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Abstract. Parallelization of adaptive algorithms leads to problems with parallel effi-
ciency. Adaptation is a method which introduces dynamic perturbations to computational
environment. This in turn causes problems with proper load balance. To ensure proper
efficiency of a parallel simulation it is necessary to perform load balancing whenever cer-
tain threshold of load balance is breached. In this paper authors present their approach
to parallel anisotropic adaptation on unstructured meshes. High parallel efficiency of the
code is maintained through the use of dynamic load balancing algorithm. Measurements
of parallel efficiency of an adaptive and dynamically load balanced flow application are
presented.
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Figure 1: Initial partitioning for a 3D geometry. Onera m6 wing

1 Introduction

High efficiency of parallelization is required to converge large scale engineering prob-
lems in reasonable time. Domain decomposition is a common approach to parallelization.
It requires the computational domain to be partitioned into sub-domains, prior to the
actual simulation. In order to maximize simulation parallel performance, partitioning
should minimize both, processor idle time and the volume of interprocessor communi-
cation. Above conditions should be satisfied throughout all of the simulation run time.
There exist many partitioning methods and tools developed to fulfill the quality parti-
tioning requirements (see reference [8, 5, 9] for a survey). Figure 1 shows a surface mesh
of an Onera m6 wing test case after initial partitioning.

Adaptive techniques allow for computation of localized phenomena (boundary layers,
shock waves, etc) with high resolution, while limiting the number of elements in less inter-
esting regions. This increases the effectiveness of computations, as the necessary amount
of resources is kept limited. Two alternative approaches to adaptivity are commonly used.
One, based on global re meshing of the entire computational domain. Making use of an
existing meshing techniques [13, 11, 12, 6, 3, 1]. Or by applying local mesh modifications
to the computational mesh only in regions of interest [18, 2, 14, 17]. An example of a
solution adapted mesh is shown in Fig. 2. A weak shock wave has been captured for a
DLR-F6 geometry engine nacelle [12].

Adaptive techniques used in a parallel simulation inevitably lead to the perturbation of
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Figure 2: Surface mesh for DLR-F6 geometry (left) after a series of adaptations steps, and the resulting
Mach field (right) [12].

numerical load balance. This has a negative influence on the partitioning quality. And in
consequence on the overall parallel effectiveness. A load balancing algorithm must be used
if adaptivity is to be employed in a parallel simulation. Use of dynamic load balancing
algorithms for an adaptive application have been presented in [2, 14, 16].

In this document authors present their approach to parallel adaptivity of an unstruc-
tured mesh through local mesh refinement. An implementation of dynamical load bal-
ancing algorithm is also described. Measurements of parallel effectiveness for an adaptive
and parallel application are presented. Parallel speedup and efficiency for cases with and
without load balancing are demonstrated. The tests are run using the in-house RED code
[13] (parallelized, based on Residual Distribution method [15, 4], explicit flow solver).

2 Parallel performance of the RED flow solver

To describe parallel effectiveness of an application it is common to use parallel speedup
Sp and parallel efficiency Ep. Letting p be the number of CPU’s used and Tp the time
necessary to perform a parallelized task. Parallel speedup Sp is defined as:

Sp =
T1

Tp

(1)

and parallel efficiency Ep as:

Ep =
Sp

p
· 100% (2)

Linear (or ideal) speedup is obtained when task performed using p processors requires
time T1/p to be completed (parallel efficiency is than equal to unity). Since speeds of
memory access on a computer vary, it is possible to achieve the so called super-linear
speedup by limiting the size of parallel subtasks [7]. In such a case parallel efficiency is
greater than unity.
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Figure 3: Parallel speedup (left) and efficiency (right) as a function of the number of computational cores
used. Dashed line shows theoretical values. Squares mark computations performed on the initial not
adapted mesh (super linear scaling can be observed).

To measure parallel performance of the RED flow solver mesh of 1600054 computational
cells was used. The test geometry is shown in Fig. 4. Since adaptivity was not used for
this case the load balancing was secured by initial partitioning.

Measurements were performed using 1, 2, 4, 8, 16, 32, 64, 72 and 80 computational
cores of a computational cluster containing 20 Quad-Core AMD Opteron processors (4
cores per processor) with 2 GB of memory per core, connected by Fast Ethernet connec-
tion. Figure 3 illustrates plots of the results. Parallel speedup and efficiency are plotted
against the number of computational cores used. On both graphs dashed lines represent
theoretical values of parallel performance. Lines marked by squares show values obtained
through the test. Reported values of parallel efficiency indicate super-linear scaling effect
of the RED solver.

3 Parallel adaptive algorithm

The adaptive algorithm implemented into the RED flow solver is based on a local mesh
refinement technique. Gradient based error estimator is used to mark edges of elements
that should be split in order to fulfill the adaptivity criteria. Once edges are selected
for refinement an appropriate cell spitting method is used for each cell. Figure 5 shows
possible configuration to be used for splitting of a 2D simplex elements. For a 3D case
there is a significant increase in complexity to be considered.

Since adaptation is to be performed in a parallel environment some attention has to
be taken in respect to regions where domains overlap. Processes must perform communi-
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Figure 4: Resulting Mach number field for a SCRAMJET geometry (Ma = 3.0 at inlet).

