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Abstract. Use of numerical solutions to flow phenomena has become increasingly com-
mon among non-engineering disciplines such as medical sciences. This increasing interest
can be promoted by the ability of solvers to obtain accurate numerical solutions without
the need for expertise in some specific subjects such as grid generation or automatic grid
adaptation. In this work, an incompressible flow solver is developed with emphasis on gen-
erating the initial computational grid automatically and obtaining the solution accurately,
fast and efficiently with minimum user intervention. For this purpose, a non-conforming
Cartesian grid (NCG) structure is used. The 2-dimensional, laminar, incompressible
Navier-Stokes equations are solved by a spectral element method based on least squares
principles, which offers significant advantages over traditionally employed Galerkin for-
mulations for flow problems. Convergence to the solution is automated by a p-type adaptive
refinement strategy based on least squares functional error estimate. Two solution pro-
cedures that are employed in least squares spectral element method (LSSEM) literature,
matrix-free method and Schur complement decomposition are compared qualitatively based
on CPU and memory performance. The solver is tested by solving various benchmark
problems and comparing the results with past studies. It is shown that mass conservation
performance of LSSEM can be improved effectively by using p-type adaptive refinement.
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1 INTRODUCTION

Use of computational approaches to solve flow problems are becoming more common
in non-engineering disciplines such as medicine. The application areas of numerical flow
solution techniques in these disciplines can be further extended by enabling people with
little or no knowledge in numerical methods use such techniques to solve their problems
with ease and success. Such an idea can be realized by the development of numerical
softwares that have the ability to obtain an accurate solution fast and efficiently with
minimum user intervention. In this context, adaptive grid (mesh) refinement (AMR)
strategies came forward as a way of automating the solution procedure.

Recent AMR studies focus on use of non-conforming Cartesian Grids (NCG). NCG
offers an elegant way to discretize domains with complex-moving boundaries1. Moreover,
NCG have a flexible grid structure which is allows for efficient implementation of AMR2.
A great amount of work is done in this subject by using NCG with low order finite
volume methods, referred as immersed boundary methods where the boundaries remain
immersed in the regular computational grid and the cells cut by the boundaries are treated
by singular forces3. In contrary, use of finite element methods (FEM) and high order
spectral element methods (SEM) with NCG are rare in literature. In this study, a SEM
solver with the ability to work on NCG is developed to address this gap.

It is possible to use different variational formulations to obtain different types of finite
and spectral element methods. The SEM solver presented in this study is based on least
squares (LS) variational formulation4 which is reported to offer significant advantages over
the classical Galerkin variational formulation for the solution of flow problems5. However,
LS methods have also some disadvantages. Most importantly, FEM and SEM based on LS
principles are reported to have poor mass conservation performance for flows with inflow
and outflow6,7. In this study, it is shown that the mass conservation properties of the
least squares spectral element method (LSSEM) can be improved by using a p-adaptive
refinement strategy.

2 LEAST SQUARES FORMULATION

Least squares variational formulation for the numerical solution of partial differential
equations was first introduced by Bramble and Schatz 4 . Later it was offered by Jiang 5 as
a better alternative to classical Galerkin formulations for flow problems since it allows for
the use of equal order approximations for all unknowns of the problem without violating
the LBB condition, can solve advection dominated problems accurately without resorting
to upwinding and results in a positive-definite linear system of equations that can be solved
by preconditioned conjugate gradient solvers efficiently.5 It has also some disadvantages.
For instance, in order to use LS formulation with practical basis expansions that merely
require C0 continuity of the solution across elements, these equations must be cast into
an equivalent set of first order equations8. This procedure leads to solution of additional
unknowns and results in extra computational resources. Nevertheless, in the case of flow
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problems the additional unknowns are of physical interest and the extra effort is not
totally in vain. Additionally, LSFEM and LSSEM are reported to exhibit poor mass
conservation performance6. This issue is addressed extensively in the literature6,9–11. See
section 5.3 for additional discussion on mass conservation.

For completeness, the LS formulation is derived for a model boundary value problem
here.

