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Abstract. In this paper, mesh deformation based on radial basis functions is employed
for deflecting aircraft control surfaces. A technique is presented which locally restricts the
mesh deformation to the vicinity of the deflecting component and thereby saves compu-
tational time. In addition to the data sites consisting of the mesh points on the control
surface with known displacements, further data sites are specified, and the centers for the
interpolants are selected by means of an adaptive process. Choosing the centers for the
displacements in each direction separately, termed sequential uni-variate adaptation, has
proven to be superior to the approach with the same centers for all directions. It also
permits to impose additional data sites for each direction independently, according to the
respective boundary conditions. These techniques are used for the deflection of aileron and
horizontal tail of the SDM generic fighter aircraft. By making use of overlapping mesh
blocks and allowing in-plane movements on their faces, large control surface deflections
are enabled, even if small spanwise gaps between control surface and parent component
are modelled.

1 INTRODUCTION

Aircraft control surface deflections change the surrounding flow and consequently mod-
ify aerodynamic lift, drag and moment coefficient. This is exploited for trimming and
maneuvering purposes: for trimming, the deflections are aimed at balancing the loads
acting on the aircraft in order to achieve a specific flight condition; for maneuvers, the
changes in aerodynamic coefficients are used to induce a motion of the aircraft. With
the advent of ever more powerful computers, flow around complex aircraft in trimmed
states and during maneuvers can be accurately simulated.1,19,23,24 To this end, multiple
disciplines need to be taken into account. Computational Fluid Dynamics (CFD) may
be coupled with flight mechanics and, in case the elastic deformation of the structure is
to be respected, Computational Structural Mechanics (CSM). One major requirement is
the adaptation of the CFD mesh to the changes in the geometry. This may be achieved
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by different methods such as mesh regeneration, the Chimera technique for overlapping
mesh blocks and various mesh deformation techniques.

While avoiding mesh distortion with ill-shaped elements in case of large deflections,
mesh regeneration often lacks robustness and suffers from being computationally expen-
sive. Furthermore, element connectivities are not preserved, which may be important for
error assessment and for the use of adjoint calculations (cf.14). In contrast, the Chimera
technique offers an efficient alternative for rigid-body movements of components, which
are embedded and moved along in mesh blocks overlapping with the background grid.13,17

Flow variables are interpolated at each iteration of the solver between adjacent points of
different mesh blocks. However, besides interpolation routines, this requires an efficient
algorithm for point search, and the boundaries of the different mesh blocks, i.e. auxilliary
geometrical features, have to be defined and the respective meshes generated. This may
prove difficult in case the configuration’s CAD description is no longer available. Mesh
deformation techniques, however, can be applied to the existing mesh, both for rigid-body
motion and for torsion and bending of a component. They have been used extensively
in CFD, e.g. to account for the deformation of elastic components,2,3, 15,18 to realize
the relative motion of components for unsteady simulations4 or for CFD-flight mechanics
coupled simulations,3,19,24 and to modify the design for optimization purposes.5 Mesh
deformation preserves element connectivities and, depending on the technique, can be
easily implemented and efficient. It is usually only applied once during preprocessing.

Because of these advantages, a mesh deformation technique is employed in the present
work. It relies on radial basis function (RBF) interpolation and can be classified as a
point-by-point scheme (cf.6,18). As opposed to techniques based on element connectivities
(modelling springs or solid body elasticity, see e.g.16,25), these techniques exclusively use
point coordinates and may therefore be applied to any mesh type, e.g. structured, un-
structured, hybrid and multi-block meshes. Based on the displacement of the deflecting
surface mesh points, an interpolant is calculated and then evaluated on the mesh points
of the entire volume mesh.

RBFs have been applied to various areas of science and engineering, e.g. for the solution
of partial differential equations,7,20 for surface reconstruction,8 and for scattered data
modelling and approximation, occurring e.g. in the field of fluid-structure interaction
for interpolation of interface data and deformation of the CFD mesh.2,9, 10,15,18 More
recently, they have been used for aerodynamic shape optimization.5 RBFs have many
compelling features. According to,7 RBFs have the potential as a universal grid-free
method, as they allow for arbitrary scattered data, and generalize easily to several space
dimensions. Approximations based on smooth RBFs are highly efficient in approximating
smooth functions.11 However, RBF methods also experience a number of problems. For
the popular global radial basis functions (cf.26), the coefficient matrix of the linear system
to be solved is dense. Furthermore, the coefficient matrix is prone to ill-conditioning,
and this is significantly influenced by e.g. the number and location of centers used for
the interpolant. Finally, evaluating the interpolant often turns out to be computationally
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expensive, since it involves constructing large numbers of sums; hence the term summation
problem.

