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Abstract. We present a new hybrid direct/iterative approach to the solution of the steady
incompressible Navier-Stokes equations on an Arakawa C-grid. The two-level method
described here has the following properties: (i) it is very robust, even close to the point
where the solution becomes unstable; (ii) a single parameter controls fill and convergence,
making the method straightforward to use; (iii) the convergence rate is independent of
the number of unknowns; (iv) the matrix on the second level has the same structure and
numerical properties as the original problem, so the method can be applied recursively.
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1 INTRODUCTION

Presently, a typical computational fluid dynamics (CFD) problem may involve millions
of unknowns. They represent velocities and pressures on a grid and are determined by
solving a large sparse linear system of equations. Robust numerical methods are needed
to achieve high fidelity. The hybrid direct/iterative approach presented here1 seeks to
combine the robustness of direct solvers with the memory and computational efficiency
of iterative methods. It is based on the direct method2 recently developed for the Stokes
F -matrix, which has the property that the fill does not increase in the “gradient” and
“divergence” part of the matrix. To extend this to an incomplete factorization precon-
ditioner one only has to drop velocity-velocity couplings to limit the amount of fill. We
perform a non-overlapping domain decomposition of the grid, and eliminate the interior
velocities using a direct method. For the remaining variables a Schur-complement prob-
lem has to be solved, which we do by a Krylov subspace method preconditioned by a
novel incomplete factorization preconditioner.

The idea of combining direct and iterative methods has been used by Henon & Saad3

and Gaidamour4 to solve general sparse linear systems arising from the discretization of
scalar PDEs. As in this paper, they reduce the problem to a Schur-complement system
on the separators of a domain decomposition. However, the structural and numerical
properties are not explicitly preserved which will make it hard to get a robust method
and to ascertain grid-independent convergence.

For saddle point problems a lot of approaches can be followed, see for instance the
survey by Benzi et al.5. Many of the iterative methods are segregated approaches, i.e.
the velocities are solved independently from the pressures. This results in inner and outer
iterations, the former for the two or more independent systems, and the latter to bring
the solutions of these systems into balance with each other. In general this comes with
quite a few parameters to be tuned. The method in this paper is merely a perturbation
of an optimal direct approach which has only one parameter to be chosen.

In this paper we start out by reviewing the direct method2. In section 3 we will
describe the iterative procedure based on this direct method. In section 4 we present
numerical results for the incompressible Navier-Stokes equations. We conclude in section
5 by summarizing the method and results.

2 F-MATRICES AND THE DIRECT SOLUTION METHOD

In this paper we study the solution of the equation

Kx = b, (1)

where K ∈ R(n+m)×(n+m) (n ≥ m) is a saddle point matrix that has the form

K =

[
A B
BT 0

]
, (2)
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Figure 1: Positioning of velocity (u, v) and pressure (p) variables in the C-grid.

with A ∈ Rn×n, B ∈ Rn×m. Special attention is given to a class of saddle point matrices
known as F -matrices6. We start out by defining the gradient matrix in which the F -
matrix is expressed.

Definition 1 A gradient-matrix has at most two nonzero entries per row and its row sum
is zero.

We have chosen the name gradient-matrix, because this type of matrix typically results
from the discretization of a pressure gradient in flow equations. It is important to note
that the definition allows a gradient-matrix to be non-square. Now we can define the
F -matrix.

Definition 2 A saddle point matrix (2) is called an F-matrix if A is positive definite
and B is a gradient-matrix.

F -matrices occur in various fluid flow problems where Arakawa A-grids (collocated) or
C-grids (staggered, see figure 1) are used. For example, in the discretization of Darcy’s
equation in ground-water flow7 results in an F -matrix.