Lu = f on Ω (1a)

Bu = g on ∂Ω (1b)

where Ω is a closed domain bounded by ∂Ω, L is a first order linear partial differential
operator defined on Ω, B is an algebraic boundary operator defined on ∂Ω, u is the
unknown, f is the forcing function and g is the boundary value function. Restricting our
attention to real valued functions, it is assumed that f is a member of the space of square
integrable functions on Ω, i.e. f ǫ L2(Ω) and u is a continuous function with piecewise
continuous first partial derivatives on Ω, i.e. u ǫ H1(Ω).

We define the residual of eqn.(1a) as R = Lu− f . The residual is not identically equal
to zero on the whole problem domain unless u is the exact solution. In least squares
method, the approximate solution is required to minimize the square of the L2-norm of
the residual ‖R‖2

L2
, which is referred as the least squares functional I. Minimization is

done by taking the first variation of I and equating it to zero. Following the procedure
and rearranging the terms, the least squares formulation in continuous form is obtained.

Seek u ǫ H1(Ω) such that
∫

Ω

(Lv)T (Lu) dΩ =

∫

Ω

(Lv)T f dΩ ∀v ǫ H1, v = 0 on ∂Ω (2a)

Bu = g on ∂Ω (2b)

where v is the variation of u. Note that v = 0 on the entire boundary since the boundary
operator B is algebraic implying essential boundary conditions only. This is an advantage
of applying least squares method to first order equations. Since no weak form is used,
only essential boundary conditions are imposed in least squares formulation.

The formulation can be extended to solution of a set of first order differential equations
with multiple unknowns. See, for instance, Jiang 5 for details.

3 GOVERNING EQUATIONS

In this study incompressible Navier-Stokes equations are solved for the numerical pre-
diction of two-dimensional, laminar flows.

∇ · u = 0 (Continuity) (3a)

∂u

∂t
+ u · ∇u +

1

ρ
∇p − ν∇2u = f (Momentum) (3b)
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In order to solve eqn.(3) with LSSEM, it must be converted into an equivalent set of first
order differential equations by introducing an additional unknown. The vorticity w can
be used for this purpose. With introduction of the vector identity

∇2u = −∇× (∇× u) + ∇ (∇ · u) (4)

and the divergence free constraint (3a) in eqn.(3)

∇ · u = 0 (Continuity) (5a)

∂u

∂t
+ u · ∇u +

1

ρ
∇p + ν∇× ω = f (Momentum) (5b)

ω −∇× u = 0 (Vorticity Definition) (5c)

Eqn.(5) is referred as the velocity-pressure-vorticity formulation of Navier-Stokes equa-
tions.5

For the 2-dimensional form of eqn.(5) considered in Cartesian coordinates, the un-
knowns are x and y-components of velocity, u and v, pressure p and the z-component
of vorticity w. For the approximation of unknowns a space time decoupled approach
is followed. A spectral element method is used for the spatial approximation while an
α-family time integration scheme12 is used for temporal approximation of the unknowns.
The convective terms are linearized by Newton linearization.

4 IMPLEMENTATION

A spectral element method based on least squares formulation (LSSEM) is used in the
spatial approximation of unknowns in eqn.(5). Spectral element method (SEM) utilizes
a combination of the sub-domain division approach of finite element methods (FEM)
and high order approximation of spectral methods (SM)13. As in FEM, the domain is
divided into several sub-domains (elements). By this way complex geometries can be
handled appropriately. As the element sizes get smaller the unknown can be sufficiently
represented over each element by a basis expansion. Again considering the model problem
given by eqn.(1),

ue(x) ≈ ue
hp(x) =

N
∑

i=1

ûe
i φe

i (x) (6)

where ue is the solution on an element sub-domain Ωe and ue
hp is the SEM approximation

to it. x is a point contained in the domain or on its boundary. N is the order of expansion,
ûe

i are the elemental unknown coefficients and φe
i (x) are the elemental basis functions. For

the elemental basis functions, orthogonal set of Jacobi polynomials such as Chebyshev or
Legendre polynomials (modal expansion) or Lagrange interpolating polynomials (nodal
expansion) can be used. For 2 and 3-dimensional problems, the basis functions can be
constructed by using a tensor product of those set of polynomials. To develop LSSEM,
integrals in (2) are broken down into integrals over elemental sub-domains and elemental
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approximations (6) are substituted in places of u and v. This procedure results in an
N×N system of equations for each element,