Remedies for these problems have been developped (see e.g.26 for an overview), but
only some of these techniques have found their way to the area of mesh deformation:
Jacobsson and co-workers have used varying shape parameters and employed a reduction
of centers to arrive at an approximately equi-distant distribution;5 Rendall et al. have
used greedy algorithms for center selection.10

The present work focuses on the application of RBF-based mesh deformation to the
deflection of control surfaces of aircraft configurations. A technique is presented, termed
locally confined RBF-based mesh deformation, which restricts the mesh deformation to
the vicinity of the deflecting control surface by evaluating the interpolant exclusively in
a specified geometry and imposing suitable additional boundary conditions. Moreover,
it reduces the number of data sites for the interpolants by using an adaptive strategy.
Furthermore, a variant of the adaptation scheme used for mesh deformation (see e.g.,10

Algorithm 2) is introduced. Rather than to use the centers for all displacements during
adaptation, it is shown that different sets can be advantageously employed for different
displacements. This strategy is called sequential uni-variate adaptation. Additionally,
this strategy can be combined with different sets of data sites for different directions,
corresponding to different boundary conditions. Moreover, parameter studies were con-
ducted to investigate the influence of the numbers of initial centers obtained by point
reduction and of the number of data sites added during the adaptive process. These tech-
niques are demonstrated on three test cases involving the deflection of control surfaces
of the Standard Dynamic Model (SDM), a generic fighter aircraft.21 By employing over-
lapping Chimera mesh blocks and different additional boundary conditions for different
displacements, large deflection angles can be achieved, even for cases in which small gaps
in spanwise direction between control surface and component (e.g. aileron and wing) are
modelled.

The outline of this paper is as follows. Section 2 presents the theory for mesh defor-
mation based on radial basis functions and comments on different aspects and choices
made for the applications. Section 3 details the method to locally restrict the mesh
deformation. Section 4 gives an overview of the adaptation strategies used for the appli-
cations and presents the idea of using uni-variate adaptations sequentially. In section 5
the applications are presented. Conclusions are drawn in section 6.

2 MESH DEFORMATION BASED ON RADIAL BASIS FUNCTIONS

Mesh deformation based on radial basis functions (RBFs) constitutes a multi-variate
interpolation problem: Given values of threei functions at distinct data sites, the RBF
interpolation coefficients are to be found such that interpolation conditions are fulfilled.
For mesh deformation, these function values are the displacements of the points of the

iThree dimensional cases are exclusively considered in this work.
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deforming surface mesh in the three coordinate directions. Based on those function values,
an interpolant is constructed and then evaluated at other points, usually the mesh points
of the volume mesh.

In mathematical terms, we are given a set of data Dd = {(~xi, ~fi), i = 1, 2, . . . , Nd, ~xi ∈
R3, ~fi ∈ R3} at Nd distinct data sites, where ~xi = [xi, yi, zi]

T are the coordinate vectors

and ~fi = [fx,i, fy,i, fz,i]
T the corresponding function values. We are to find continuous

functions sx(~x), sy(~x), sz(~x) : R3 → R which interpolate the function values at the given
data sitesii:

s(~xi) = fi, i = 1, 2, . . . , Nd. (1)

We assume s to be linear combinations of RBFs Φj, augmented with a linear polynomial
p(~x) to enable exact recovery of rigid body translations and rotationsiii:

s(~x) = p(~x) +

Nd∑
j=1

Φjβj, (2)

with p(~x) = α1 + α2x + α3y + α4z. The radial basis functions Φj : R3 → R are defined by
shifting a single basic function φ to the data sitesiv:

Φj(~x) = φ(‖~x− ~xj‖2). (3)

For finding the coefficients ~α = [α1, α2, α3, α4]
T , ~β = [β1, β2, . . . , βNd

]T , the interpolation
conditions (1) as well as four additional conditions have to be satisfied:

Nd∑
i=1

βi = 0,

Nd∑
i=1

βixi = 0,

Nd∑
i=1

βiyi = 0,

Nd∑
i=1

βizi = 0. (4)

This yields the linear system
A~c = ~b, (5)

where ~c is the coefficient vector ~c = [~α T , ~β T ]T , ~b = [0, 0, 0, 0, f1, f2, . . . , fNd
]T the vector

of the right-hand side (RHS). A is the coefficient matrix

A =

[
0 QT

Q Φ

]
, (6)

where 0 is a 4 × 4-matrix consisting of zeros, Q an Nd × 4-matrix with row vectors
~qi = [1, xi, yi, zi] and Φ = (Φij) = (φ(‖~xi − ~xj‖2)) an Nd ×Nd-matrix (i, j = 1, 2, . . . , Nd).

iiFor simplicity, the indices x, y, z are omitted in most of the remainder of the paper.
iiiThis augmentation also ensures well-posedness for radial basis functions such as thin plate splines

(TPS).
iv‖·‖2 signifies the `2-norm.
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Equation (5) is set up for each coordinate direction individually and solved for the coef-
ficient vectors. Once they are obtained, the interpolants are evaluated at Ne evaluation
points ~xk, k = 1, 2, . . . , Ne, yielding function values fe,k. In matrix notation, this can be
concisely written as followsv:

~fe =
[
Qe Φe

]{
~α
~β

}
, (7)

where Qe is an Ne × 4-matrix of the same structure as Q, but constructed with the
evaluation points ~xk and Φe = (Φe,ki) = φ(‖ ~xk−~xi‖2) an Ne×Nd-matrix, built with both
evaluation points ~xk and data sites ~xi.

