Yu and Y. Kawaguchi 2006. Parametric study of surfactant-induced drag-reduction by DNS. Int. J. 
Heat and Fluid Flow, 27, 887-894. 
 
[8] C. D. Dimitropoulos, R. Sureshkumar, A. N. Beris and R. A. Handler 2001. Budgets of Reynolds 
stress, kinetic energy and streamwise entrophy in viscoelastic turbulent channel flow. Physics of Fluids, 
13 (4), 1016-1027. 
 
[9] C. F. Li, V. K. Gupta, R. Sureshkmar and B. Khomami 2006. Turbulent channel flow of dilute 
polymeric solutions: drag reduction scaling and an eddy viscosity model. Journal of Non-Newtonian 
Fluid Mechanics, 139, 177-189. 
 
[10] K. D. Housiadas, A. N. Beris and R. A. Handler 2005. Viscoelastic effects on higher order statistics 
and coherent structures in turbulent channel flow. Physics of Fluids, 17 (35106). 
 
[11] K. Kim, C. F. Li, R. Sureshkumar, S. Balachandar and R. Adrian 2007. Effects of polymer stresses 
on eddy structures in drag-reduced turbulent channel flow. Journal of Fluid Mechanics, 584, 281-299. 
 
[12] F. T. Pinho, C. F. Li, B. A. Younis and R. Sureshkumar 2008. A low Reynolds number k-ε turbulence 
model for FENE-P viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 154, 89-108. 
 
[13] M. R. Malin 1997. Turbulent pipe flow of power-law fluids. Int. Commun. Heat Mass Transfer, 24 
(7), 977-988. 
 
[14] F. T. Pinho 2003. A GNF framework for turbulent flow models of drag reducing fluids and proposal 
for a k-ε type closure. Journal of Non-Newtonian Fluid Mechanics, 114, 149-184. 
 
[15] D. O. A. Cruz and F. T. Pinho 2003. Turbulent pipe flow predictions with a low Reynolds number k-ε 
model for drag reducing fluids. Journal of Non-Newtonian Fluid Mechanics, 114, 109-148. 
 



P. R. Resende, F. T. Pinho, B. A. Younis, K. Kim and R. Sureshkumar 
 

 19

[16] D. O. A. Cruz, F. T. Pinho and P. R. Resende 2004. Modeling the new stress for improved drag 
reduction predictions of viscoelastic pipe flow. Journal of Non-Newtonian Fluid Mechanics, 121, 127-
141. 
 
[17] P. R. Resende, M. P. Escudier, F. Presti, F. T. Pinho and D. O. A. Cruz 2006. Numerical predictions 
and measurements of Reynolds normal stresses in turbulent pipe flow of polymers. Int. Journal of Heat 
and Fluid Flow, 27, 204-219. 
 
[18] P.K. Ptasinski, B.J. Boersma, F.T.M. Nieuwstadt, M.A. Hulsen, B.H.A.A. Van Den Brule and J.C.R. 
Hunt 2003. Turbulent channel flow near maximum drag reduction: simulation, experiments and 
mechanisms. Journal of Fluid Mechanics, 490, 251-291. 
 
[19] R. I. Leighton, D. T. Walker, T. R. Stephens and G. C. Garwood 2003. Reynolds stress modeling for 
drag-reducing viscoelastic flow. In Joint ASME/ JSME Fluids Engineering Symposium on Friction Drag 
Reduction. Honolulu, Hawai, USA. 
 
[20] E. S. Shaqfeh, G. Iaccarino and M. Shin 2006. A RANS model for turbulent drag reduction by 
polymer injection and comparison with DNS. In Proceedings of the 78th Annual Meeting of The Society 
of Rheology, 8-12 October. Portland, Maine. 
 
[21] Y. Nagano and M. Hishida 1987. Improved form of the k-ε  model for wall turbulent shear flows. 
Journal of Fluids Engineering, 109, 156-160. 
 
[22] P. R. Resende, K. Kim, B. A. Younis, R. Sureshkumar and F. T. Pinho 2008. A k-ε  turbulence model 
for FENE-P fluid flows at low and high drag reductions. Internal report, FCT  Projects 
POCI/56342/EQU/2004, PTDC/EME-MFE/70186/2006 and BD / 18475 / 2004, FEUP, Porto. 
 
[23] Y. Nagano and M. Shimada 1993. Modeling the dissipation-rate equation for two-equation 
turbulence model. In Ninth symposium on "Turbulent shear flows", August 16-18. Kyoto, Japan. 
 
[24] D. C. Wilcox 1993. Turbulence modeling for CFD. 1st ed, DCW Industries Inc., La Cañada, 
California. 
 
[25] D. Wilcox 1988. Reassessment of the scale-determining equation for advanced turbulence models. 
AIAA Journal, 26, 1299–1310. 
 
[26] F. R. Menter 1991. Influence of freestream values on k-ω turbulence model predictions. AIAA 
Journal, 30 (6), 1657-1659. 
 
[27] C. G. Speziale, R. Abid and E. C. Anderson 1992. Critical evaluation of two-Equation models for 
near-Wall turbulence. AIAA JOURNAL, 30 (2), 324-331. 
 
[28] F. R. Menter 1994. Two-equation eddy-viscosity turbulence models for engineering applications. 
AIAA Journal, 32 (8), 1598-1604. 
 
[29] Shia-Hui Peng, Lars Davidson and Sture Holmberg 1997. A modified low-Reynolds-number k-ω 
model for recirculating flows. Journal of Fluids Engineering, 119, 867-875. 
 
[30] Jonas Bredberg, Shia-Hui Peng and Lars Davidson 2002. An improved k-ω turbulence model applied 
to recirculating flows. Int. J. Heat and Fluid Flow, 23, 731–743. 
 
[31] D. D. Aspley and M. A. Leschziner 1998. A new low-Reynolds-number nonlinear two-equation 
turbulence model for complex flows. Int. Journal of Heat and Fluid Flow, 19, 209-222. 
 
[32] Gianluca Iaccarino, Eric S.G. Shaqfeh and Yves Dubief 2010. Reynolds-averaged modeling of 
polymer drag reduction in turbulent flows. Journal of Non-Newtonian Fluid Mechanics, 165, 376–384. 
 