Ke Ue = Fe (7)

where

Ke
ij =

∫

Ωe

(Lφi)
T (Lφj) dΩe and Fe

i =

∫

Ωe

(Lφi)
T
f dΩe (8)

The elemental unknown vector Ue is composed of the expansion coefficients ûe
i . The

elemental systems (7) are assembled into a global system and solved accordingly.
In this study, tensor products of Lagrange interpolating polynomials defined on a

Gauss-Lobatto-Legendre (GLL) interpolation grid is used as the basis functions. The
Lagrange interpolating polynomials have the cardinality property leading to use of un-
knowns values at the nodal points defined by the GLL grid as the unknown coefficients.
This feature simplifies the implementation. The integrals in (8) are evaluated with Gauss-
Lobatto integration rule which is also based on the GLL grid. This choice of interpolation
grid and numerical quadrature leads to coincident grid nodes and quadrature points which
reduces the computational complexity of the elemental system calculation.

Use of LSSEM on non-conforming Cartesian grid leads to two types of non-conformities
in element interfaces. h-type non-conforming interfaces (figure 1a) occur where an element
becomes neighbor to more than one element at a single edge. That is, the interfacing
elements are geometrically non-conforming. h-type non-conformities are a direct result of
using a non-conforming Cartesian grid. Another type of non-conformity is the p-type non-
conformity that arises due to the use of high order expansions on individual elements. In
p-type non-conforming interfaces (figure 1b) two elements are geometrically conforming
at the adjacent edges but they use different orders of expansions to approximate the
unknowns on those edges. The solver developed in this study handles both types of non-
conformities by the constrained approximation method.14 In constrained approximation
method, one of the interfacing edges are declared as active and the nodal unknowns on
this edge are used in global assembly process. The nodal unknowns on the other (passive)
edge(s) are not a part of global solution. For elemental operations, they are interpolated
from the unknowns on the active edge. Degree of the interpolation is the same as the
expansion order used on the active edge. In this study, activeness of edges at an h-type
non-conformity are decided according to long rule where the edge which is longer is made
active. Similarly, activeness of edges at a p-type non-conformity, are decided according to
minimum rule where the edge with lower expansion order is set as active. For the details
of constrained approximation method, one can refer to Sert and Beskok 15 .

As in the case of non-conformities, use of LSSEM on NCG provides two choices for
adaptive refinement strategy. In h-type refinement, elements are divided into smaller ele-
ments without changing the expansion orders until the solution is adequately represented
over each element. In p-type refinement, element size is kept fixed and expansion orders
are increased. hp-type refinement where both h- and p-type refinement are employed is
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(a) h-type nonconformity (b) p-type nonconformity

Figure 1: Types of non-conforming interfaces encountered in LSSEM with NCG

also possible. Implementing h-type adaptive refinement to the solver is an issue worked
on in the time of writing this text. The solver presented here can perform p-type adaptive
refinement on conforming and non-conforming grids. The adaptive refinement criteria is
based on the value of the least squares functional over each element16. An efficient use of
computational resources can be realized by keeping the value of least squares functional
over each element between prescribed error bounds. Therefore p-type adaptive refinement
is performed to obtain and maintain the following condition

εmin ≤ Ie

Ae
≤ εmax (9)

Typical values for the error bounds range from 10−6 to 10−9. It is also possible to normalize
the element area averaged least squares functional Ie/Ae with some norm of the element
unknown vector though this approach is not employed in the current study. The adaptive
refinement procedure is carried across time steps.

