
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal,14-17 June 2010

DEVELOPMENT OF THE CACTUS CFD TOOLKIT AND ITS
UTILISATION ON LARGE-SCALE MULTI-BLOCK SIMULATIONS

Soon-Heum Ko†, Prasad Kalghatgi††, Erik Schnetter†,†††, Sumanta Acharya††,
Gabrielle Allen†,∗, Shantenu Jha† and Mayank Tyagi†

†Center for Computation & Technology,
Louisiana State University, 216 Johnston Hall, Baton Rouge, LA 70803

e-mail: {sko,schnetter,gallen,sjha,mtyagi}@cct.lsu.edu
††Department of Mechanical Engineering,

Louisiana State University, Baton Rouge, LA 70803
e-mail: pkalgh1@tigers.lsu.edu, acharya@me.lsu.edu

†††Department of Physics & Astronomy,
Louisiana State University, Baton Rouge, LA 70803

∗Contact Author

Key words: Cactus Framework, Cactus CFD Toolkit, Multi-block Driver, CGNS (CFD
Grid Notation System), Automatic Parallelisation

Abstract. Cactus is a general-purpose application framework that has been widely used
in many application domains. However, it is yet to attract the attention of main stream
CFD researchers. We assume that this is mainly due to a lack of concrete guidelines for
CFD code porting and development. This motivated us to (1) design a standard CFD
toolkit, (2) develop computational components for CFD applications, and (3) provide ex-
ample CFD codes. We used our CFD toolkit for solving the supersonic flow field around a
projectile with the base. Our new multi-block driver and example code enables the accurate
flow analysis in multi-block geometries. Also, the parallel performance of our toolkit shows
good scalability, which proves the capability of the Cactus framework as a high-performance
CFD tool.

1



S.-H. Ko, P. Kalghatgi, E. Schnetter, S. Acharya, G. Allen, S. Jha and M. Tyagi

1 INTRODUCTION

The Cactus framework[1, 2] is a general-purpose problem solving environment which
has been used for scientific simulations in different disciplines since 1997. Cactus’ modular
structure enables collaborative code development between different groups, and the cen-
tral core along with computational toolkits supports automatic parallelization, seamless
development and deployment on modern computer architectures and easy access to many
cutting-edge software technologies.

So far, Cactus has not been widely used for CFD simulations, mainly by a lack of
standardization in existing CFD components, and by the lack of support for multi-block
mesh systems. This led us to design a standard Cactus CFD toolkit and develop a
number of components for CFD applications. The standard CFD toolkit is designed
to fully utilize the benefits of the Cactus framework such as numerical library supports
and automatic parallelization by drivers, and support additional drivers and modules
specifically required for CFD applications. Following the standard design, standard CFD
I/O routines are included, Cactus data structure and parallelization modules are improved
to support multi-block structure. Also, compressible code on structured domain has been
deployed.

In this paper, we present the design and development procedure of Cactus CFD toolkit,
along with the current status. We begin with details on Cactus framework and its strength
as a framework for scientific computations. The design and development process of Cactus
CFD toolkit is expressed in the next Section. Compressible external flow simulations for
the validation of the solver and its parallel performances are discussed in Section 4.

2 CACTUS FRAMEWORK

The Cactus framework is an open-source, modular, portable programming environ-
ment for high performance computing. It was designed and written specifically to enable
scientists and engineers to develop and perform the large-scale simulations needed for
modern scientific discovery across a broad range of disciplines. Cactus is well suited for
use in large, international research collaborations. Cactus is today used by over two dozen
numerical relativity groups for their cutting edge research.

As with most frameworks, the Cactus code base is structured as a central part, called
the flesh that provides core routines, and components, called thorns. The flesh is inde-
pendent of all thorns and provides the main programme which parses the parameters and
activates the appropriate thorns, passing control to thorns as required. A thorn is the
basic working component within Cactus. All user-supplied code goes into thorns, which
are by and large independent of each other. Thorns communicate with each other via
calls to the flesh API or, more rarely, via custom APIs of other thorns.

Thorns are generally stateless entities; they operate only on data which are passed to
them. The data flow is managed by the flesh. This makes for a very robust model where
thorns can be tested and validated independently, and can be combined at run-time.

2



S.-H. Ko, P. Kalghatgi, E. Schnetter, S. Acharya, G. Allen, S. Jha and M. Tyagi

Parallelism, communication, load balancing, memory management, and I/O are handled
by a special component called driver which is not part of the flesh and which can be
easily replaced. The flesh (and the driver) have complete knowledge about the state of
the application, allowing inspection and introspection through generic APIs.