Many of the standard algorithms have in common that they compute a fill-reducing
ordering for K and then somehow adapt it to make it feasible: a factorization is feasible
if it does not break down due to a zero pivot. The delay of elimination (through pivoting)
will give an increase in computing time and may lead to increased fill in the factors.
To preclude this inefficiency we propose a different approach. Suppose the sets of all
velocities and pressures are denoted by V and P , respectively. The respective elements
will be called V -nodes and P -nodes. The idea is to first compute an ordering for the
V -nodes based on a graph that contains information of the whole matrix, and then insert
the P -nodes appropriately. Assume that we have an elimination ordering on V , then we
use the following simple rule to insert P -nodes into the ordering:

Rule 1 During Gaussian elimination with K, whenever a V -node is to be eliminated
which is connected to a P -node, these nodes are eliminated together using a 2× 2 pivot.
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With this rule we get as many 2 × 2 pivots as there are P -nodes. Only if due to
elimination a V -node becomes totally disconnected from P it can be eliminated on its
own.

As all P -nodes are eliminated together with a V -node in pivots of the form[
α β
β 0

]
, (3)

the factorization is always feasible and additional pivoting is not required.
If we apply this rule to an ordering on V that is constructed as a fill-reducing ordering

for A, the resulting ordering for K will not be fill-reducing in general. To ensure that the
final ordering is fill-reducing we have to use information about the whole matrix, i.e. the
fill patterns of B and BT have to be taken into account. This is the case if the ordering
for V is fill-reducing for the fill pattern F (A) ∪ F (BBT ), where F (A) denotes the fill
pattern of A. This graph is an envelope for the fill that will be created by elimination of
the nodes in P . In many cases this will be equal to F (A + BBT ), but to avoid possible
cancellation in the addition we will use the matrix F (A)∪F (BBT ). Summarizing we get
the following algorithm:

Algorithm 1 To compute a feasible fill-reducing ordering for the saddle point matrix K:

1. Compute a fill-reducing ordering for the V -nodes based on F (A) ∪ F (BBT ).

2. Insert the P -nodes into the ordering according to rule 1.

The P -nodes (step 2) can be inserted dynamically during Gaussian elimination, which
means that we have to adapt the elimination process. The elimination is performed using
the fill-reducing ordering on V and applying rule 1. This also takes into account that
V -nodes initially coupled to P -nodes become decoupled because of cancellation, which
is a rather common phenomenon (see section 3.2). This is different from just combining
pressures with velocities beforehand (static pivoting).

The above method has structure preserving properties1,2, one of which is in the theorem
below.

Theorem 1 If K is an F-matrix, all Schur complements K(l) are F-matrices.

This means that the A part will remain positive definite and the B part will have at
most 2 entries per row in any step of the elimination. The latter allows us to keep the B
part exact during the incomplete factorization.
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3 STRUCTURE PRESERVING INCOMPLETE FACTORIZATION

In this section we want to develop an incomplete factorization based on the direct
method described so far. First we will introduce the domain decomposition we use and
then we will illustrate that simply applying a dropping strategy to the A part may not
give the desired result when there are couplings to P -nodes. We then proceed to develop
a combination of orthogonal transformations and dropping that leads to grid-independent
convergence, limits fill-in and keeps the divergence constraint intact.

Assumption For this section we will assume that the entries in B have equal magnitude.
This is not a restriction because it can be achieved by scaling the rows of an arbitrary
gradient matrix B. If DB gives the desired matrix, our new matrix will be[

DAD DB
BTD O

]
(4)

Observe that the post-scaling means that the V -nodes will be scaled. For Navier-Stokes
on a stretched grid (see section 4) the scaling is such that we get as new unknowns the
fluxes through the control cell boundaries.

3.1 Domain decomposition

The first step of the proposed method is to construct a non-overlapping decomposition
of the physical domain into a number of subdomains. This can be done by applying a
graph-partitioning method like Metis8 or similar libraries to F (A) ∪ F (BBT ). Metis has
been tested successfully, but for this paper we use a manual partitioning into equally-
sized square subdomains. (For the Navier-Stokes equations we used a stretched grid, so
in that case they are not square and equally-sized in physical space but in the number of
unknowns).