Steady state solutions presented in section 5 were obtained by marching in time. For
the α parameter in the time integration scheme α = 2/3, corresponding to second order
accurate Galerkin scheme12 is used. Solutions with Crank-Nicholson scheme (α = 0.5)
are also obtained. However those solutions show temporal oscillations in pressure values
across the domain. On the other hand, solutions obtained by the Galerkin scheme are
free of such oscillations.

The assembly of the elemental systems into a global system is not necessarily per-
formed physically. The system can be solved by a Jocobi preconditioned conjugate gra-
dient method through an element-by-element procedure where a global coefficient matrix
is never constructed.16 In the so-called matrix-free method 17, the memory requirements
are further reduced by not keeping the elemental systems in the memory, instead recal-
culating them at each linear solver iteration. Such an approach is especially required
when solving large 3-dimensional problems where forming the global system or keeping
the elemental system in memory require excessive resources. The design of the solver
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presented here is currently focused on solving 2-dimensional problems. For those prob-
lems, keeping the elemental systems in memory through the linear solution process is
still feasible. Since the elemental systems are calculated only once for the linear solution,
such an approach is especially efficient as far as computation time is concerned. Current
solver uses this approach together with static condensation 18 to further reduce the com-
putation time and memory requirements. In static condensation, solution of elemental
boundary and interior unknowns are decoupled from each other by forming the Schur’s
complement of the elemental system. By this way, solution of the elemental system is
replaced by the solution of two smaller systems. Static condensation reduces the use of
computational resources for 2-dimensional problems. However, preparation of elemental
systems by static condensation for the solution step involves computationally intensive
tasks such as a positive-definite matrix inversion. Therefore it may not be feasible to use
static condensation with a memory optimizing approach such as matrix-free method. The
matrix-free method may be the only option for the solution of 3-dimensional problems
with element-by-element procedure.

5 BENCHMARK SOLUTIONS

In this section, the solver introduced in previous sections is validated by solving various
flow problems.

5.1 Kovasznay Flow

Kovasznay flow was originally presented by Kovasznay 19 . It’s exact solution is used to
verify convergence characteristics of incompressible Navier-Stokes solvers. This problem
is solved to verify the spectral convergence of the solver for various grid configurations.

Kovasznay flow is solved on a rectangular domain: [−0.5, 1]×[1, 1.5]. The exact solution
is

ue = 1 − eλxcos (2πy) (10a)

ve =
λ

2π
eλxsin (2πy) (10b)

pe =
1

2

(

1 − e2λx
)

(10c)

where λ = 1/2ν − [(1/4ν2) + 4π2]
1/2

, v being the kinematic viscosity. Stream function
contours of the exact solution are shown in figure 2a.

In order to study the convergence properties of the solver, solutions on conforming,
p-type non-conforming and h-type non-conforming grids are performed as follows:

1. Conforming Grid: In this study, grid 1, illustrated in figure 2b is used. This grid
has 8 elements. Same expansion order, p is used for all elements and in both space
dimensions, resulting in conforming element interfaces.
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Figure 2: Kovasznay flow: Exact solution and the computational grids used in this study

2. p-type Non-conforming Grid: Again, grid 1 is used. However this time, expansion
orders of elements are altered such that elements 1, 4, 6 and 7 have expansion
orders p while elements 2, 3, 5 and 8 have expansion orders p − 2. Same expansion
order is used in both space dimensions. This setup results in p-type non-conforming
interfaces.

3. h-type Non-conforming Grid: In this study, grid 2, illustrated in figure 2c is used.
Here, 2 h-type non-conforming interfaces lying in y-direction are present. Elements
on the left half of the domain have expansion orders p in both space dimensions.
The two large elements on the right hand side also have expansion order p in the
x-direction. p + 4 is used in y-direction to compensate for the large element size in
that direction.

For all the grids described above, a series of solutions are performed for various expansion
orders by starting with p = 6 and incrementing by 2 until p = 14. For non-conforming
grids, the expansion order of the individual elements is not a representative value of the
expansion order of the whole grid since it varies from one element to other. Therefore
here the number of degree of freedom used to approximate each of the unknowns, ndf is
used as a measure of expansion order. In figure 3, a semi-log plot of maximum-norm error
in x-velocity, ‖ue − u‖∞ against

√
ndf is presented. The use of

√
ndf as the independent

variable ensures that the spectral convergence trend is displayed as a straight line on semi-
log plot. Straight line patterns in figure 3 indicate that spectral convergence is achieved for
all three grid configurations regardless of the presence of p- and h-type non-conformities.