2.1 Remarks

Choice of radial basis functions. In this work, the two global radial basis functions
thin plate splines (TPS) and multi-quadrics (MQs) are used. For most of the applications
in this work involving volume mesh deformation, the TPS is applied:

Φj(~x) =

{
(‖~x− ~xj‖2)

2 ln (‖~x− ~xj‖2) if ~x 6= ~xj,
0 else.

(8)

TPS are chosen as they have been found to result in deformed meshes of high quality6 and
yield rather well-conditioned coefficient matrices compared to other RBFs.11 For TPS,
an augmentation with a linear polynomial is needed to ensure well-posedness (cf.26). For
MQ, no augmentation is necessary (cf.26). The MQ is defined as

Φj(~x) =

√
1 + (ε · ‖~x− ~xj‖2)

2, (9)

where ε is a parameter controlling the shape of the multi-quadric as well as the condi-
tioning of the coefficient matrix A and the accuracy of the numerical solution (cf.12).
Following,12 MQs are used in this work for surface mesh deformation with a fixed shape
parameter as large as ε = 104, so as to linearly interpolate between given data sites and
to conserve the planarity of surfaces.

Choice of data sites for the interpolant. Since the sizes of the evaluation ma-
trix Φe as well as the coefficient matrix A and its conditioning depend on the data
sites selected for the interpolant, it is advantageous to use a subset Dc = {(~xj, ~fj), j =
1, 2, . . . , Nc}, Dc ⊆ Dd with Nc so-called centers ~xj, as long as the extrapolation quality
at the remaining data sites is not sacrificed. To this end, a greedy algorithm for the
selection of centers is applied, which is outlined in section 4.

Coefficient matrix, conditioning and solution method. The coefficient matrix
A of equation (5) is dense for global RBFs such as TPS and MQ. For large number of
centers Nc, the solution by direct methods is prohibitive, as they have a cost of O(N3

c ).

vFor meshes with a large number of points, i.e. with large Ne, assembling the matrices Ce and Φe is
prohibitive.
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Therefore, they are only used in this work for surface mesh deformations, where typically
Nc ∼ O(102). For volume mesh deformation, the numbers of centers are larger, usually
Nc ∼ O(103). For these kind of problems, GMRES was applied.

The coefficient matrix is prone to ill-conditioning. For global RBFs, the condition
number may be influenced e.g. by the number and location of centers as well as by
shape parameters. The shape parameter of the MQ used in this work is taken to be
very large, leading to rather well-conditioned matrices (cf.7). MQs are only applied to
surface mesh deformation with a relatively small number of centers. As to the location
of centers, its separation distance was found to affect the condition number (cf.26). As
the number of centers grows, the separation distance of the centers generally decreases
and the conditioning worsens. In this work, we consider the adaptation of centers, which
affects both their number and distribution.

Evaluation. Once the interpolant is found, it can be evaluated on different point sets,
e.g.

- at the remaining data sites to check the extrapolation quality at the data sites where
the function values are given (and to decide which points to add in an adaptive
process);

- at Ne evaluation points; these are usually the same for each direction; they might
lie on a surface mesh in case of surface mesh deformation; or, in case of volume
mesh deformation, they may be all or a subset of all mesh points (preferably in the
vicinity of the deforming component).

Typically, for volume mesh deformation due to a deforming control surface, the number of
centers is exceeded by far by the number NG of grid points, i.e. the potential evaluation
points. Hence we have Nc ∼ O(102 . . . 103) as opposed to Ne = NG ∼ O(105 . . . 107).
Since large numbers of sums have to be computed (see equation (7)) when evaluating the
interpolant, this is called the summation problem. For mesh deformation, this problem
is even more pronounced, since we have to evaluate three interpolants at Ne evaluation
points. For an overview of remedies, the reader is referred to e.g.26

The method proposed in this paper seeks to reduce the number Ne of evaluation points
to the points in the vicinity of the deflecting / deforming component. It is therefore
termed locally confined RBF-based mesh deformation and is detailed in section 3.

3 LOCALLY CONFINED MESH DEFORMATION WITH CENTER ADAP-
TIVITY

The method proposed in this paper restricts the mesh deformation to the vicinity of
the deforming or deflecting surface, thereby directly tackling the number of evaluation
points Ne for the interpolants sx, sy, sz. Furthermore, it ensures that other adjacent
components are unaffected by the mesh deformation. The method consists of the following
three ingredients:
1.) local confinement for the interpolant evaluations;
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2.) imposing additional boundary conditions;
3.) center adaptation.
The first two ingredients are explained in the following, whereas the third one is detailed
in section 4. In section 5 the method will be applied to three test cases involving control
surface deflection.