Figure 5: Possible splitting for 2D simplex elements.

cation sessions to assure coherence those zones. Communication structure of the parallel
solver needs to undergo reconfiguration.

4 Influence of adaptivity on parallel performance

The influence of an adaptive method mentioned in Sec. 3 on parallel performance has
been tested. Measurements were performed for the same initial geometry as used in Sec. 2
(see Fig. 4). Again measurements were performed using 1, 2, 4, 8, 16, 32, 64, 72 and 80
computational cores. A single adaptive step was taken.

Figure 6 holds the results of the measurements. Parallel speedup and efficiency are
plotted as the functions of the number of computational cores being used. Again dashed
lines represent theoretical values of parallel performance. Solid lines with triangles mark
values recorded for the case with adaptivity used. It should be mentioned that time T1

used as a base of comparison is different from one used in Sec. 2 (Fig. 3). In the present
case numerical load is larger due to the adaptivity. Therefore results in Fig. 6 present
only the influence of load imbalance on parallel performance.

One can observe that the drop in parallel efficiency, due to adaptation is substantial.
Further adaptive steps would decrease the efficiency even more.
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Figure 6: Parallel speedup (left) and efficiency (right) as a function of the number of computational
cores used. Dashed line shows theoretical values. Triangles mark the case where adaptation was applied.
Significant drop in parallel performance can be observed in comparison to results from Fig. 3

5 Load balancing algorithm

To counter the negative influence of adaptivity on parallel performance (see Sec. 4)
some dynamically load balancing algorithm must be introduced. Commonly load balanc-
ing should be triggered whenever a threshold of acceptable load unbalance is breached
(after the adaptation step is taken). Then it is necessary to calculate and apply a new
better balanced partitioning. Subsequently the mesh entities are redistributed between
processors according to the obtained coloring. In this work ParMETIS [10] graph parti-
tioner was used to find subsequent distribution of nodes.

To perform dynamic load balancing, the following steps had to be undertaken:

1. Elements of the mesh are given unique numbering throughout the whole domain.
This makes mesh elements easily distinguishable throughout the parallel environ-
ment.

2. Grid has to be described as a connectivity graph. When working with ParMETIS
the so called distributed CSR format is used.

3. With graph connectivity ready it is possible to calculate new mesh partitioning
(graph coloring).

4. According to the obtained partitioning mesh entities are moved between processors.

Applying the new partitioning introduces massive changes to the simulation data struc-
ture. Some mesh entities have to be send to other computing nodes while some must be
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Figure 7: Partitions are being modified according to the previously calculated coloring. On the left is the
original partitioning and coloring, the middle picture shows original partitioning with new coloring. On
the right is the partitioning after elements have been sent / deleted.

Table 1: Repartition time as a fraction of total simulation time, for a case of 5078927 nodes (32622210
cells).

No of cores Repart. time / Sim. time
32 0.213%
72 0.105%
80 0.099%

removed. The received data has to be added to the data structure accessible to a given
CPU. This process is strongly dependent on the data structure used within the solver.
Once the information is exchanged the solver is ready to restart calculations.

Repartition process is illustrated in Fig. 7 where a three dimensional domain is repar-
titioned. On the left the initial partitioning is shown. The middle figure presents the new
coloring obtained during the graph partitioning phase plotted onto original partitioning.
The rightmost picture shows the mesh after appropriate data migration.

To estimate the cost of a single re balancing step a three dimensional simulation of
the flow around Onera M6 wing was selected. Mesh of 5078927 nodes (32622210 cells)
was used. Results were obtained by running the RED solver on the cluster containing 20
Quad-Core AMD Opteron processors (4 cores per processor) with 2 GB of memory per
core, connected by Fast Ethernet connection.

As can be observed in Table 1 numerical cost of re balancing is relatively small in
comparison to the total simulation time. Table 1 shows comparison of the CPU time
required to perform the repartition as a fraction of total simulation time required to
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Figure 8: Parallel speedup (left) and efficiency (right) as a function of the number of computational cores
used. Dashed line shows theoretical values. Solid line represents the values noted for the adapted case,
where dynamical balancing was applied. Super linear scaling is again present.

converge an explicit Euler solver on a given number of processors. It is worth noticing
that the time share required for re balancing decreases as the number of CPU’s grows.

6 Influence of Dynamic load Balancing on parallel efficiency

As stated in Section 4 the use of adaptation has a negative impact on the parallel
performance of the code. To judge the merits of applying the DLB to an adaptive flow
computation such an algorithm was used and parallel performance was tested. Figure 8
shows plots of parallel performance measured for the case in which adaptation was used
together with the DLB algorithm. Solid line marked by squares shows the measured
values, while a dashed line shows values of the linear speedup.

It should be noted, that by taking advantage of dynamic re balancing, parallel efficiency
of the code is maintained. Super linear scaling effect is again present.

7 Conclusions

Parallel performance of a Residual Distribution flow code has been presented. It was
shown that application of adaptivity to a parallel simulation has a consequence in a
significant drop of application’s parallel performance. Further a relatively fast method
of repartitioning and dynamical load balancing has been discussed. It was shown that
by taking advantage of dynamical load balancing it is possible to regain high parallel
efficiency of an adaptive application.
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