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Abstract. Shock-dominated flows are strongly sensitive to uncertainties and exhibit highly

non-linear responses to perturbations. We study two classical problems in unsteady com-

pressible fluid dynamics: the Riemann problem and the Woodward-Colella forward step

flow. Assuming that uncertainties are present in the initial and boundary conditions, the

objective is to characterize their effect on the solution. The problem is formulated in a

probabilistic setting and stochastic expansion methods are used. We show that high-order

expansions are required to capture the correct statistical moments of the solution because

convergence is hindered by the presence of sharp flow field structures. We also show how

both intrusive and non-intrusive versions of the stochastic expansion method suffer from

this slow convergence behavior.

1 INTRODUCTION

The characterization of uncertainties in high speed shock-dominated flows is challeng-
ing because of the presence of sharp features and strongly non-linear system responses.
Limited variability in the operating conditions can lead to sharp changes in the output,
with distinctly modified physical behavior and vastly different flow fields. Consider for
example the supersonic inviscid flow over a ramp; a small change in the Mach number
can transition the system from an attached oblique shock scenario to a detached normal
shock one if the critical turning angle is exceeded [2].

Uncertainty quantification (UQ) aims at determining rigorously the impact of limited
knowledge and variability in the problem definition on selected quantities of interest. We
consider a probabilistic framework, in which the input uncertainties are represented as
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random variables, and the objective of the UQ analysis is to determine the probability dis-
tributions (or some statistical moments) of the output. From a mathematical perspective
the original (deterministic) mathematical problem is cast in a stochastic framework.

Sampling methods such as Monte Carlo have been traditionally applied to solve such
stochastic problems; realizations are drawn from input probabilistic distributions and the
ensemble of the corresponding solutions is interpreted as an empirical distribution of the
random solution allowing to generate statistical outputs [1]. The flexibility and simplicity
of this approach has led to its wide use, but its slow convergence limits its applicability
for large-scale problems, motivating research in other methodologies.

Figure 1: Woodward and Colella [8] forward facing step problem. Velocity divergence field. Nominal
(deterministic) solution corresponding to Mach = 2.75.

Recently several approaches based on stochastic expansions of the solution in the space
spanned by the uncertain variables have been introduced [6]. Polynomial chaos methods
are particularly attractive because they allow for a reformulation of the stochastic prob-
lem as a set of (coupled) deterministic problems that are amenable to analysis [10, 11].
On the other hand, this approach requires modification of the existing computational
tool: is an intrusive approach. An alternative class of methods, namely stochastic collo-
cation approaches, share a similar mathematical structure but allow for reuse of existing
deterministic codes [5]

Stochastic expansion methods exhibit exponential convergence and, therefore, can be
extremely effective when compared to Monte-Carlo-type approaches. This advantage is
a direct consequence of the expected smoothness of the system response with respect to
variability of the input quantities [10, 5]. As mentioned before it is clear that in problems
characterized by highly non-linear responses and sharp transitions, stochastic expansions
methods can experience difficulties. In this paper, we explore the application of such
methods to unsteady high-speed compressible flow problems governed by the Burgers and
Euler equations. We illustrate how the presence of shock waves hinders the convergence of
the approach, and discuss why both intrusive and non-intrusive formulations suffer from
this problem.
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2 UNCERTAINTY IN SHOCK-DOMINATED FLOW

Consider the supersonic flow over a forward step in a channel, the classical Woodward-
Colella test [8]. The objective is to characterize the position of the shock waves at a
particular instant of time after the impulsive start of the channel. In Fig. 1 the nominal
solution obtained for an inflow Mach number of 2.75, at time t = 2 on a grid consisting of
≈ 16, 000 elements is reported. The numerical solution is obtained using a second-order
spatial discretization and an explicit Runge-Kutta integration [9]. The velocity divergence
is used as a scalar field indicator to expose the shock location.

We assume that the inflow Mach number is uncertain, specified as a uniform random
variable defined over the interval [2.5, 3.0]. In the UQ analysis, we will consider the output
of interest to be the statistical average (mean) of the velocity divergence.

A straightforward application of Monte Carlo (MC) method leads to the results shown
in Fig.2, an ensemble averaging of 1000 solutions obtained for randomly chosen Mach
numbers in the above mentioned interval.