Local confinement. The aim of this method is to confine the evaluation of the
interpolants to a region around the deforming / deflecting surface, thereby evaluating the
interpolant at Ne = NH mesh points of the vicinity, rather than at all NG mesh points of
the volume mesh. Since NH may be considerably smaller than NG, the proposed method
has the potential to significantly reduce computational time.

To this end, a geometrical entity, containing this deforming / deflecting surface, is
defined. All mesh points lying inside this entity are flagged differently from those lying
outside. In principal, any geometrical entity which can contain such a surface may be cho-
sen with the requirements that the relative location of mesh points be easily computable.
This work focuses on mesh deformation for control surfaces, where the connection to the
parent componentvi is usually characterized by straight lines. Hence, the choice of a geo-
metrical entity featuring planar surfaces is advantageous. Moreover, different extensions
in different directions should be possible, so as to better adapt to the shape of the control
surface. For these reasons, a hexahedron is selected.

Filtering the mesh points is straightforward. The hexahedral faces can be split into
triangles, and their normal vectors constructed. For each mesh point, the location with
respect to the triangle can then be tested. Although this filtering process increases the
overall computational cost, it is sufficient to perform it only once for a deflecting surface
and then store it for future evaluations. And since the number of mesh points in the
hexahedron, NH , may be a couple of orders of magnitude smaller than the total number
of mesh points NG, the overall reduction in computational time outweighs by far the
increase due to filtering.

Additional boundary conditions. In order to avoid discontinuities of the displace-
ments at the hexahedral faces, which may result in mesh distortion and negative elements,
additional data sites with zero displacements are distributed approximately equi-distantly
on the hexahedral faces. Thus, the interpolants are forced to become zero at these loca-
tions. By additionally choosing a spacing of about once or twice the length of the smallest
element edge in that region, mesh distortion is expected to be negligible. Duplicate points
have to be filtered out so as to avoid singular coefficient matrices.

Depending on the applications, different additional data sites may be chosen for dif-
ferent function values / displacement directions. This is in accordance with the idea of
treating different function values independently, which is used for center adaptation and
termed sequential uni-variate center adaptation (cf. section 4).

vie.g. the wing in case of an aileron or the vertical tail in case of a rudder
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4 CENTER ADAPTATION

The aim of center adaptation is to achieve sufficiently small interpolation errors on all
Nd data sites, while taking only Nc centers, where Nc is preferably considerably smaller
than Nd. Following,10 the algorithm starts with a very small number of centers and then
refines the space by adding those data sites where the interpolation error (or residual) is
largest. This approach is a greedy algorithm, which always makes the best possible choice
of the moment in disregard of any future consequences.

For a uni-variate interpolation problem, a basic pseudo-algorithm may look as followsvii:

(1) Choose a small set of N
(t)
c , t = 0 initial centers.

(2) Set up and solve the linear system for the interpolation coefficients.

(3) Evaluate the interpolant at all Nd data sites and calculate the residual vector

~r(t) = [r
(t)
1 , r

(t)
2 , . . . , r

(t)
i , . . . , r

(t)
Nd

]T with r
(t)
i = |s(t)(~xi)− f(~xi)|, i = 1, 2, . . . , Nd.

(4) Construct a vector ~r
(t)
s by sorting the residual vector ~r(t), e.g., in decreasing order.

(5) Add the Madd worst data sites to the set of centers where r
(t)
s,Madd

is larger than a
prescribed tolerance Toladd.

(6) Test stopping criteria and, if none is met, increase the iteration counter t and con-
tinue with step (2).

As to step (6), an adaptation is successful if even the largest residual is smaller than a

given tolerance Tolstop, i.e. r
(t)
s,0 < Tolstop. Furthermore, limits on the number of iterations

and on the total number of centers can be imposed.
Since mesh deformation is a multi-variate interpolation problem, it was therefore sug-

gested to combine the residuals of all three directions, i.e. ~r
(t)
x , ~r

(t)
y , ~r

(t)
z , into a combined

residual vector ~r
(t)
comb where an element is calculated as r

(t)
comb,i =

√(
r
(t)
x,i

)2

+
(
r
(t)
y,i

)2

+
(
r
(t)
z,i

)2

.

10 ~r
(t)
comb is sorted (step (4)), and this sorted vector then determines which data sites to

include for the next iteration. The above algorithm offers several options, e.g. (a) what
initial point distribution to choose; (b) how many points to add at each iteration; (c)
whether center adaptation occurs concurrently for all or sequentially for different func-
tion values. Regarding option (a), a rudimentary point reduction scheme was applied,
which results in approximately equi-distant point distribution. As to option (c), for prob-
lems of e.g. fluid-structure interaction as treated in,10 the standard approach seems to be
to use the same set of centers at one iteration for all directions (abbreviated “MV”). The
alternative approach is called here sequential uni-variate center adaptation (SQUV). It
might be especially advantageous for problems of control surface deflection, since “pure”
rotation of mesh points does not involve mesh point movement parallel to the rotation axis
and hence does not need an interpolant in that direction. Along these lines, different data

viiThe superscript t denotes the iteration counter.
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sites can be prescribed for different function values, corresponding to boundary conditions
particularly tailored to different directions. These issues are addressed in section 5.