8



Altug Ozcelikkale, Cuneyt Sert

15 20 25 30 35 40 45
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

Conforming grid
p−type nonconforming grid
h−type nonconforming grid

√
ndf

‖u
e
−

u
‖ ∞

Figure 3: Convergence trends for conforming, p-type nonconforming and h-type noncon-
forming grids for Kovasznay flow
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Figure 5: Lid-driven cavity: Stream function
contours

5.2 2-Dimensional Lid-Driven Cavity Flow

Another popular incompressible flow problem is the shear driven flow inside a 2-
dimensional square cavity. The flow is induced by an infinite lid at the top of the cavity,
pulled in x-direction with constant velocity. The main flow features are a large central
vortex in the middle of the cavity and small corner vortices whose size and number change
with Re number.

This problem is solved with a non-conforming Cartesian grid to illustrate the ability of
the solver to work with h-type non-conforming grids in practice. No adaptive refinement
is employed. All elements have expansion orders p = 4 in both directions. It is worth
to mention that x-velocity is discontinuous at upper corners resulting in a singular solu-
tion for velocity there. High-order methods are sensitive to such singularities by nature.
Therefore it is desirable to minimize the effect of these singularities on the solution. It
is possible to subtract the singular solutions at the corners to end up with a smooth
solution20 or to solve a regularized version of the problem where the velocity boundary
condition is smoothed near corners21. Here, the computational grid is refined at those
corners to isolate the effect of singularities to surrounding small elements. The size of the
elements in the rest of the grid are not affected due to use of non-conforming Cartesian
grid. The grid used in the solution is illustrated in figure 4.

The presented solution is performed for Re = 1000. For visual acquisition, stream function
contours are presented in figure 5. The position of the central vertex and the sizes of the
corner vortices are captured properly. Figures 6 and 7 show the x and y-velocities taken
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Figure 6: Lid-driven Cavity: x-velocity pro-
file across the vertical centerline
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Figure 7: Lid-driven Cavity: y-velocity pro-
file across the horizontal centerline

from the vertical and the horizontal centerlines of the domain. The profiles are in well
agreement with the multi-grid finite difference solution of Ghia et al. 22 and Chebyshev
spectral solution of Botella and Peyret 20 . It is seen that a practical problem can be solved
with LSSEM on a non-conforming Cartesian grid accurately.

5.3 Laminar Flow Past Cylinder in a Channel

The flow of interest is the laminar flow in a channel where the flow is partially blocked
by a large circular cylindrical obstacle. This problem and its variants are encountered
frequently in the mass conservation studies of least squares formulation. The issue of
LS formulation showing poor mass conservation performance compared to the Galerkin
formulation was first reported by Chang and Nelson 6 . Several remedies that modify
the least squares formulation6,9–11 were suggested since that time. More recently, it was
observed that the mass conservation performance can be improved by increasing the
expansion order alone, without modifying the formulation, in the case of least squares
spectral collocation method23.

In this study, the problem is solved on a rectangular channel [−11, 15] × [−1, 1]. A
cylinder with diameter D = 1 is placed at the origin. No slip boundary conditions are
applied at the upper and lower channel walls and the surface of the cylinder. A uniform
inflow u = 1, v = 0 is prescribed at x = −11 to stay consistent with the literature11 and an
outflow boundary condition with tangential velocity and pressure set to zero is enforced
at the downstream boundary. The resulting Reynolds number based on cylinder diameter
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is 40 for which a steady, laminar solution exists. It is worth to mention that while the
solver is designed to work with a non-conforming adaptive Cartesian grid eventually, it
is also capable of handling arbitrary quadrilateral elements. Here, the computational
grid consists of 32 quadrilateral elements. The elements near the cylinder have curved
edges to represent the cylinder geometry accurately. The cylinder geometry is provided
as line-segmented data from which the coordinates of the nodal points on the related
edges are interpolated using an 8th degree Lagrange interpolation. Coordinates of the rest
of the nodes and the Jacobians of the elements with curved edges are calculated using
Gordon-Hall trans-finite interpolation24.