Figure 2: Woodward and Colella [8] forward facing step problem. Mean velocity divergence field. corre-
sponding to an uncertain input Mach number [2.5 : 3.0]. Monte Carlo sampling based on 1000 realizations.

It is obvious from the comparison of Fig. 1 and 2 that the mean effect of the uncertainty
in the inflow conditions is to smear the shock wave, an observation reported previously
in the literature [7].

In order to simplify the description of the spectral expansion methods, we will discuss
now a simplified shock dynamics problem governed by the Burgers equations.

3 A MODEL PROBLEM

We consider the one-dimensional viscous Burgers equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(1)

The viscosity is assumed to be small (ν = 0.02) and we are interested in the time-
dependent behavior that includes the formation of shocks (or, more precisely, very sharp
gradients). The initial conditions are uncertain and assumed to be:
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u(x, t = 0, ξ) = 3ξexp

[

−
(x − x0)

2

30w2

]

sin(βx) + α

[

tanh

(

x0 − x

2w

)]

(2)

where β = 5.3, w = 0.03 and x0 = 0.5. The uncertainty is characterized by additive
noise described by a single random variable ξ ∈ [−1 : 1], distributed non-uniformly in the
domain (x ∈ [0 : 1]). The mean and variance of the initial conditions are reported in Fig.
3. In the absence of uncertainty, α = 1 correspond to an initial condition that leads to a
shock , while α = −1 leads to a smooth solution (expansion fan).

4 STOCHASTIC GALERKIN METHOD

We assume that the solution can be expressed accurately as a Fourier expansion of
orthogonal polynomials truncated after (M + 1) terms:

u(x, t, ξ) ≈ uM(x, t, ξ) =
M
∑

i=0

ui(x, t)πi(ξ) (3)

where πi are the polynomial basis functions, in this case univariate Legendre polynomials,
and ui are the unknown coefficients.

The choice of the Legendre polynomial basis is optimal with respect to a uniform weight
function, which corresponds to the uniform random variable ξ [6]. The statistics of the
solution are easily computed from the expansion, for example the expectation (mean) is

E[u] ≈ E[uM ] = 〈
M
∑

i=0

uiπi〉 = u0〈π0〉 +
M
∑

i=1

ui〈πi〉 = u0 (4)

from the orthogonality of the polynomial basis. The variance is computed as:

v = var[u] ≈ var[uM ] = 〈(uM − E[uM ])2〉 = 〈

((

M
∑

i=0

uiπi

)

− u0

)2

〉 =

M
∑

i=1

u2
i Ci (5)

where 〈πiπj〉 = Ciδij and Ci is only a function of the polynomial basis selected.
The coefficients ui are computed by inserting the expression (3) in the governing equa-

tion:

M
∑

i=0

∂ui

∂t
πi +

(

M
∑

j=0

ujπj

)(

M
∑

i=0

∂ui

∂x
πi

)

= ν

M
∑

i=0

∂2ui

∂x2
πi

Multiplying by πk and integrating over the probability space - Galerkin projection - we
obtain a system of M + 1 coupled and deterministic equations for the coefficients uk:
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Figure 3: Initial conditions for the uncertain Burgers equation (α = 1 in Eq. 2).

∂uk

∂t
+

M
∑

i=0

M
∑

j=0

ui

∂uj

∂x
Cijk = ν

∂2uk

∂x2
for k = 0, 1, ..., M. (6)

where 〈πiπjπk〉 = Cijk is only a function of the polynomial basis selected. A similar
projection applied to the initial conditions leads to

u0(x, t = 0, ξ) = tanh

[

x0 − x

2w

]

(7)

u1(x, t = 0, ξ) = 3exp

[

−
(x − x0)

2

30w2

]

sin(βx)

uk(x, t = 0, ξ) = 0 for k = 2, ..., M.