5 APPLICATIONS

The SDM generic fighter aircraft configuration21 was used for the three different test
cases of this paper. The full model (cf. figure 1-left) consists of a fuselage, wings with
ailerons, a vertical tail plane with a rudder and horizontal tail planes (HTs). Ailerons,
rudder and HTs act as the SDM’s control surfaces, and they have planar surfaces. The
rear part of the fuselage is of cylindrical shape. The original configuration without gaps
between components was used for the first test case, where the aileron was to be deflected.
Thus, blending in chord- as well as spanwise direction was required. For a more realistic
setting, a gap of about 1.4% of the half-span width was introduced in spanwise direction
(cf. figure 1). Here, only blending in chordwise direction takes place. Furthermore, by
making use of the Chimera technique with its overlapping mesh blocks, mesh distortion
in the gap due to aileron deflection was alleviated by relaxing the boundary conditions
imposed on the enclosing hexahedron. The third test case describes the deflection of the
HT with the requirements that the planarity of the HT’s surfaces as well as the cylindrical
shape of the rear fuselage be conserved (see appendix A). Their adherence can be verified
by visual inspection.

Figure 1: Left: SDM generic fighter aircraft configuration. Right: Overlapping Chimera blocks for the
deflection of the aileron with gap in spanwise direction.

After CAD-preparation of the geometry, two unstructured tetrahedral meshes were gen-
erated. The mesh of the full model is a single-block mesh and consists of 623, 387 points,
3, 367, 882 tetrahedral elements and has no gaps between components. The Chimera mesh
block for the aileron used for the second test case has 918, 699 points and 5, 108, 630 tetra-
hedrons. Its aerodynamic surfaces consist of the aileron (red color, cf. figure 1-right), a
part of the wing (blue) and a part of the wing (cyan) which is shared with the Chimera
block of the rest of the aircraft. In figure 1-right, the Chimera block for the aileron is
displayed transparent and with magenta edges.
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5.1 First test case: Deflection of the aileron

Parameter studies were conducted for this test case. To this end, mesh deformation was
performed for the left aileron, deflected by −12◦ around a rotation axis not aligned with
the y-axis. For the surface mesh deformation, 58 mesh points at the aileron’s intersection
with the wing were taken as data sites, together with 18 points at the trailing edge, with
the exception of the part close to the wing (to enable spanwise blending). The MQ’s
interpolation coefficients were determined (cf. appendix A) and then evaluated on the
240 surface mesh points of the aileron. For the volume mesh deformation, a hexahedron
was constructed with two faces coinciding with one intersection line of aileron and wing
each. 800 additional data sites were distributed over its faces.

Table 1 shows the convergence results of center adaptations for MV and SQUV for
different numbers of initial centers, procured by the point reduction algorithm for control
surface and hexahedron individually.viii N

(0)
c, CS and N

(0)
c, Hex denote the respective number of

initial centers. tend is the final iteration number, Nc, end the total final number of centers.
The tolerance for addition and the stopping tolerance were Toladd = Tolstop = 8.e−05.
At each iteration, one point was added at most, i.e. Madd = 1. For each computation,
the stopping tolerance was reached. It can be seen that an increase in the initial numbers
of centers decreases the final iteration number, but that the total final number of centers
mostly grow. The influence on the computational time is negligible. As to SQUV, the
convergence is fastest for fy, followed by the convergence for fx. Also, different total
final numbers of centers were needed, the smallest number of centers for fy, followed
again by fx. Addition of the CPU times of every SQUV function value reveals that
MV is more expensive than SQUV by more than a factor of two. A comparison of the
results for SQUV-fz and MV shows that the results are identical except for the CPU
time. This finding is emphasized by the curves for fz and MV of figure 2 (for N

(0)
c, CS = 5

and N
(0)
c, Hex = 5): The values of the maximum residual of fz and the maximum residual

of MVix are identical, but shifted in the direction of the abscissa. That means that the
error for fz for MV dominates the errors for the other function values. However, with
the numbers of centers and their location most suitable for fz, the linear systems for the
other function values has to be solved and the interpolants evaluated. This accounts for
the increased CPU time.

In the next study, the maximum allowed number of points to be added, Madd, were var-
ied for SQUV for fz, while keeping the initial numbers of centers constant at (N

(0)
c, CS, N

(0)
c, Hex)

= (5, 5). The results are listed in table 2. It can be seen that increasing Madd generally
decreases the final iteration number, increases the total final number of centers, but again
decreases the CPU time. A reduction of CPU time by a factor of more than 6 can be

viiiAll calculations were performed on a local PC with four Intel(R) Core(TM)2 Quad processors, 2.66
GHz and 3760 MB memory.

ixFor comparison purposes, not the maximum of the combined residuals is taken, but the maximum of
the maxima of the residuals for the different function values.
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achieved with Madd = 50. However, the decrease in CPU time is monotonic only up to
Madd = 25, thereafter the CPU time frequently increases again. Nevertheless, using Madd

larger than one seems to be an effective means for reducing the CPU time.