Then we introduce a minimal overlap: two adjacent subdomains share one layer of
velocity nodes, whereas pressure nodes are not shared among subdomains. Variables
belonging to exactly one subdomain are said to be interior variables. Velocities connecting
to interior variables in more than one subdomain form separators of the subdomains they
connect to. The separator velocities are complemented by an arbitrary single P -node
per subdomain. When eliminating the interior variables in the next step, this ensures
that the subdomain matrix is non-singular (in physical terms the pressure level inside the
subdomain is fixed).

We can now eliminate the interior variables, leading to a Schur-complement problem for
the separator velocities and remaining pressures. The remainder of this section is devoted
to constructing an incomplete factorization preconditioner for this Schur-complement, so
that it can be solved efficiently by a Krylov subspace method.
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Figure 2: Velocity separators (u, v) and pressure per domain (p) in a 2-domains case.

3.2 The dropping problem

Consider the following matrix, which occurs in any elimination step with a 2×2 pivot:
α β aT bT

β 0 b̂T 0

a b̂ Â B̂

b 0 B̂T O

 . (5)

When performing the elimination step, a multiple of b̂b̂T is added to Â. This does not
introduce new fill if Â is dense. But if we replaced Â by a sparse matrix by dropping, the
matrix would be filled again as b̂ is typically dense.

This is a common phenomenon. Consider, for example, the two-domain case in fig. 2.
After eliminating the interior variables, many of the V -nodes on the separator are coupled
to the two remaining P -nodes. Assume that we drop all connections between the V -nodes
on the separator, so in the above matrix (5), Â is replaced by its diagonal, and a becomes
zero; b̂ is a dense vector, B̂ has an associated dense column with opposite sign, and bT has
a nonzero at the same column position with sign opposite to that of β. When eliminating
one “V -node P -node” pair, all the V -nodes on the separator become detached from P
and Â becomes dense.

From the above we learn that we should try to get more zeros into b̂. Or stated
otherwise, we should try to decouple the V -nodes on the separator from the P -nodes as
far as possible.

3.3 Orthogonal operators to decouple V - and P -nodes

One idea to get rid of unwanted pressure couplings is to simply drop them. However,
the fill in the B-part is already modest and an exact B-part is attractive, as discussed
in section 2. Fortunately we can do better. Consider the square domain decomposition
(fig. 2), extended periodically so that every subdomain is bounded by four separators
from the neighboring subdomains. The Schur-complement for the separator velocities
and remaining pressures has about the following form (the V -nodes in the corners are
neglected here, in practice they form ‘separators of the separators’ and get a block of
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their own): 

A11 B1 A12 A13 O O
BT

1 O BT
21 BT

31 O O
A21 B21 A22 O A24 B22

A31 B31 O A33 A34 B32

O O A42 A43 A44 B42

O O BT
22 BT

32 BT
42 O





v1

p1

v2

v3

v4

p2


=



bv1

bp1

bv2

bv3

bv4

bp2


. (6)

Here v1 contains the V -nodes on a certain separator, p1 contains the two P -nodes from
the adjacent subdomains; v2 and v3 contain the V -nodes from other separators around
these subdomains, respectively. v4 and p2 represent the remaining V - and P -nodes in
the Schur-complement (separator velocities and pressures not connected to the separator
under consideration).