Two solutions are obtained using the described configuration. First, the problem is
solved by setting element expansion orders to p = 6. p-type adaptive refinement is not
employed, resulting in a conforming grid. The details of this grid, referred as the non-
adaptive grid, and the associated solution are presented in figure 8a. It is seen that the
length of recirculation zone behind the cylinder is underestimated by the non-adaptive
grid. This region should extend beyond x = 1 for a mass conserving solution11. The
second solution is obtained by using the same grid as the initial grid and employing p-
type adaptive refinement. Expansion orders as high as 20 and as low as 4 are allowed.
The refinement criteria is to keep area averaged least squares functional for each element
within the interval [10−9, 10−6]. The final grid reached at steady state, referred as the
adaptive grid, and the associated solution are presented in figure 8b. It is observed that,
this time the recirculation zone expands well beyond x = 1 up to x = 1.35.

For a more quantitative comparison, x-velocity profile at the vertical cross-section
between the cylinder and lower channel wall at which maximum velocity occurs (x = 0) is
plotted in figure 9. The result of Prabhakar et al. 11 , whose collocation penalty LSFEM
leads to good mass conservation with this problem is also included as a reference. It is
observed that the non-adaptive grid results in a maximum velocity that is considerably
lower than the reference value. On the other hand, the adaptive grid results are in good
agreement with Prabhakar et al. 11 . The mass flow rate obtained by integrating the
velocity profiles over the cross section are 0.670 and 0.995 for non-adaptive and adaptive
grids respectively. This indicates less than 1% mass loss with adaptive refinement. Figure
10 illustrates the centerline x-velocity, uc plotted against x-coordinate in the upstream of
the cylinder. A decay in the centerline velocity associated with a continuous mass loss is
observed for the non-adaptive grid. On the other hand, the centerline velocity obtained
by the adaptive grid increases towards the downstream, which is the expected behavior
due to developing boundary layers near the channel walls.

Finally, figure 5.3 shows the distribution of element averaged least squares functional
inside the channel. It is observed that p-type adaptive refinement strategy manages to
keep the least squares functional between prescribed bounds i.e. [10−9, 10−6] by refining
and unrefining accordingly. One exception is the elements adjacent to inflow boundary.

12



Altug Ozcelikkale, Cuneyt Sert

x

y

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

x

y

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

(a) Non-adaptive grid

x

y

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

x

y

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

(b) Adaptive grid

Figure 8: Flow past a large cylinder: Computational grids and streamlines
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Figure 11: Distribution of elemental least squares functional over the domain. Darker
regions indicate lower errors.

However, those elements are exposed to singularities in x-velocity due to uniform inflow
boundary condition near the channel walls. Favorable convergence characteristics of high-
order methods disappear near such singularities25. A fully developed parabolic velocity
profile at the inlet would be a physically more realistic boundary condition.

6 CONCLUSION

In this study, a laminar incompressible flow solver based on least squares spectral
element method is introduced. The solver has the ability to work on non-conforming
Cartesian grids and perform p-type adaptive refinement using least squares functional
error estimate. This combination of the numerical method and grid structure is rare in
both least squares and non-conforming Cartesian grid literature. It is shown that the
solver achieves spectral convergence for smooth problems even in the presence of h and
p-type non-conformities. 2-dimensional lid-driven cavity problem with corner singularities
is also solved effectively by the virtue of local refinement abilities of the non-conforming
Cartesian grid. Poor mass conservation performance of least squares spectral element
method is illustrated by a channel flow with a large circular cylindrical obstacle. It is
shown that the mass conservation can be improved by utilizing p-type adaptive refinement.
As a result, poor mass conservation performance of least squares spectral element method
may not be of practical concern when adaptive refinement is employed.
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