N
(0)
c, CS N

(0)
c, Hex tend Nc, end CPU time in [s]

multi-variate 5 5 338 348 4.538e+01
15 15 308 338 4.342e+01
25 25 298 348 4.691e+01
35 35 283 353 4.816e+01

uni-variate (fx) 5 5 95 105 8.7e-01
15 15 76 106 8.2e-01
25 25 66 116 8.8e-01
35 35 55 125 9.1e-01

uni-variate (fy) 5 5 32 42 1.4e-01
15 15 18 48 1.4e-01
25 25 14 64 1.6e-01
35 35 11 81 1.7e-01

uni-variate (fz) 5 5 338 348 1.999e+01
15 15 308 338 1.880e+01
25 25 298 348 1.992e+01
35 35 283 353 2.089e+01

Table 1: Comparison of convergence for MV and SQUV (Madd = 1).

Figure 2: Comparison of convergence between SQUV and MV (N (0)
c, CS = 5, N

(0)
c, Hex = 5, Madd = 1).

Deformed meshes were produced for both MV and SQUV for (N
(0)
c, CS, N

(0)
c, Hex) = (10, 10)

and Madd = 10. The deflection angle was again −12◦. Figure 3 shows the quality his-
tograms of the deformed meshes with respect to the undeformed one. As quality measure
Qmesh, the mean ratio for tetrahedral elementsx was taken (cf.22). Only minor quality

xThe mean ratio is defined as Qmesh = 12
3√

9V 2P
0≤i≤j≤3 l2ij

, where V denotes the volume of the tetrahedron,
lij the length of an edge.
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deteriorations are visible, for Qmesh < 0.55 none at all. This means that SQUV results in
a deformed mesh of comparable quality as MV.

Madd tend Nc, end CPU time in [s]
1 338 348 19.990
5 80 407 8.470

10 45 442 6.080
15 33 499 5.620
20 26 505 4.970
25 22 538 4.710
30 21 563 5.820
35 17 558 4.020
40 14 562 3.220
45 15 600 5.490
50 12 588 3.200
55 13 650 4.620

Table 2: Convergence behavior for addition of multiple centers at each iteration (aileron deflection of
−12◦, SQUV for fz, (N (0)

c, CS , N
(0)
c, Hex) = (5, 5)).

Figure 3: Mesh quality comparison of deformed (red) to original mesh (black) for MV (left) and SQUV
(right).

For the interpolant of fx of the above mesh deformation by SQUV (Nc = 214), the
CPU times were measured. The filtering of the mesh points took 0.06 seconds, and 1, 937
mesh points were located inside. The evaluation of the interpolant on these mesh points
took 0.03 seconds, whereas 8.39 seconds on all mesh points.

5.2 Second test case: Deflection of the aileron within a Chimera block

For this test case, mesh deformation was performed for aileron deflections of −12◦

and −30◦ inside the Chimera mesh block. This resulted in maximum deflections of the
aileron’s trailing edge of about 1 and 2.6 times the gap width in z-direction or about 10
and 24 times the edge length of a typical tetrahedron in that area, respectively. For the
generation of input data, 405 mesh points on the connection to the wing and 200 points
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on the trailing edge were extracted. The former stayed fixed, while the latter underwent
rotation. The rotation axis is the same as in section 5.1, but this time no blending in
spanwise direction occurs. With the above points, MQ interpolants were constructed and
then evaluated on the 17, 952 surface mesh points of the aileron.

As to the volume mesh deformation, additional data sites were chosen such that the
overlapping zone of the two Chimera mesh blocks are conserved. Due to the small gap
between aileron and wing, severe mesh distortion in that region was likely to occur under
the requirement that no mesh point move on the respective face of Chimera mesh block.
Therefore, the local confinement technique was applied with a little tweak. All but one
face of the hexahedron were constructed so as to lie inside the Chimera mesh block (one
face being aligned with the connection line of aileron and wing). The other, wing root
facing side of the hexahedron was chosen to extend beyond the corresponding face of the
Chimera mesh block (both are perpendicular to the y-axis). Additional data points were
then distributed over all hexahedral faces but the latter one. Only for fy, data sites were
placed in a section of the face of the Chimera mesh block facing the root, which was
cut by the hexahedron. Thereby, only in-plane movement of the mesh points inside the
hexahedron on this face of the Chimera mesh block was enabled. This resulted in 4, 696
additional data sites for the y-direction, but only 3, 672 for the x- and the z-direction.