For the numerical solution of the Eq. 6, we consider a straightforward spatial dis-
cretization and an explicit time integration based on a three-step Runge-Kutta scheme.
For the ℓ-th node of a spatial grid, the semi-discrete finite difference stencil is written as:

(

duk

dt

)ℓ

= −

M
∑

i=0

M
∑

j=0

1

3

(

uℓ−1
i + uℓ

i + uℓ+1
i

)

(

uℓ+1
j − uℓ−1

j

xℓ+1 − xℓ−1

)

Cijk + ν

(

d2uk

dx2

)ℓ

(8)

In the following, the approach illustrated above is referred to as polynomial chaos (PC)
[6]. It is difficult to determine a priori the order of truncation M required to achieve a
specified accuracy. One of the objectives of the following examples is to show how the
formation of shock waves leads to large approximation errors.
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5 STOCHASTIC COLLOCATION APPROACH

An alternative approach that we compare to the PC approach is the stochastic colloca-
tion (SC) method [5]. The starting point is the observation that the statistical moments
of the uncertain solution are simply integrals over the space spanned by the random in-
puts. It is therefore possible to compute them very effectively using Gauss quadrature.
For example the solution mean is:

E[u] =

∫ 1

−1

u(x, t, ξ)fξdξ ≈
M
∑

i=0

u(x, t, ξi)ωi (9)

where the abscissa ξi are the zeros of the Legendre polynomial of order M + 1 and the
weights ωi are the integrals of Lagrange polynomials defined at the abscissas. The variance
can be computed in a similar way. Again, the choice of the Legendre polynomials is
optimal with respect to the uniform measure defined by the input uncertainty ξ.

The advantage of both the MC and the SC approaches is their inherent simplicity; they
just require successive solutions of the deterministic problem for fixed values of ξ; this is
obviously not the case in the PC approach that requires the development of a modified
solution methodology.

It is worth mentioning that both the PC and SC approaches use the Legendre poly-
nomials as a building block and aim at forming an interpolant in the space spanned by
the uncertain variables, although in the SC approach this interpolant is never used. The
connections between the two approaches – and formal equivalence for linear problems –
is explored in detail in [4].

6 COMPUTATIONAL STUDY

The predicted time evolution of the solution statistics for the problem described in
Section 3 are compared in Fig. 4-6 for the PC, SC and Monte Carlo methods. Fig. 4
shows that the PC and SC approaches produce largely equivalent results independently of
the order of expansion, and eventually reproduce the statistics obtained using Monte Carlo
sampling (obtained using 10,000 samples). It is worth noting that even with M = 22,
differences remain noticeable especially in the variance profile. More importantly with
low-order expansions (e.g. M = 3 and M = 8) considerable qualitative discrepancies
with respect to the MC results are present.

The shock formation process induces the slow convergence, as illustrated in Fig. 7
where a different initial condition (α = −1 in Eq. 2) is considered. In this case, an
expansion truncated at M = 3 leads to accurate predictions of both the expectation and
the variance of the solution.

To investigate in more details the accuracy of PC expansions, we report the time evo-
lution of the mean solution with different polynomial order in Fig. 8. The low-order
stochastic expansion (M = 3) leads to the emergence of several shocks which mimic the
formation of discontinuities in the deterministic problem. On the other hand the solution
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Figure 4: Expected solution and variance of the uncertain Burgers equation, obtained at t = 0.012 using
Monte Carlo (MC), stochastic collocation (SC) and polynomial chaos (PC). α = 1 in Eq. 2. Both PC
and SC methods are based on M = 3
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Figure 5: Expected solution and variance of the uncertain Burgers equation, obtained at t = 0.012 using
Monte Carlo (MC), stochastic collocation (SC) and polynomial chaos (PC). α = 1 in Eq. 2. Both PC
and SC methods are based on M = 8

obtained with the high-order expansion, in accordance to the Monte Carlo computation,
remains smooth. The explanation of the observed error is related to the approximation
introduced to represent the solution. The polynomial chaos order determines the gov-
erning equations (6) for the modes of the expansion; specifically the truncation order M

determines the size of the linear system and therefore the number of characteristics [11].
Additional insights into the error introduced by the PC truncation can be extracted

from Fig. 9, in which the L∞ error of the mean solution (computed with respect to the
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Figure 6: Expected solution and variance of the uncertain Burgers equation, obtained at t = 0.012 using
Monte Carlo (MC), stochastic collocation (SC) and polynomial chaos (PC). α = 1 in Eq. 2. Both PC
and SC methods are based on M = 22
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Figure 7: Expected solution and variance of the uncertain Burgers equation, obtained at t = 0.012 using
Monte Carlo (MC) and polynomial chaos (PC). α = −1 in Eq. 2

MC solution obtained using 10,000 realizations) is reported. The comparison between
M = 3 and M = 22 shows that the error reduction is only about one order of magnitude!