Now B1 only contains two dense columns, equal up to a sign. So by using an orthogonal
transformation H, e.g. a Householder reflection, we can transform B1 into a matrix with
only entries on a certain row, usually the first. Applying H to the first block row and
column from left and right, respectively, we obtain the following system (note that the
properties of the matrix are preserved by the orthogonal transformation):



HTA11H HTB1 HTA12 HTA13 O O
(HTB1)T O BT

21 BT
31 O O

A21H B21 A22 O A24 B22

A31H B31 O A33 A34 B32

O O A42 A43 A44 B42

O O BT
22 BT

32 BT
42 O





HTv1

p1

v2

v3

v4

p2


=



HT bv1

bp1

bv2

bv3

bv4

bp2


. (7)

The Householder matrix is a full matrix (though its application is cheap if its defining
form is exploited) and would destroy the sparsity. However, the matrices A11, A12 and A13

are typically already dense, so not much is lost and we have gained a lot: we decoupled
all but one of the V -nodes on the separator from the P -nodes. The decoupled ones can
be eliminated on their own now.

The situation depicted in eq. 5 now only occurs once per separator and velocity compo-
nent, namely for the V -node still coupled to the P -nodes. Because of the transformation
b̂ is now zero, and no fill is generated.

So far we have not made any approximations, and while we have zeroed out most of the
V -node/P -node couplings, a dropping strategy has to be applied in the V -V part to get
a sparse preconditioner for the Schur-complement. However, the Householder transfor-
mation combined with standard dropping techniques for the SPD case will generally not
lead to grid independent convergence. This requires that the approximation is spectrally
equivalent to the original matrix. We will consider a new way of dropping in the next
section which has this property.
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3.4 Dropping strategy

The general idea of the approximation is the following. We replace the flux through
grid cell faces forming a separator by the combined flux through that separator. Then we
try to reduce the problem of finding all separator velocities by dropping and elimination
to the related problem of finding the new fluxes (or summed velocities). This reduced
problem can still be understood in terms of conservation of mass and momentum and its
form is very similar to the original problem.

Let us consider an orthogonal operator that is more intuitive than the Householder
transformation. Suppose e is a vector with all ones and C is an orthogonal extension of
e such that the length of every column is the same. Define a square matrix

H = [C, e], (8)

which is orthogonal up to a constant factor. This operator is applied to the velocity
component in normal direction on the separator. These velocities have the same sign for
the connection to the pressure and therefore again only one row remains in HTB1. The
first component of HTv will be the sum of the components of v; we will call this a VΣ-node
from now on.

The following lemma and its corollary play a key role in devising a dropping strategy:

Lemma 1 Principal submatrices of an (S)PD-matrix are (S)PD.

Corollary 1

If

[
A11 A12

A21 A22

]
is (S)PD then

[
A11 O
O A22

]
is (S)PD. (9)

Since we only make approximations in the A part of the matrix K, we have the following
lemma.

Lemma 2 If A is SPD, the condition number of the preconditioned K matrix is bounded
by the condition number of the preconditioned A, where as preconditioner an SPD approx-
imation of A is used.

Proof: see reference 1.

These lemmas set the ground for further reasoning that will lead to grid-independent
convergence. In the remainder of this section we assume that A is symmetric and positive
definite. Let us extend H with an identity for the unknowns that are not transformed
and write H = [H1, H2], where

H1 =

[
C
0

]
, H2 =

[
e 0
0 I

]
. (10)
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The transformed matrix is given by

HTAH =

[
HT

1 AH1 HT
1 AH2

HT
2 AH1 HT

2 AH2

]
. (11)

Here HT
2 AH2 is a Galerkin approximation of A and hence it can be viewed as a discretiza-

tion on a coarser grid (in fact it is an aggregation similar to that used by Notay9, albeit
that Notay applies the aggregation directly to the discretized PDE whereas we apply it
to its Schur complement on the separators). If A is obtained from a stable discretization
of a second-order differential operator, then HT

1 AH1 has a condition number independent
of the mesh size if the dimension of C is fixed (i.e. if the length of the separator is fixed).
For the approximation we simply drop the off-diagonal blocks in (11). Now assume we
have the following strengthened Cauchy-Schwarz inequality10

|xTHT
1 AH2y| ≤ γ{(xTHT

1 AH1x)(yTHT
2 AH2y)}

1
2 (12)

holding independently of the mesh size. Using Lemma 2 we can prove the following.