For both deflections, the convergence results of SQUV are listed in table 3 (Madd = 8,

(N
(0)
c, CS, N

(0)
c, Hex) = (20, 20), Toladd = Tolstop = 8.e−05; all adaptations stopped because

the stopping tolerance was reached).

tend Nc, end cpu-time in [s]
−12◦ uni-variate (fx) 35 320 40.59

uni-variate (fy) 22 210 30.5
uni-variate (fz) 110 916 338.16

−30◦ uni-variate (fx) 87 729 172.88
uni-variate (fy) 63 537 88.88
uni-variate (fz) 160 1 315 1010.72

Table 3: Comparison of convergence for SQUV for aileron deflections of −12◦ and −30◦.

Again, the adaptation for fy requires the least number of centers and the least cpu time.
This is despite the fact that 1, 024 data sites more were used for the adaptation of this
function value. Comparison of the results for different deflection angles shows that dif-
ferent numbers of centers are necessary to achieve the specified stopping tolerance and
that, hence, different cpu time is needed. For a larger deflection angle, more centers are
required, regardless of the function value to be adapted for. This might be due to the
fact that for a larger deflection angle, the variations in the function values from the one
imposed on the aileron to the ones additionally imposed are larger and that more centers
are required to account for that. The histograms of the mesh quality are shown in the
above figure 4. The deflection of −12◦ can be seen not to cause severe quality degradation:
no deterioration is visible for Qmesh < 0.6. For a deflection of −30◦, the deterioration is
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much more severe; still, the deformed mesh does not possess elements with Qmesh < 0.4.

Figure 4: Mesh quality comparison of deformed to original mesh. Aileron deflection of −12◦ (left) and
−30◦ (right).

Figure 5: Portion of the tetrahedral volume mesh in the gap between aileron and Chimera face, colored
by mesh quality. The deflection angles are −12◦ (left) and −30◦ (right). Aileron and part of the wing
are shaded (dark grey), the hexahedron is transparent (magenta edge).

In figure 5, it can be seen that for both deflection angles, no change in mesh quality and
(vaguely) no element distortion occurs on the portionxi of the tetrahedral volume mesh
facing the wing’s tip outside the hexahedron. Furthermore, it can be seen that the wing
is not influenced by the deformation and that the planarity of the surfaces of the aileron
is conserved. The locally confined mesh deformation is hence successful in both cases.
The findings based on the quality histograms translate to this figure, too. No severe
quality degradation for −12◦ can be observed; for −30◦, however, there is, especially for
the elements near the deflected aileron near the upper face of the hexahedron. Here, a
compression of elements can be seen. Overall, allowing in-plane motion of mesh points on
a Chimera face successfully alleviates the degradation of element quality even for large
deflection angles.

xiThis portion was created by the visualization system using the so-called value blanking option, i.e.
omitting parts of the surface or volume mesh within ranges of specified coordinates.
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5.3 Third test case: Deflection of the HT

This test case deals with the volume mesh deformation due to the rotation of the
HT, which is attached to the fuselage. For the generation of input data, surface mesh
deformation was this time considerably more involved than for the previous test cases,
since rotation of the mesh points of the HT entails a movement of the mesh points of the
adjacent panel of the fuselage, where mesh nodes where allowed to move. Mesh movement
was to occur in such a way that the planarity of the HT’s surfaces and the circular shape
of the fuselage panel be conserved. Details for the generation of input data are given in
appendix A. The HT surface mesh had 11, 722 points, whereas the surface mesh of the
adjacent fuselage panel consisted of 5, 353 points. The rotation axis was chosen to be the
y-axis, and the center of rotation was set to be at about 60% with respect to the HT’s
root chord. Input data for a deflection of the HT of +12◦ was generated. The data sites
of the surface mesh totaled 16, 816xii, whereas the number of additional data sites of the
hexahedron amounted to 9, 080 (the hexahedral face pointing towards the other side of
the left HT was spared). The surface mesh of the HT and of the adjacent fuselage panel
as well as the hexahedron and the additional data sites can be seen in figure 6. Note that
the hexahedron does not extend beyond the rear part of the fuselage so as to prevent
the corresponding surface mesh points from moving and consequently from deforming the
shape.

Figure 6: Surface mesh of the HT and the adjacent panel of the fuselage as well as the hexahedron and
the additional data sites distributed over its faces.

The settings for volume mesh deformation with SQUV were: (N
(0)
c, CS, N

(0)
c, Hex) = (100, 100),

Madd = 12, Toladd = Tolstop = 8.e − 05. A limit of 2 200 centers was imposed. Table 4
shows the convergence results. No SQUV has reached the prescribed tolerance, hence
all SQUVs end with the same total number of centers and the same iteration number.
Differences in cpu time are rather small and may be attributed to different sets of centers

xiiafter subtraction of the points for the intersection line in order to avoid duplicate points
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and, correspondingly, different RHSs, which may have affected the solution of the linear
system by GMRES. The resulting maximum error is the lowest for the spanwise direction,
followed by the error in x-direction. Figure 7 shows the quality histogram of the deformed
mesh in comparison to the one of the undeformed mesh. It can be seen that, although
there is degradation of mesh quality, the deformed elements still have a quality larger
than Qmesh = 0.4.

tend Nc, end cpu-time in [s] max. error
uni-variate (fx) 167 2200 1452.15 3.1952e-04
uni-variate (fy) 167 2200 1478.61 1.8296e-04
uni-variate (fz) 167 2200 1460.43 3.8354e-04

Table 4: Results for SQUV for HT deflections of 12◦.