3 CACTUS CFD TOOLKIT DEVELOPMENT

3.1 Features of Baseline CFD Code

The governing equations are the three-dimensional compressible Euler equations in
curvilinear coordinates. The flow solver uses the LU-SGS (Lower-Upper Symmetric

Gauss-Seidel) scheme[3] for implicit time integration and local time stepping is used for
the time iteration step. The AUSMPW+ (modified AUSM using Pressure-based Weight

functions)[4] is applied as a numerical flux at a cell interface, with the use of MUSCL

(Monotone Upstream-centered Schemes for Conservation Laws)[5] approach. Primitive

variables are extrapolated at a cell interface and the differentiable limiter[6] is employed
to suppress unphysical oscillations near physical discontinuities.

3.2 Design and Development of Cactus CFD Toolkit

The standard Cactus CFD toolkit is depicted in Fig. 1. Our toolkit design consists
of three layers comprising the low-level computational toolkit, the CFD solver, and a
high-level application layer. Computational toolkit consists of a number of components,
including the driver, general solvers, mesh generator/reader and visualization models. The
multi-block driver is integrated with the current Cactus driver systems, which integrates
Cactus modules, manages memory, and controls the parallelism. CFD mesh reader which
supports CGNS (CFD General Notation System)[7] mesh format is integrated with cur-
rent mesh generators. This low-level computational layer is shared with the astrophysics
community, which uses it for highly supersonic relativistic flows. CFD flow solvers dis-
cussed above constructs CFD solver layer. Components supporting CFD flux schemes,
times stepping methods with time integration schemes, etc., are split to separate thorns
in the solver layer. The simulation flow is managed by CFDBase module, where vari-
ables are declared and CFD components are scheduled. The modular feature with Cactus
versioning system enables users to either use current implementations or replace any of
supported module with their own implementation. Finally, the application layer combines
these with initial and boundary conditions and other necessary elements to form complete
simulations.

Two core components to support multi-block data structure are the mesh reader and
parallel driver. In the mesh reader, we support the CGNS standard which stores grids,
boundary conditions and auxiliary information. In a CGNS interface, boundary conditions
and grid information (connectivity and coordinates) are read from a CGNS file into a
native data structure. The interface is designed to handle 1-to-1 multi-block abutting
connectivity and this connectivity information is referenced by a multi-block driver.

3



S.-H. Ko, P. Kalghatgi, E. Schnetter, S. Acharya, G. Allen, S. Jha and M. Tyagi

Figure 1: Structure of Cactus CFD toolkit

In Cactus, the multi-block system is implemented as a driver (see section sec:cactus
above) which handles the different blocks, their connectivity, and their parallelisation.
The local and global coordinate systems and their transformations are implemented in
an independent layer above the driver. We base our driver on Carpet [8, 9, 10], which
manages an arbitrary number of blocks, each of which can have a different size. There
are no restrictions on the inter-block connectivities and boundary conditions, although
we restrict ourselves to boundaries where cell faces between adjacent faces match exactly.

4 NUMERICAL RESULTS

A supersonic flow over an axisymmetric projectile[11] is simulated. The geometric
feature with its multi-block mesh system is given in Fig. 2. It has a secant-ogive cylindrical
configuration with the boattail. The length of the projectile is 3 diameters of the body.
Forebody has a secant-ogive profile with the overall length of 3 diameters and ogive radius
of 18.88 diameters. 1 diameter at the bottom of a projectile has a boattail shape with the
angle of 7◦. Diameter of the jet nozzle is 0.30 to the main body diameter. Considering its
symmetric shape along the circumferential direction, a 6 block mesh each with 61×19×31
is generated to cover the half of the body.

The pressure field around the body and surface pressure distribution compared with

4



S.-H. Ko, P. Kalghatgi, E. Schnetter, S. Acharya, G. Allen, S. Jha and M. Tyagi

Figure 2: Mesh System around an Axisymmetric Projectile

experimental data[12] are presented in Fig. 3. The free stream Mach number is 3.0 and
the jet plume condition is the same as the free stream flow. As can be seen from the
left figure, a strong oblique shock and resultant high pressure around the forebody is
recovered at the cylindrical main body and slightly expands in the boattail region. As
flow goes to the base, high expansion wave is compensated by the plume shock. From
the surface pressure distribution along the flow direction, we can validate that the Cactus
CFD solver accurately predicts the compressible flowfield.