Theorem 2 If a strengthened Schwarz-inequality (12) holds for 0 ≤ γ < 1 independent of
the mesh size, then we have convergence independent of the mesh-size when the dropping
process as discussed above is applied. The condition number of the preconditioned K
matrix is bounded by (1 + γ)/(1− γ).

The situation above remains the same if we apply the transformation to all separators at
once. After the transformation, only the unknowns associated with A22 are coupled to
pressures. We may still have couplings between various separators in A11, but the condi-
tion number of that matrix is independent of the mesh size. To lower the computational
cost we also drop couplings between separators in A11.

Note that we have only made approximations in the velocity-velocity part of the matrix,
so this means that the “gradient” and “divergence” part is still exact. Hence, we have
build a so-called constraint preconditioner11 and for symmetric K (i.e. for a Stokes flow
problem) we can use the Conjugate Gradient method. We were successful with this in
reference 1 for the Stokes equation.

4 INCOMPRESSIBLE FLOW IN A LID-DRIVEN CAVITY

As test problem for the Navier-Stokes equations we use the lid-driven cavity. By
Tiesinga et al.12 this problem was studied near the transition point from steady to tran-
sient flow. The stability of steady and periodic solutions was investigated using the
Newton-Picard method13 with the θ-method for time stepping (with θ slightly larger than
0.5 in order to damp high-frequency modes which would otherwise show up as spurious
eigenvalues near the imaginary axis). The linear systems that have to be solved have a
slightly increased diagonal, which improves the conditioning somewhat. The MRILU14

9



Fred W. Wubs and Jonas Thies

u = 1 v = 0

u = v = 0

u = v = 0 u = v = 0

→↑ x
y

0

1

1

Figure 3: Geometry for the lid-driven cavity problem.

preconditioner used at the time converged slowly and not at a grid-independent rate,
which we very much like to improve upon.

In a recent review15, the performance of a number of block multi-level preconditioners
is investigated for the steady problem for Reynolds numbers up to 1000. These methods
also solve the coupled equations, but perform inner iterations on the velocity and pressure
part separately and hence require many parameters to be tuned. Below we demonstrate
robust, grid-independent convergence for the driven cavity problem at Reynolds-numbers
of up to 8000.

The problem consists of calculating the flow in a square cavity with uniformly moving
lid. The domain and boundary conditions of the lid-driven cavity problem are shown in
fig. 3, where u and v denote the velocity in x- and y-direction, respectively.

The equations are given by

−u · ∇u + 1
Re

∆u−∇p = 0 ,
∇ · u = 0 .

}
(13)

For the discretization we use a symmetry-preserving space discretization16, which is stable
and does not introduce artificial diffusion. Furthermore, the grid is stretched towards the
boundaries in order to resolve the boundary layers. The ratio between largest and smallest
mesh size is about 5. This also means that we really need to change to fluxes through
grid cell boundaries instead of velocities in order to get the required property that all
elements in B have the same magnitude (see the beginning of section 3). The system
matrix is the Jacobian from the first step of the Newton method at the current Reynolds
number. In order to avoid convergence problems of Newton’s method, we use the result
at the previous Reynolds-number as a starting solution (the Reynolds numbers used are
shown in table 1).

In the tables the following data is displayed: nx - the grid size (the grid is nx×nx), sx -
the subdomain size (the subdomain is sx×sx), N - number of unknowns (size of the saddle
point matrix), nnz - number of nonzeros in original matrix, NS - number of unknowns on
the separators and remaining p’s (size of the Schur-complement), n - number of V ′Σs and
remaining p’s (size of reduced Schur-complement), iter - number of GMRES iterations
performed on the Schur-complement to reduce the residual norm by 1/tol = 106, fill 1
- grid-independent part of relative fill-in (number of nonzeros in the solver divided by
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number of nonzeros in original matrix), and fill 2 - grid-dependent part of relative fill-in,
generated when factoring the n × n-dimensional reduced Schur-complement. The grid-
independent part fill 1 consists of: (a) fill-in generated while factoring the subdomain
matrices, (b) fill-in generated while constructing the Schur-complement, and (c) fill-in
generated while factoring the separator-blocks of the preconditioner.