7 DISCUSSION

The simple example illustrated above outlines the difficulties associated with low-order
PC expansions in high speed flows. It is useful to point out that the phenomena observed
is not directly connected to the well-known Gibbs phenomenon associated to polynomial
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Figure 8: Time evolution of the expected solution obtained using PC expansions with M = 3 (left) and
M = 22 (right). The surface is colored with the solution variance. α = 1 in Eq. 2.

Figure 9: Time evolution of the error defined as the difference between the expected solution obtained
using PC expansions and Monte Carlo sampling. PC expansions with M = 3 (left) and M = 22 (right).
α = 1 in Eq. 2.

interpolations of discontinuous functions [3]. In the present setting, the shocks are sharp
features smeared over multiple grid cells, and the moments of the solutions are not polluted
by strong oscillations. The features we observe in Fig. 4 are associated to the series
truncation and the limited number of characteristics representing the ensemble behavior
of the system. In the Monte Carlo results, on the other hand, the large sample might
correspond to an extremely large number of characteristics which could be said to give
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rise to a diffusion of the deterministic shock structure. This conjecture seems to be
confirmed by the results obtained by using stochastic collocation to solve the uncertain
Woodward-Colella step problem introduced earlier, are reported in Fig. 10. As expected,
the increase of the expansion order leads to smoother system response. This observation
leads to the conjecture that low-order polynomial chaos expansions can be effectively used
if an appropriate diffusive model for the truncation error in the stochastic expansion is
included. Further work is required to verify if this approach can be a viable alternative
to high-order expansions.

In conclusion, we have illustrated how stochastic expansion approaches have limited
capabilities in capturing uncertainty propagation in shock-dominated fluid flow problems.
For the simple Burgers equation example the observed reduction in convergence rate could
be completely eliminated by changing the initial deterministic state from a compression
to an expansion. This demonstrates that the problem with low-order expansion is directly
associated to the limited set of characteristics that can be captured.

(a)

(b)

Figure 10: Woodward and Colella [8] forward facing step problem. Mean velocity divergence field corre-
sponding to an uncertain input Mach number [2.5 : 3.0]. Stochastic collocation based on M = 3 (a) and
M = 5 (b).

10



G. Iaccarino, P. Pettersson, J. Nordström, J. Witteveen

REFERENCES

[1] J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer Series in Statis-
tics, 2001.

[2] J.D. Anderson, Fundamental of Aerodynamics, McGraw-Hill, 2001.

[3] T. Chantrasmi, A. Doostan, G. Iaccarino, Pade-Legendre Approximants for Uncer-
tainty Analysis with Discontinuous Response Surfaces. J. Comput. Phys., Vol. 228

(19), pp. 71597180, 2009.

[4] P.G. Constantine, D. F. Gleich, Iaccarino G. Spectral Methods for Parameterized
Matrix Equations. submitted to SIMAX 2009.

[5] D. Xiu, J.S. Hesthaven, High order collocation methods for the differential equations
with random inputs, SIAM J. Sci. Comput. Vol. 27, pp. 1118-1139, 2005.

[6] R. Ghanem,P. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-
Verlag, New York, 1991.

[7] J.A.S. Witteveen, H. Bijl, A TVD uncertainty quantification method with bounded
error applied to transonic airfoil flutter Commun. Comput. Phys. Vol. 6 pp. 406-432,
2009.

[8] P. Woodward, P. Colella The numerical simulation of two-dimensional fluid flow with
strong shocks Journal of Computational Physics Vol 54, pp. 115-173, 1984.

[9] R. Pecnik, P. Constantine, F. Ham, G. Iaccarino, A probabilistic framework for high-
speed flow simulations. CTR Annual Research Brief, pp. 3-17, 2008.

[10] F. Nobile, R. Tempone and C.G. Webster. A sparse grid stochastic collocation method
for partial differential equations with random input data. Report number: TRITA-
NA 2007:07. To appear SINUM.

[11] P. Pettersson, G. Iaccarino, J. Nordstroem, Numerical analysis of the Burgers equa-
tion in the presence of uncertainty J. Comput. Phys., Vol. 228 (19), pp. 7159-7180,
2009.

11