Axial Distance (X/D)

N
on

di
m

en
si

on
al

iz
ed

P
re

ss
ur

e

0 1 2 3 4 5 6

0.4

0.6

0.8

1

1.2

Numerical Simulation
Experimental Data

Figure 3: Flowfield around a Secant-ogive Cylinder with Boattail; Pressure Contour around the Body
(Left) and Surface Pressure Distribution (Right)

Graphs in Fig. 4 show the parallel speed-up of a projectile simulation. In this case,
we solve the six block mesh system with equal sizes. Left graph shows the parallel per-
formance when 2n CPU cores are used. With 64 cores, parallel performance was about
46.5, which is only 0.727 of parallel efficiency. We assumed that this is because number
of cores mismatched the number of blocks. With more than 4 processors, blocks have to
be partitioned in different topology and this causes the communication overhead. So, the
next test is conducted using 6n cores. Compared with former measurement, this gives
more reasonable parallel performance, the parallel efficiency of 0.842 with 48 processors.

5



S.-H. Ko, P. Kalghatgi, E. Schnetter, S. Acharya, G. Allen, S. Jha and M. Tyagi

This implies that parallel algorithm which is implemented in Cactus framework shows a
good scalability on CFD simulations.

Cores

S
pe

ed
-u

p

10 20 30 40 50 60

10

20

30

40

50

60
Ideal
Measured Perf.

Cores

S
pe

ed
-u

p

10 20 30 40

10

20

30

40
Ideal
Measured Perf.

Figure 4: Parallel Performance of Cactus CFD Toolkit on Multi-block Projectile Simulation; Use of 2n

CPU Cores (Left) and 6n Cores (Right)

5 CONCLUSIONS

We have described the development of the Cactus CFD toolkit and illustrated its use
for multi-block simulation. Our new developments are directed to provide capabilities
for the Cactus framework to solve CFD problems without sacrificing any performance or
functionality which Cactus currently provides. Computational infrastructure (multi-block
driver with mesh reader) and application modules (compressible solver) are developed
according to the standard of Cactus CFD toolkit. We validated the accuracy of our solver
by applying it to multi-block simulation. Furthermore, the parallel performance observed
from these simulations verifies that the high-level parallelism which Cactus provides can
be also applied to CFD simulations. We emphasize that Cactus can be a great tool to
any scientists who suffer from the frequent change in computer architecture, computing
models, or scientific softwares.

ACKNOWLEDGEMENT

This work is part of the Cybertools (http://cybertools.loni.org/) project and primarily
funded by NSF/LEQSF (2007-10)-CyberRII-01.

REFERENCES

[1] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf.
The Cactus framework and toolkit: Design and applications. In Vector and Par-
allel Processing – VECPAR’2002, 5th International Conference, Lecture Notes in
Computer Science, Berlin, 2003. Springer.

[2] Cactus Computational Toolkit home page, http://www.cactuscode.org/.

6



S.-H. Ko, P. Kalghatgi, E. Schnetter, S. Acharya, G. Allen, S. Jha and M. Tyagi

[3] S. Yoon and A. Jameson, Lower-Upper Symmetric-Gauss-Seidel Method for the Euler
and Navier-Stokes Equations, AIAA J., 26, 1025–1026 1988.

[4] K. H. Kim, C. Kim and O. H. Rho, Methods for the Accurate Computations of
Hypersonic Flows, PART I: AUSMPW+ Scheme, J. Comp. Phys., 174, 38–80 2001.

[5] B. Van Leer, Towards the Ultimate Conservative Difference Scheme. V. A Second
Order Sequel to Godunov’s Methods, J. Comp. Phys., 32, 101–136 1979.

[6] W. K. Anderson, J. L. Thomas and B. Van Leer, Comparison of Finite Volume Flux
Vector Splittings for the Euler Equations, AIAA J., 24 1453–1460 1986.

[7] CGNS Documentation - User Manual and Mid Level-Library Documentation, http:
//www.grc.nasa.gov/WWW/cgns/index.html/.

[8] E. Schnetter, S. H. Hawley, and I. Hawke, Evolutions in 3D numerical relativity using
fixed mesh refinement, Class. Quantum Grav. 21, 1465 2004, eprintgr-qc/0310042.

[9] E. Schnetter, P. Diener, N. Dorband and M. Tiglio, A multi-block infrastructure
for three-dimensional time-dependent numerical relativity, Class. Quantum Grav. 23
(2006), S553–S578, eprint gr-qc/0602104.

[10] Mesh Refinement with Carpet, URL http://www.carpetcode.org/.

[11] M. Mirzaei and S. Arabi, Drag Optimization for Axisymmetric Afterbodies with Jet
Plume, ANZIAM J., 46, C1069–C1085 2005.

[12] L. B. Schiff and W. B. Sturek, Numerical simulation of steady supersonic flow over
an ogive-cylinder-boattail body, AIAA Paper, 80-0066 1980

7