We first focus on the effect of increasing the Reynolds-number (cf. table 1). The
convergence is not independent of the Reynolds-number. In our view this is not surprising,
because the underlying continuous problem changes with the Reynolds number and more
and more eigenvalues are getting close to the origin. This is different from the dependence
on the mesh, where the continuous problem stays the same and all eigenvalues near the
origin stay at their place.

Next we refine the grid at a high Reynolds-number of 8000, close to the point, such as
described in Tiesinga et al.12, where the steady state becomes unstable; results are shown
in table 2. Note that the number of iterations is going down as we decrease the mesh
size. This is because with decreasing mesh size the physical size of the subdomains is
decreasing if we keep the number of unknowns per subdomain the same. As the physical
subdomain decreases, the diffusion plays a more important role than the advection on
that scale. Since the approximations take place at the subdomain scale, the convergence
behavior tends to that of the Stokes problem.

Re N nnz NS n iter fill 1 fill 2
500 785 408 6 794 252 129 025 40 069 59 6.41 2.59
1000 785 408 6 794 252 129 025 40 069 73 6.39 2.59
2000 785 408 6 794 252 129 025 40 069 87 6.38 2.65
4000 785 408 6 794 252 129 025 40 069 104 6.35 2.78
8000 785 408 6 794 252 129 025 40 069 130 6.33 2.72

Table 1: 2D Driven cavity - increasing Reynolds-number, grid-size nx = 512

nx N nnz NS n iter fill 1 fill 2
64 12 160 103 820 1 793 533 185 6.09 0.418
128 48 896 420 620 7 681 2 341 181 6.22 0.953
256 196 096 1 693 196 31 745 9 797 167 6.29 1.75
512 785 408 6 794 252 129 025 40 069 130 6.33 2.72

Table 2: 2D Driven cavity - grid refinement at Re = 8000

We conclude by mentioning that with the resulting preconditioner it was also quite easy
to compute eigenvalues using MATLAB’s eigs routine (i.e. ARPACK). Hence we can now
study the stability problem near the point where the steady state becomes unstable using
eigenvalue analysis.
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5 DISCUSSION AND CONCLUSIONS

In this paper we have shown the basics of an incomplete factorization for Navier-Stokes
Jacobian matrices. This is an incomplete factorization for the whole system, which avoids
having to balance inner and outer iterations as in a segregated approach. Depending only
on a single parameter (the subdomain size), the method is as easy to use as a direct solver
and gives reliable results in a reasonable turn-around time.

For Stokes matrices we were able to prove grid-independent convergence. The total
number of operations required is currently not grid-independent since we use a direct
solver to handle the reduced system. However, the amount of work required for this
step is reduced by about the cube of the subdomain size in 2D and the sixth power in
3D. So increasing the subdomain size by a factor 2 means in 2D a factor 8 and in 3D a
factor 64 gain in computing time. For the Navier-Stokes equations we also observed grid-
independent convergence. Currently, we are developing a parallel C++ implementation of
the method that can be applied recursively, turning it into a multi-level method. Herewith
we get rid of the costs for the direct solver on the reduced system.

We showed the robustness of the method for the Stokes equations. For the Navier-
Stokes (a generalization of Stokes) equations the results show high robustness. For
Reynolds numbers up to 8000 (and even for Reynolds numbers bigger than 8000, which
are not shown here), convergence problems only occurred in the Newton method, never
in the linear solver. So the method still performs well for cases where eigenvalues pass
the imaginary axis somewhere away from the origin (Hopf bifurcations).
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