Figure 7: Quality histograms for undeformed and deformed mesh (HT deflection of 12◦).

Figure 8 shows a portion of the tetrahedral volume mesh, colored by mesh quality, sur-
rounding the undeformed (left) and deformed (right) HT and the fuselage. The HT is
displayed shaded without surface mesh, so as to spot irregularities on the surfaces due
to deformation. The surface meshes of the adjacent fuselage panels are also visible. In
the smaller pictures in the right upper corner, the SDM configuration is displayed from
the rear with the same shading and mesh settings (wing not visible). It can be seen that
the surface mesh on the fuselage only deforms in the adjacent panel (bordered by black
line). Furthermore, the circular shape of the fuselage is kept, which is visible from the
smaller pictures, and no movement of mesh points occurs at the rear panel. As to the HT,
the planarity of its surfaces seems to be conserved, and no bending and gap between HT
and fuselage is visible. As can be concluded from the change in color of the tetrahedral
elements, quality degradation occurs, but is still above 0.4 in the mesh portion displayed
in figure 8.
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The cpu time was taken for evaluating the interpolant for fx (Nc = 2, 200). The
filtering of mesh points consumed 0.05 seconds, and 80, 261 mesh points were flagged for
evaluation. This took 11.15 seconds, in contrast to 86.18 seconds on the whole mesh.

Figure 8: Mesh quality for a portion of the tetrahedral volume mesh for the undeformed (left) and the
deformed mesh (right; HT deflection of 12◦) as well as surface meshes on fuselage panels.

6 CONCLUSIONS

Locally confined RBF-based mesh deformation has been successfully applied to three
test cases involving the control surface deflections of a generic fighter aircraft. It restricts
mesh deformation to the compounds of a surrounding geometrical entity and reduces com-
putational time for the evaluation process. Additional data sites have to be specified, and
an adaptive process is used to select the centers. Adapting the centers for each displace-
ment independently after one another, termed sequential uni-variate center adaptation,
has been shown to be faster than using the same centers for every displacement, while
achieving a comparable mesh quality. Along these lines, different additional data sites
can be speficied for the different displacements. Thereby, and by exploiting the require-
ments for a Chimera mesh block, these techniques have been shown to enable large control
surface deflections in the presence of a small gap between components. The influence of
using different numbers of initial equi-distantly distributed centers has been observed to
have a negligible effect on the computational time, whereas addition of multiple centers
during one iteration is beneficial.
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A SURFACE MESH DEFORMATION

In this work, surface mesh deformation is applied to components undergoing deflection
and their neighbors with the aim of providing input data for the volume mesh deformation,
i.e. surface mesh point coordinates and their displacements. To this end, surface mesh
deformation based on RBFs in combination with rotation and projection of mesh points
is used.

For the first two test cases (cf. sections 5.1 and 5.2), in order to achieve the deflection
of the aileron, blending between fixed and rotated points (located at the aileron’s trailing
edge) is performed. These two point sets constitute the centers for the MQ interpolant,
for which a shape parameter of ε = 104 is chosen. The evaluation takes place on all the
surface mesh points of the aileron.

The third test case (cf. section 5.3) involves the rotation of the horizontal tail (HT),
which is attached to the fuselage, with the requirement of conserving the surface shapes
as best as possible (planar surfaces for the HT, cylindrical shape for the rear part of the
fuselage). Surface mesh deformation is applied to both HT and fuselage. For the HT,
all mesh points are rotated first. Then the mesh points on the intersection line with the
fuselage are projected onto the cylindrical fuselage (in extension of their HT surfaces).
After that, the locally confined mesh deformation technique is applied to the HT’s mesh
points near the intersection line. To this end, a hexahedron is constructed enclosing the
root region of the HT. No adaptation is necessary because of the small number of data
sites and a direct solver is used. The latter consist of the rotated intersection points,
with the differences between projected and rotated intersection points as displacements,
and additional data sites with zero displacements on the tip-facing hexahedron face. The
evaluation of the interpolant at the HT’s mesh points within the hexahedron results in
an elongation of the HT, such that no gap between HT and fuselage due to rotation is
created. MQs with the same shape parameter as above are taken. Thereby, the planarity
of the surfaces are conserved. Regarding the deformation of the fuselage, surface mesh
deformation with TPS is applied. The data sites are the (original) intersection points,
where as displacements the differences between projected intersection points and original
ones have been taken, and the boundary nodes of the fuselage panel adjacent to the HT
with zero displacements. Again, no adaptive process is necessary, and the linear system
can be solved by a direct method. The evaluation takes place on all the mesh points of
the fuselage panel. Thereafter, since bulging was found to occur, these mesh points are
projected radially onto the cylindrical fuselage, thereby conserving the cylindrical shape.
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